WIKIPEDIA

Buffer overflow

In computer security and programming, a buffer overflow, or buffer overrun, is an anomaly where a program,

while writing data to a buffer, overruns the buffer's boundary and overwrites adjacent memory locations.

Buffers are areas of memory set aside to hold data, often while moving it from one section of a program to another, or
between programs. Buffer overflows can often be triggered by malformed inputs; if one assumes all inputs will be
smaller than a certain size and the buffer is created to be that size, then an anomalous transaction that produces more
data could cause it to write past the end of the buffer. If this overwrites adjacent data or executable code, this may

result in erratic program behavior, including memory access errors, incorrect results, and crashes.

Exploiting the behavior of a buffer overflow is a well-known security exploit. On many systems, the memory layout of
a program, or the system as a whole, is well defined. By sending in data designed to cause a buffer overflow, it is
possible to write into areas known to hold executable code, and replace it with malicious code. Buffers are widespread
in operating system (OS) code, so it is possible to make attacks that perform privilege escalation and gain unlimited

access to the computer's resources. The famed Morris worm in 1988 used this as one of its attack techniques.

Programming languages commonly associated with buffer overflows include C and C++, which provide no built-in
protection against accessing or overwriting data in any part of memory and do not automatically check that data
written to an array (the built-in buffer type) is within the boundaries of that array. Bounds checking can prevent buffer
overflows, but requires additional code and processing time. Modern operating systems use a variety of techniques to
combat malicious buffer overflows, notably by randomizing the layout of memory, or deliberately leaving space

between buffers and looking for actions that write into those areas ("canaries").

Contents

Technical description
Example

Exploitation
Stack-based exploitation
Heap-based exploitation
Barriers to exploitation

Practicalities of exploitation
NOP sled technique

The jump to address stored in a register technique

Protective countermeasures
Choice of programming language
Use of safe libraries
Buffer overflow protection
Pointer protection
Executable space protection
Address space layout randomization
Deep packet inspection
Testing

History

https://en.wikipedia.org/wiki/Computer_security
WP

https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Anomaly_in_software
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Data_(computing)
https://en.wikipedia.org/wiki/Buffer_(computer_science)
https://en.wikipedia.org/wiki/Main_memory
https://en.wikipedia.org/wiki/Crash_(computing)
https://en.wikipedia.org/wiki/Exploit_(computer_security)
https://en.wikipedia.org/wiki/Execution_(computing)
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Privilege_escalation
https://en.wikipedia.org/wiki/Morris_worm
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/Bounds_checking
https://en.wikipedia.org/wiki/Address_space_layout_randomization

See also
References

External links

Technical description

A buffer overflow occurs when data written to a buffer also corrupts data values in memory addresses adjacent to the
destination buffer due to insufficient bounds checking. This can occur when copying data from one buffer to another
without first checking that the data fits within the destination buffer.

Example

In the following example expressed in C, a program has two variables which are adjacent in memory: an 8-byte-long
string buffer, A, and a two-byte big-endian integer, B.

Echar A[8] = "";
unsigned short B =

__

Initially, A contains nothing but zero bytes, and B contains the number 1979.

variable name A B
value [null string] 1979

hex value 00 | 00 | OO0 | OO 00 OO | 00 00 07 | BB

Now, the program attempts to store the null-terminated string "excessive" with ASCII encoding in the A buffer.

__

"excessive" is 9 characters long and encodes to 10 bytes including the null terminator, but A can take only 8 bytes.

By failing to check the length of the string, it also overwrites the value of B:

variable name A B
value 'e' 'x' 'c' 'e' 's' 's' i 'v' 25856
hex 65 78 63 65 73 73 69 76 65 00

B's value has now been inadvertently replaced by a number formed from part of the character string. In this example

"e" followed by a zero byte would become 25856.

Writing data past the end of allocated memory can sometimes be detected by the operating system to generate a
segmentation fault error that terminates the process.

To prevent the buffer overflow from happening in this example, the call to strcpy could be replaced with strncpy,
which takes the maximum capacity of A as an additional parameter and ensures that no more than this amount of data

1s written to A:

__

__

WP

WP

https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Memory_address
https://en.wikipedia.org/wiki/Bounds_checking
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Null_string
https://en.wikipedia.org/wiki/Null-terminated_string
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Segmentation_fault
https://en.wikipedia.org/wiki/Strcpy
https://en.wikipedia.org/wiki/Strncpy

Note that the above code is not free from problems either; while a buffer overrun has been prevented this time, the
strncpy library function does not null-terminate the destination buffer if the source string's length is greater than or
equal to the size of the buffer (the third argument passed to the function), therefore A is, in this case, not null-

terminated and cannot be treated as a valid C-style string.

Exploitation

The techniques to exploit a buffer overflow vulnerability vary by architecture, by operating system and by memory
region. For example, exploitation on the heap (used for dynamically allocated memory), differs markedly from

exploitation on the call stack.

Stack-based exploitation

A technically inclined user may exploit stack-based buffer overflows to manipulate the program to their advantage in

one of several ways:

= By overwriting a local variable that is located near the vulnerable buffer on the stack, in order to change the
behavior of the program

= By overwriting the return address in a stack frame. Once the function returns, execution will resume at the return
address as specified by the attacker - usually a user-input filled buffer

= By overwriting a function pointerm or exception handler, which is subsequently executed
= By overwriting a local variable (or pointer) of a different stack frame, which will be used by the function which
owns that frame later.[?]

If the address of the user-supplied data used to effect the stack buffer overflow is unpredictable, exploiting a stack
buffer overflow to cause remote code execution becomes much more difficult. One technique that can be used to
exploit such a buffer overflow is called "trampolining". In that technique, an attacker will find a pointer to the
vulnerable stack buffer, and compute the location of their shellcode relative to that pointer. Then, they will use the
overwrite to jump to an instruction already in memory which will make a second jump, this time relative to the
pointer; that second jump will branch execution into the shellcode. Suitable instructions are often present in large
code. The Metasploit Project, for example, maintains a database of suitable opcodes, though it lists only those found in
the Windows operating system.!3!

Heap-based exploitation

A buffer overflow occurring in the heap data area is referred to as a heap overflow and is exploitable in a manner
different from that of stack-based overflows. Memory on the heap is dynamically allocated by the application at run-
time and typically contains program data. Exploitation is performed by corrupting this data in specific ways to cause
the application to overwrite internal structures such as linked list pointers. The canonical heap overflow technique
overwrites dynamic memory allocation linkage (such as malloc meta data) and uses the resulting pointer exchange to

overwrite a program function pointer.

Microsoft's GDI+ vulnerability in handling JPEGs is an example of the danger a heap overflow can present.[4]

Barriers to exploitation

Manipulation of the buffer, which occurs before it is read or executed, may lead to the failure of an exploitation
attempt. These manipulations can mitigate the threat of exploitation, but may not make it impossible. Manipulations

could include conversion to upper or lower case, removal of metacharacters and filtering out of non-alphanumeric

https://en.wikipedia.org/wiki/Strncpy
WP

WP

WP

WP

WP

WP

https://en.wikipedia.org/wiki/Exploit_(computer_security)
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Heap_memory
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Stack_frame
https://en.wikipedia.org/wiki/Exception_handler
https://en.wikipedia.org/wiki/Shellcode
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Metasploit_Project
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Malloc
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Graphics_Device_Interface
https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/Metacharacter
https://en.wikipedia.org/wiki/Alphanumeric

strings. However, techniques exist to bypass these filters and manipulations; alphanumeric code, polymorphic code,
self-modifying code and return-to-libc attacks. The same methods can be used to avoid detection by intrusion
detection systems. In some cases, including where code is converted into unicode,® the threat of the vulnerability has
been misrepresented by the disclosers as only Denial of Service when in fact the remote execution of arbitrary code is

possible.

Practicalities of exploitation

In real-world exploits there are a variety of challenges which need to be overcome for exploits to operate reliably.
These factors include null bytes in addresses, variability in the location of shellcode, differences between

environments and various counter-measures in operation.

NOP sled technique

A NOP-sled is the oldest and most widely known technique for successfully
exploiting a stack buffer overflow.[®! It solves the problem of finding the exact
address of the buffer by effectively increasing the size of the target area. To do
this, much larger sections of the stack are corrupted with the no-op machine
instruction. At the end of the attacker-supplied data, after the no-op - Shellcode
instructions, the attacker places an instruction to perform a relative jump to

the top of the buffer where the shellcode is located. This collection of no-ops

is referred to as the "NOP-sled" because if the return address is overwritten nop | nop | nop | nop

with any address within the no-op region of the buffer, the execution will

"slide" down the no-ops until it is redirected to the actual malicious code by
nop nop nop | nop

the jump at the end. This technique requires the attacker to guess where on

the stack the NOP-sled is instead of the comparatively small shellcode.!”] relative
nop | nop Jump

Because of the popularity of this technique, many vendors of intrusion

prevention systems will search for this pattern of no-op machine instructions Return Address Guess

in an attempt to detect shellcode in use. It is important to note that a NOP-

sled does not necessarily contain only traditional no-op machine nop | nop | nop | nop

instructions; any instruction that does not corrupt the machine state to a ¥

point where the shellcode will not run can be used in place of the hardware NOP-Sled

assisted no-op. As a result, it has become common practice for exploit writers

to compose the no-op sled with randomly chosen instructions which will have relative

no real effect on the shellcode execution. (8] e jump -|

While this method greatly improves the chances that an attack will be

successful, it is not without problems. Exploits using this technique still must

rely on some amount of luck that they will guess offsets on the stack that are lllustration of a NOP-sled payload

within the NOP-sled region.[®! An incorrect guess will usually result in the on the stack.

target program crashing and could alert the system administrator to the
attacker's activities. Another problem is that the NOP-sled requires a much
larger amount of memory in which to hold a NOP-sled large enough to be of any use. This can be a problem when the
allocated size of the affected buffer is too small and the current depth of the stack is shallow (i.e. there is not much
space from the end of the current stack frame to the start of the stack). Despite its problems, the NOP-sled is often the

only method that will work for a given platform, environment, or situation; as such it is still an important technique.

https://en.wikipedia.org/wiki/Alphanumeric_code
WP

https://en.wikipedia.org/wiki/Polymorphic_code
https://en.wikipedia.org/wiki/Self-modifying_code
https://en.wikipedia.org/wiki/Return-to-libc_attack
https://en.wikipedia.org/wiki/Intrusion_detection_system
https://en.wikipedia.org/wiki/No-op
https://en.wikipedia.org/wiki/Shellcode
https://en.wikipedia.org/wiki/Intrusion_prevention_system
https://en.wikipedia.org/wiki/System_administrator
https://en.wikipedia.org/wiki/File:Nopsled.svg

The jump to address stored in a register technique

The "jump to register" technique allows for reliable exploitation of stack buffer overflows without the need for extra
room for a NOP-sled and without having to guess stack offsets. The strategy is to overwrite the return pointer with
something that will cause the program to jump to a known pointer stored within a register which points to the
controlled buffer and thus the shellcode. For example, if register A contains a pointer to the start of a buffer then any
jump or call taking that register as an operand can be used to gain control of the flow of execution.!1?!

In practice a program may not intentionally contain

0x7C941EEC: call DgbPrint instructions to jump to a particular register. The traditional
l solution is to find an unintentional instance of a suitable
0x7CO41EED: OxFF opcode at a fixed location somewhere within the program

Ox7CO41EEC: OxES 0x7C941EEE: OxE4

0x7CS41EED: OxEF memory. In figure E on the left you can see an example of

0x7C941EEE: OxE4 such an unintentional instance of the i386 jmp esp
0x7C941EEF: OXFE _ . o T >
0x7C941EF0: OxFF |o,7c9ugm: jmp .,,I instruction. The opcode for this instruction is FF E4 1]

0x7C941EF1: 0x56

This two-byte sequence can be found at a one-byte offset
An instruction from ntdll.dll to call the DbgPrint () from the start of the instruction call DbgPrint at
routine contains the i386 machine opcode for jmp address 0x7C941EED.
esp.

If an attacker overwrites the
program return address with this address the program will
first jump to 0x7C941EED, interpret the opcode FF E4 as
the jmp esp instruction, and will then jump to the top of the stack and execute the attacker's code.[1?]

When this technique is possible the severity of the vulnerability increases considerably. This is because exploitation
will work reliably enough to automate an attack with a virtual guarantee of success when it is run. For this reason, this

is the technique most commonly used in Internet worms that exploit stack buffer overflow vulnerabilities.!'®]

This method also allows shellcode to be placed after the overwritten return address on the Windows platform. Since
executables are mostly based at address 0x00400000 and x86 is a Little Endian architecture, the last byte of the
return address must be a null, which terminates the buffer copy and nothing is written beyond that. This limits the
size of the shellcode to the size of the buffer, which may be overly restrictive. DLLs are located in high memory (above
0x01000000) and so have addresses containing no null bytes, so this method can remove null bytes (or other
disallowed characters) from the overwritten return address. Used in this way, the method is often referred to as "DLL

Trampolining".

Protective countermeasures

Various techniques have been used to detect or prevent buffer overflows, with various tradeoffs. The most reliable way
to avoid or prevent buffer overflows is to use automatic protection at the language level. This sort of protection,
however, cannot be applied to legacy code, and often technical, business, or cultural constraints call for a vulnerable

language. The following sections describe the choices and implementations available.

Choice of programming language

Assembly and C/C++ are popular programming languages that are vulnerable to buffer overflow, in part because they
allow direct access to memory and are not strongly typed.['*] C provides no built-in protection against accessing or
overwriting data in any part of memory; more specifically, it does not check that data written to a buffer is within the
boundaries of that buffer. The standard C++ libraries provide many ways of safely buffering data, and C++'s Standard
Template Library (STL) provides containers that can optionally perform bounds checking if the programmer explicitly

WP

WP

WP

WP

https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/File:JumpToEsp.png
https://en.wikipedia.org/wiki/Internet_worm
https://en.wikipedia.org/wiki/Little_endian
https://en.wikipedia.org/wiki/Legacy_code
https://en.wikipedia.org/wiki/Standard_Template_Library
https://en.wikipedia.org/wiki/File:JumpToEsp.png
https://en.wikipedia.org/wiki/I386

calls for checks while accessing data. For example, a vector's member function at () performs a bounds check and
throws an out_of range exception if the bounds check fails.l'3] However, C++ behaves just like C if the bounds

check is not explicitly called. Techniques to avoid buffer overflows also exist for C.

Languages that are strongly typed and don't allow direct memory access, such as COBOL, Java, Python, and others,
prevent buffer overflow from occurring in most cases.l'*! Many programming languages other than C/C++ provide
runtime checking and in some cases even compile-time checking which might send a warning or raise an exception
when C or C++ would overwrite data and continue to execute further instructions until erroneous results are obtained
which might or might not cause the program to crash. Examples of such languages include Ada, Eiffel, Lisp, Modula-2,
Smalltalk, OCaml and such C-derivatives as Cyclone, Rust and D. The Java and .NET Framework bytecode
environments also require bounds checking on all arrays. Nearly every interpreted language will protect against buffer
overflows, signaling a well-defined error condition. Often where a language provides enough type information to do
bounds checking an option is provided to enable or disable it. Static code analysis can remove many dynamic bound
and type checks, but poor implementations and awkward cases can significantly decrease performance. Software
engineers must carefully consider the tradeoffs of safety versus performance costs when deciding which language and
compiler setting to use.

Use of safe libraries

The problem of buffer overflows is common in the C and C++ languages because they expose low level
representational details of buffers as containers for data types. Buffer overflows must thus be avoided by maintaining
a high degree of correctness in code which performs buffer management. It has also long been recommended to avoid
standard library functions which are not bounds checked, such as gets, scanf and strcpy. The Morris worm

exploited a gets call in fingerd.[1 6]

Well-written and tested abstract data type libraries which centralize and automatically perform buffer management,
including bounds checking, can reduce the occurrence and impact of buffer overflows. The two main building-block
data types in these languages in which buffer overflows commonly occur are strings and arrays; thus, libraries
preventing buffer overflows in these data types can provide the vast majority of the necessary coverage. Still, failure to
use these safe libraries correctly can result in buffer overflows and other vulnerabilities; and naturally, any bug in the
library itself is a potential vulnerability. "Safe" library implementations include "The Better String Library",l'”] vstr['él
and Erwin.l'® The OpenBSD operating system's C library provides the strlepy and strlcat functions, but these are

more limited than full safe library implementations.

In September 2007, Technical Report 24731, prepared by the C standards committee, was published;[zo] it specifies a
set of functions which are based on the standard C library's string and I/O functions, with additional buffer-size
parameters. However, the efficacy of these functions for the purpose of reducing buffer overflows is disputable; it
requires programmer intervention on a per function call basis that is equivalent to intervention that could make the

analogous older standard library functions buffer overflow safe.[21]

Buffer overflow protection

Buffer overflow protection is used to detect the most common buffer overflows by checking that the stack has not been
altered when a function returns. If it has been altered, the program exits with a segmentation fault. Three such
systems are Libsafe,[??] and the StackGuard?3! and ProPolicel?4! gce patches.

Microsoft's implementation of Data Execution Prevention (DEP) mode explicitly protects the pointer to the Structured

Exception Handler (SEH) from being overwritten.[25]

https://en.wikipedia.org/wiki/Exception_handling
WP

WP

WP

https://en.wikipedia.org/wiki/Ada_(programming_language)
https://en.wikipedia.org/wiki/Eiffel_(programming_language)
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Modula-2
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/OCaml
https://en.wikipedia.org/wiki/Cyclone_(programming_language)
https://en.wikipedia.org/wiki/Rust_(programming_language)
https://en.wikipedia.org/wiki/D_(programming_language)
https://en.wikipedia.org/wiki/Java_(software_platform)
https://en.wikipedia.org/wiki/.NET_Framework
https://en.wikipedia.org/wiki/Interpreted_programming_language
https://en.wikipedia.org/wiki/Static_code_analysis
https://en.wikipedia.org/wiki/Gets()
https://en.wikipedia.org/wiki/Scanf
https://en.wikipedia.org/wiki/Strcpy
https://en.wikipedia.org/wiki/Morris_worm
https://en.wikipedia.org/wiki/Fingerd
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/C_library
https://en.wikipedia.org/wiki/Strlcpy
https://en.wikipedia.org/wiki/Strlcat
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Segmentation_fault
https://en.wikipedia.org/wiki/StackGuard
https://en.wikipedia.org/wiki/ProPolice
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/Data_Execution_Prevention
https://en.wikipedia.org/wiki/Structured_Exception_Handler

Stronger stack protection is possible by splitting the stack in two: one for data and one for function returns. This split
is present in the Forth language, though it was not a security-based design decision. Regardless, this is not a complete

solution to buffer overflows, as sensitive data other than the return address may still be overwritten.

Pointer protection

Buffer overflows work by manipulating pointers (including stored addresses). PointGuard was proposed as a
compiler-extension to prevent attackers from being able to reliably manipulate pointers and addresses.[?®! The
approach works by having the compiler add code to automatically XOR-encode pointers before and after they are
used. Because the attacker (theoretically) does not know what value will be used to encode/decode the pointer, he
cannot predict what it will point to if he overwrites it with a new value. PointGuard was never released, but Microsoft
implemented a similar approach beginning in Windows XP SP2 and Windows Server 2003 SP1.27] Rather than
implement pointer protection as an automatic feature, Microsoft added an API routine that can be called at the
discretion of the programmer. This allows for better performance (because it is not used all of the time), but places the

burden on the programmer to know when it is necessary.

Because XOR is linear, an attacker may be able to manipulate an encoded pointer by overwriting only the lower bytes
of an address. This can allow an attack to succeed if the attacker is able to attempt the exploit multiple times or is able
to complete an attack by causing a pointer to point to one of several locations (such as any location within a NOP
sled).[?8] Microsoft added a random rotation to their encoding scheme to address this weakness to partial

overwrites.[2°]

Executable space protection

Executable space protection is an approach to buffer overflow protection which prevents execution of code on the
stack or the heap. An attacker may use buffer overflows to insert arbitrary code into the memory of a program, but

with executable space protection, any attempt to execute that code will cause an exception.

Some CPUs support a feature called NX ("No eXecute") or XD ("eXecute Disabled") bit, which in conjunction with
software, can be used to mark pages of data (such as those containing the stack and the heap) as readable and writable

but not executable.

Some Unix operating systems (e.g. OpenBSD, macOS) ship with executable space protection (e.g. W*X). Some
optional packages include:

= Pax(30]
= Exec Shield!3"!
= Openwalll32]

Newer variants of Microsoft Windows also support executable space protection, called Data Execution Prevention.!33!
Proprietary add-ons include:

= BufferShield[34]
= StackDefenderl3%]

Executable space protection does not generally protect against return-to-libc attacks, or any other attack which does
not rely on the execution of the attackers code. However, on 64-bit systems using ASLR, as described below,

executable space protection makes it far more difficult to execute such attacks.

https://en.wikipedia.org/wiki/Forth_(programming_language)
https://en.wikipedia.org/wiki/NX_bit
https://en.wikipedia.org/wiki/XD_bit
https://en.wikipedia.org/wiki/Paging
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/W%5EX
https://en.wikipedia.org/wiki/PaX
https://en.wikipedia.org/wiki/Exec_Shield
https://en.wikipedia.org/wiki/Openwall
https://en.wikipedia.org/wiki/Data_Execution_Prevention
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Return-to-libc_attack
https://en.wikipedia.org/wiki/64-bit
https://en.wikipedia.org/wiki/ASLR

Address space layout randomization

Address space layout randomization (ASLR) is a computer security feature which involves arranging the positions of
key data areas, usually including the base of the executable and position of libraries, heap, and stack, randomly in a
process' address space.

Randomization of the virtual memory addresses at which functions and variables can be found can make exploitation
of a buffer overflow more difficult, but not impossible. It also forces the attacker to tailor the exploitation attempt to
the individual system, which foils the attempts of internet worms.[36] A similar but less effective method is to rebase

processes and libraries in the virtual address space.

Deep packet inspection

The use of deep packet inspection (DPI) can detect, at the network perimeter, very basic remote attempts to exploit
buffer overflows by use of attack signatures and heuristics. These are able to block packets which have the signature of
a known attack, or if a long series of No-Operation instructions (known as a NOP-sled) is detected, these were once

used when the location of the exploit's payload is slightly variable.

Packet scanning is not an effective method since it can only prevent known attacks and there are many ways that a
NOP-sled can be encoded. Shellcode used by attackers can be made alphanumeric, metamorphic, or self-modifying to

evade detection by heuristic packet scanners and intrusion detection systems.

Testing

Checking for buffer overflows and patching the bugs that cause them naturally helps prevent buffer overflows. One
common automated technique for discovering them is fuzzing.[3’! Edge case testing can also uncover buffer overflows,
as can static analysis.[®8 Once a potential buffer overflow is detected, it must be patched; this makes the testing
approach useful for software that is in development, but less useful for legacy software that is no longer maintained or
supported.

History

Buffer overflows were understood and partially publicly documented as early as 1972, when the Computer Security
Technology Planning Study laid out the technique: "The code performing this function does not check the source and
destination addresses properly, permitting portions of the monitor to be overlaid by the user. This can be used to
inject code into the monitor that will permit the user to seize control of the machine." (Page 61)[39] Today, the monitor
would be referred to as the kernel.

The earliest documented hostile exploitation of a buffer overflow was in 1988. It was one of several exploits used by
the Morris worm to propagate itself over the Internet. The program exploited was a service on Unix called finger.[401
Later, in 1995, Thomas Lopatic independently rediscovered the buffer overflow and published his findings on the
Bugtraq security mailing list.[*!! A year later, in 1996, Elias Levy (also known as Aleph One) published in Phrack
magazine the paper "Smashing the Stack for Fun and Profit",[*2] a step-by-step introduction to exploiting stack-based

buffer overflow vulnerabilities.

Since then, at least two major internet worms have exploited buffer overflows to compromise a large number of
systems. In 2001, the Code Red worm exploited a buffer overflow in Microsoft's Internet Information Services (IIS)

5.01*3 and in 2003 the SQL Slammer worm compromised machines running Microsoft SQL Server 2000.[44]

https://en.wikipedia.org/wiki/Virtual_memory
WP

WP

WP

WP

WP

https://en.wikipedia.org/wiki/Internet_worm
https://en.wikipedia.org/wiki/Rebasing
https://en.wikipedia.org/wiki/Heuristic_(computer_science)
https://en.wikipedia.org/wiki/Payload_(software)
https://en.wikipedia.org/wiki/Shellcode
https://en.wikipedia.org/wiki/Alphanumeric_code
https://en.wikipedia.org/wiki/Metamorphic_code
https://en.wikipedia.org/wiki/Self-modifying_code
https://en.wikipedia.org/wiki/Intrusion_detection_system
https://en.wikipedia.org/wiki/Fuzzer
https://en.wikipedia.org/wiki/Morris_worm
https://en.wikipedia.org/wiki/Service_(computing)
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Finger_protocol
https://en.wikipedia.org/wiki/Bugtraq
https://en.wikipedia.org/wiki/Elias_Levy
https://en.wikipedia.org/wiki/Phrack
https://en.wikipedia.org/wiki/Code_Red_worm
https://en.wikipedia.org/wiki/Internet_Information_Services
https://en.wikipedia.org/wiki/SQL_Slammer
https://en.wikipedia.org/wiki/Microsoft_SQL_Server_2000

In 2003, buffer overflows present in licensed Xbox games have been exploited to allow unlicensed software, including

homebrew games, to run on the console without the need for hardware modifications, known as modchips.[45] The

PS2 Independence Exploit also used a buffer overflow to achieve the same for the PlayStation 2. The Twilight hack

accomplished the same with the Wii, using a buffer overflow in The Legend of Zelda: Twilight Princess.

See also

Billion laughs

Buffer over-read
Computer security
End-of-file

Heap overflow

Ping of death

Port scanner
Return-to-libc attack
Security-focused operating system
Self-modifying code
Shellcode

Stack buffer overflow
Uncontrolled format string

References

1

10.

"CORE-2007-0219: OpenBSD's IPv6 mbufs remote kernel buffer overflow" (http://www.securityfocus.com/archive/
1/462728/30/150/threaded). Retrieved 2007-05-15.

. "Modern Overflow Targets" (http://packetstormsecurity.com/files/download/121751/ModernOverflowTargets.pdf)

(PDF). Retrieved 2013-07-05.

"The Metasploit Opcode Database" (https://web.archive.org/web/20070512195939/http://www.metasploit.com/use
rs/opcode/msfopcode.cgi). Archived from the original (http://metasploit.com/users/opcode/msfopcode.cgi) on 12
May 2007. Retrieved 2007-05-15.

. "Microsoft Technet Security Bulletin MS04-028" (http://www.microsoft.com/technet/security/bulletin/MS04-028.ms

px). Retrieved 2007-05-15.

"Creating Arbitrary Shellcode In Unicode Expanded Strings" (https://web.archive.org/web/20060105041036/http://
www.net-security.org/dl/articles/unicodebo.pdf) (PDF). Archived from the original (http://www.net-security.org/dl/art
icles/unicodebo.pdf) (PDF) on 2006-01-05. Retrieved 2007-05-15.

. Vangelis (2004-12-08). "Stack-based Overflow Exploit: Introduction to Classical and Advanced Overflow

Technique" (https://web.archive.org/web/20070818115455/http://www.neworder.box.sk/newsread.php?newsid=12
476). Wowhacker via Neworder. Archived from the original (http://www.neworder.box.sk/newsread.php?newsid=1
2476) (text) on August 18, 2007.

Balaban, Murat. "Buffer Overflows Demystified" (http://www.enderunix.org/docs/en/bof-eng.txt) (text).
Enderunix.org.

Akritidis, P.; Evangelos P. Markatos; M. Polychronakis; Kostas D. Anagnostakis (2005). "STRIDE: Polymorphic
Sled Detection through Instruction Sequence Analysis." (hitp://dcs.ics.forth.gr/Activities/papers/stride-IFIP-SEC05
.pdf) (PDF). Proceedings of the 20th IFIP International Information Security Conference (IFIP/SEC 2005). IFIP
International Information Security Conference. Retrieved 2012-03-04.

Klein, Christian (September 2004). "Buffer Overflow" (https://web.archive.org/web/20070928011639/http://cOre.23
.nu/~chris/presentations/overflow2005.pdf) (PDF). Archived from the original (http://cOre.23.nu/~chris/presentatio
ns/overflow2005.pdf) (PDF) on 2007-09-28.

Shah, Saumil (2006). "Writing Metasploit Plugins: from vulnerability to exploit" (http://conference.hitb.org/hitbsecc
onf2006kl/materials/DAY %201%20-%20Saumil%20Shah%20-%20Writing%20Metasploit%20PIlugins.pdf) (PDF).

https://en.wikipedia.org/wiki/Xbox_(console)
https://en.wikipedia.org/wiki/Homebrew_(video_games)
https://en.wikipedia.org/wiki/Modchip
https://en.wikipedia.org/wiki/PS2_Independence_Exploit
https://en.wikipedia.org/wiki/PlayStation_2
https://en.wikipedia.org/wiki/Wii
https://en.wikipedia.org/wiki/The_Legend_of_Zelda:_Twilight_Princess
https://en.wikipedia.org/wiki/Billion_laughs
https://en.wikipedia.org/wiki/Buffer_over-read
https://en.wikipedia.org/wiki/Computer_security
https://en.wikipedia.org/wiki/End-of-file
https://en.wikipedia.org/wiki/Heap_overflow
https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Port_scanner
https://en.wikipedia.org/wiki/Return-to-libc_attack
https://en.wikipedia.org/wiki/Security-focused_operating_system
https://en.wikipedia.org/wiki/Self-modifying_code
https://en.wikipedia.org/wiki/Shellcode
https://en.wikipedia.org/wiki/Stack_buffer_overflow
https://en.wikipedia.org/wiki/Uncontrolled_format_string
http://www.securityfocus.com/archive/1/462728/30/150/threaded
http://packetstormsecurity.com/files/download/121751/ModernOverflowTargets.pdf
https://web.archive.org/web/20070512195939/http://www.metasploit.com/users/opcode/msfopcode.cgi
http://metasploit.com/users/opcode/msfopcode.cgi
http://www.microsoft.com/technet/security/bulletin/MS04-028.mspx
https://web.archive.org/web/20060105041036/http://www.net-security.org/dl/articles/unicodebo.pdf
http://www.net-security.org/dl/articles/unicodebo.pdf
https://web.archive.org/web/20070818115455/http://www.neworder.box.sk/newsread.php?newsid=12476
http://www.neworder.box.sk/newsread.php?newsid=12476
http://www.enderunix.org/docs/en/bof-eng.txt
http://dcs.ics.forth.gr/Activities/papers/stride-IFIP-SEC05.pdf
https://web.archive.org/web/20070928011639/http://c0re.23.nu/~chris/presentations/overflow2005.pdf
http://c0re.23.nu/~chris/presentations/overflow2005.pdf
http://conference.hitb.org/hitbsecconf2006kl/materials/DAY%201%20-%20Saumil%20Shah%20-%20Writing%20Metasploit%20Plugins.pdf

11.

12.

13.

14.

15.

16.
17.
18.
19.
20.

21.
22.
23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

Hack In The Box. Kuala Lumpur. Retrieved 2012-03-04.

Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2A: Instruction Set Reference, A-M (https:/
/web.archive.org/web/20071129123212/http://developer.intel.com/design/processor/manuals/253666.pdf) (PDF).
Intel Corporation. May 2007. pp. 3—508. Archived from the original (http://developer.intel.com/design/processor/m
anuals/253666.pdf) (PDF) on 2007-11-29.

Alvarez, Sergio (2004-09-05). "Win32 Stack BufferOverFlow Real Life Vuln-Dev Process" (http://packetstormsecu
rity.org/papers/Win2000/Intro_to_Win32_Exploits.pdf) (PDF). IT Security Consulting. Retrieved 2012-03-04.

Ukal, Yuji; Soeder, Derek; Permeh, Ryan (2004). "Environment Dependencies in Windows Exploitation" (https://w
ww.blackhat.com/presentations/bh-asia-04/bh-jp-04-ukai-eng.ppt). BlackHat Japan. Japan: eEye Digital Security.
Retrieved 2012-03-04.

https://www.owasp.org/index.php/Buffer_Overflows Buffer Overflows article on OWASP

"vector::at - C++ Reference" (http://www.cplusplus.com/reference/vector/vector/at/). Cplusplus.com. Retrieved
2014-03-27.

http://wiretap.area.com/Gopher/Library/Techdoc/Virus/inetvir.823

"The Better String Library" (http://bstring.sf.net/).

"The Vstr Homepage" (http://www.and.org/vstr/). Retrieved 2007-05-15.

"The Erwin Homepage" (http://www.theiling.de/projects/erwin.html). Retrieved 2007-05-15.

International Organization for Standardization (2007). "Information technology — Programming languages, their
environments and system software interfaces — Extensions to the C library — Part 1: Bounds-checking
interfaces" (https://www.iso.org/obp/ui/#iso:std:iso-iec:tr:24731:-1:ed-2:v1:en:sec:4). ISO Online Browsing
Platform.

"CERT Secure Coding Initiative" (https://www.securecoding.cert.org/confluence/x/QwY). Retrieved 2007-07-30.
"Libsafe at FSF.org" (http://directory.fsf.org/libsafe.html). Retrieved 2007-05-20.

"StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks by Cowan et al" (https://w
ww.usenix.org/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf) (PDF). Retrieved 2007-05-20.
"ProPolice at X.ORG" (https://web.archive.org/web/20070212032750/http://wiki.x.org/wiki/ProPolice). Archived
from the original (http://wiki.x.org/wiki/ProPolice) on 12 February 2007. Retrieved 2007-05-20.

"Bypassing Windows Hardware-enforced Data Execution Prevention" (http://www.uninformed.org/?v=2&a=4&t=tx
t). Retrieved 2007-05-20.

PointGuard: Protecting Pointers From Buffer Overflow Vulnerabilities (http://www.usenix.org/events/sec03/tech/ful
|_papers/cowan/cowan_html/index.html)

Protecting Against Pointer Subterfuge (Kinda!) (http://blogs.msdn.com/michael_howard/archive/2006/01/30/5202
00.aspx)

Defeating Compiler-Level Buffer Overflow Protection (http://www.usenix.org/publications/login/2005-06/pdfs/alexa
nder0506.pdf)

Protecting against Pointer Subterfuge (Redux) (http://blogs.msdn.com/michael_howard/archive/2006/08/16/70270
7.aspx)

"PaX: Homepage of the PaX team" (http://pax.grsecurity.net). Retrieved 2007-06-03.

"KernelTrap.Org" (https://archive.is/20120529183334/http://kerneltrap.org/node/644). Archived from the original (h
ttp://kerneltrap.org/node/644) on 2012-05-29. Retrieved 2007-06-03.

"Openwall Linux kernel patch 2.4.34-ow1" (https://web.archive.org/web/20120219111512/http://linux.softpedia.co
m/get/System/Operating-Systems/Kernels/Openwall-Linux-kernel-patch-16454.shtml). Archived from the original (
http://linux.softpedia.com/get/System/Operating-Systems/Kernels/Openwall-Linux-kernel-patch-16454.shtml) on
2012-02-19. Retrieved 2007-06-03.

"Microsoft Technet: Data Execution Prevention" (http://technet2.microsoft.com/WindowsServer/en/Library/b0de10
52-4101-44c3-a294-4da1bd1ef2271033.mspx?mfr=true).

"BufferShield: Prevention of Buffer Overflow Exploitation for Windows" (http://www.sys-manage.com/english/prod
ucts/products_BufferShield.html). Retrieved 2007-06-03.

"NGSec Stack Defender" (https://web.archive.org/web/20070513235539/http://www.ngsec.com/ngproducts/stack

https://web.archive.org/web/20071129123212/http://developer.intel.com/design/processor/manuals/253666.pdf
http://developer.intel.com/design/processor/manuals/253666.pdf
http://packetstormsecurity.org/papers/Win2000/Intro_to_Win32_Exploits.pdf
https://www.blackhat.com/presentations/bh-asia-04/bh-jp-04-ukai-eng.ppt
https://www.owasp.org/index.php/Buffer_Overflows
http://www.cplusplus.com/reference/vector/vector/at/
http://wiretap.area.com/Gopher/Library/Techdoc/Virus/inetvir.823
http://bstring.sf.net/
http://www.and.org/vstr/
http://www.theiling.de/projects/erwin.html
https://www.iso.org/obp/ui/#iso:std:iso-iec:tr:24731:-1:ed-2:v1:en:sec:4
https://www.securecoding.cert.org/confluence/x/QwY
http://directory.fsf.org/libsafe.html
https://www.usenix.org/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf
https://web.archive.org/web/20070212032750/http://wiki.x.org/wiki/ProPolice
http://wiki.x.org/wiki/ProPolice
http://www.uninformed.org/?v=2&a=4&t=txt
http://www.usenix.org/events/sec03/tech/full_papers/cowan/cowan_html/index.html
http://blogs.msdn.com/michael_howard/archive/2006/01/30/520200.aspx
http://www.usenix.org/publications/login/2005-06/pdfs/alexander0506.pdf
http://blogs.msdn.com/michael_howard/archive/2006/08/16/702707.aspx
http://pax.grsecurity.net/
https://archive.is/20120529183334/http://kerneltrap.org/node/644
http://kerneltrap.org/node/644
https://web.archive.org/web/20120219111512/http://linux.softpedia.com/get/System/Operating-Systems/Kernels/Openwall-Linux-kernel-patch-16454.shtml
http://linux.softpedia.com/get/System/Operating-Systems/Kernels/Openwall-Linux-kernel-patch-16454.shtml
http://technet2.microsoft.com/WindowsServer/en/Library/b0de1052-4101-44c3-a294-4da1bd1ef2271033.mspx?mfr=true
http://www.sys-manage.com/english/products/products_BufferShield.html
https://web.archive.org/web/20070513235539/http://www.ngsec.com/ngproducts/stackdefender/

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

defender/). Archived from the original (http://www.ngsec.com/ngproducts/stackdefender/) on 2007-05-13.
Retrieved 2007-06-03.

"PaX at GRSecurity.net" (http://pax.grsecurity.net/docs/aslr.txt). Retrieved 2007-06-03.

"The Exploitant - Security info and tutorials" (http:/raykoid666.wordpress.com). Retrieved 2009-11-29.
Larochelle, David; Evans, David (13 August 2001). "Statically Detecting Likely Buffer Overflow Vulnerabilities" (htt
ps://www.usenix.org/legacy/events/sec01/full_papers/larochelle/larochelle_html/). USENIX Security Symposium.
32.

"Computer Security Technology Planning Study" (http://csrc.nist.gov/publications/history/ande72.pdf) (PDF).
Retrieved 2007-11-02.

""A Tour of The Worm" by Donn Seeley, University of Utah" (https://web.archive.org/web/20070520233435/http://
world.std.com/~franl/worm.html). Archived from the original (http://world.std.com/~franl/worm.html) on 2007-05-
20. Retrieved 2007-06-03.

"Bugtraq security mailing list archive" (https://web.archive.org/web/20070901222723/http://www.security-express.
com/archives/bugtraqg/1995_1/0403.html). Archived from the original (http://www.security-express.com/archives/b
ugtraq/1995_1/0403.html) on 2007-09-01. Retrieved 2007-06-03.

""Smashing the Stack for Fun and Profit" by Aleph One" (http://www.phrack.com/issues.html?issue=49&id=14).
Retrieved 2012-09-05.

"eEye Digital Security" (http://research.eeye.com/html/advisories/published/AL20010717.html). Retrieved
2007-06-03.

"Microsoft Technet Security Bulletin MS02-039" (http://www.microsoft.com/technet/security/bulletin/ms02-039.msp
x). Retrieved 2007-06-03.

"Hacker breaks Xbox protection without mod-chip" (https://web.archive.org/web/20070927210513/http://www.gam

esindustry.biz/content_page.php?aid=1461). Archived from the original (http://www.gamesindustry.biz/content_pa
ge.php?aid=1461) on 2007-09-27. Retrieved 2007-06-03.

External links

= "Discovering and exploiting a remote buffer overflow vulnerability in an FTP server" (http://raykoid666.wordpress.

com/2009/11/28/remote-buffer-overflow-from-vulnerability-to-exploit-part-1/) by Raykoid666

"Smashing the Stack for Fun and Profit" (http://phrack.org/issues/49/14.html#article) by Aleph One

An Overview and Example of the Buffer-Overflow Exploit. pps. 16-21. (http://iac.dtic.mil/iatac/download/Vol7_No4.
pdf)

CERT Secure Coding Standards (https://www.securecoding.cert.org/)

CERT Secure Coding Initiative (http://www.cert.org/secure-coding)

Secure Coding in C and C++ (http://www.cert.org/books/secure-coding)

SANS: inside the buffer overflow attack (http://www.sans.org/reading_room/whitepapers/securecode/386.php)

"Advances in adjacent memory overflows" (https://web.archive.org/web/20130126024851/http://www.awarenetwo
rk.org/etc/alpha/?x=5) by Nomenumbra

A Comparison of Buffer Overflow Prevention Implementations and Weaknesses (https://www.blackhat.com/prese
ntations/bh-usa-04/bh-us-04-silberman/bh-us-04-silberman-paper.pdf)

More Security Whitepapers about Buffer Overflows (https://web.archive.org/web/20090817230359/http://doc.bugh
unter.net/buffer-overflow/)

Chapter 12: Writing Exploits Il (https://web.archive.org/web/20071129123212/http://www.syngress.com/book_cat
alog/327_SSPC/sample.pdf) from Sockets, Shellcode, Porting & Coding: Reverse Engineering Exploits and Tool
Coding for Security Professionals by James C. Foster (ISBN 1-59749-005-9). Detailed explanation of how to use
Metasploit to develop a buffer overflow exploit from scratch.

Computer Security Technology Planning Study (http://csrc.nist.gov/publications/history/ande72.pdf), James P.
Anderson, ESD-TR-73-51, ESD/AFSC, Hanscom AFB, Bedford, MA 01731 (October 1972) [NTIS AD-758 206]

"Buffer Overflows: Anatomy of an Exploit" (https://www.exploit-db.com/docs/18346.pdf) by Nevermore

Secure Programming with GCC and GLibc (https://cansecwest.com/csw08/csw08-holtmann.pdf) (2008), by
Marcel Holtmann

http://raykoid666.wordpress.com/2009/11/28/remote-buffer-overflow-from-vulnerability-to-exploit-part-1/
http://phrack.org/issues/49/14.html#article
http://iac.dtic.mil/iatac/download/Vol7_No4.pdf
https://www.securecoding.cert.org/
http://www.cert.org/secure-coding
http://www.cert.org/books/secure-coding
http://www.sans.org/reading_room/whitepapers/securecode/386.php
https://web.archive.org/web/20130126024851/http://www.awarenetwork.org/etc/alpha/?x=5
https://www.blackhat.com/presentations/bh-usa-04/bh-us-04-silberman/bh-us-04-silberman-paper.pdf
https://web.archive.org/web/20090817230359/http://doc.bughunter.net/buffer-overflow/
https://web.archive.org/web/20071129123212/http://www.syngress.com/book_catalog/327_SSPC/sample.pdf
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-59749-005-9
http://csrc.nist.gov/publications/history/ande72.pdf
https://www.exploit-db.com/docs/18346.pdf
https://cansecwest.com/csw08/csw08-holtmann.pdf
https://web.archive.org/web/20070513235539/http://www.ngsec.com/ngproducts/stackdefender/
http://www.ngsec.com/ngproducts/stackdefender/
http://pax.grsecurity.net/docs/aslr.txt
http://raykoid666.wordpress.com/
https://www.usenix.org/legacy/events/sec01/full_papers/larochelle/larochelle_html/
http://csrc.nist.gov/publications/history/ande72.pdf
https://web.archive.org/web/20070520233435/http://world.std.com/~franl/worm.html
http://world.std.com/~franl/worm.html
https://web.archive.org/web/20070901222723/http://www.security-express.com/archives/bugtraq/1995_1/0403.html
http://www.security-express.com/archives/bugtraq/1995_1/0403.html
http://www.phrack.com/issues.html?issue=49&id=14
http://research.eeye.com/html/advisories/published/AL20010717.html
http://www.microsoft.com/technet/security/bulletin/ms02-039.mspx
https://web.archive.org/web/20070927210513/http://www.gamesindustry.biz/content_page.php?aid=1461
http://www.gamesindustry.biz/content_page.php?aid=1461

Retrieved from "https://en.wikipedia.org/w/index.php?titie=Buffer_overflow&oldid=813105473"

This page was last edited on 1 December 2017, at 20:14.

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using
this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

https://en.wikipedia.org/w/index.php?title=Buffer_overflow&oldid=813105473
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://wikimediafoundation.org/wiki/Terms_of_Use
https://wikimediafoundation.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

