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Preface

This text was originally written under relatively high pressure, when a
computer science curriculum was thrust upon us rather suddenly. The
reason for writing it was the same as the reason why we later agreed to
have a second version of it published as a book: the text fulfils what we
have come to regard as a serious need.

Programming started out as a craft which was practised intuitively.
By 1968 it began to be generally acknowledged that the methods of
program development followed so far were inadequate to face what then
appeared as the so-called ‘software crisis’. After the methods then
employed had been identified as fundamentally inadequate, a style of
design was developed in which the program and its correctness argument
were designed hand in hand. This was a dramatic step forward.

Although it appears in monographs and textbooks, this achieve-
ment has not yet reached the introductory programming curriculum.
What, for lack of a better term, we shall call ‘the computer science boom’
induced us to end this situation, for two reasons. Firstly, the growing
number of students makes it increasingly unjustifiable to organize the
introductory curriculum according to an obsolete model. Secondly, with
the growing popularity of computers, the traditionally intuitive introduction
contributes less and less to the further education of the student.

It is for these reasons that, in this text, programming is presented
as what it has since become — a formal branch of mathematics, in which
mathematical logic has become an indispensable tool.

The book consists of two parts, originally corresponding to the
lectures and their instruction, respectively. The lectures unfold the
subject matter that is specific to programming, while the instruction
describes the logical apparatus used for this and contains the exercises.
How the reader may best divide his or her attention between the two
parts is optional, since the optimum balance will depend on the reader’s
background.

We owe thanks to all our colleagues in the Department of
Computer Science at the Technical University of Eindhoven who have
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vi A method of programming

taught the subject described here with so much enthusiasm and success
over the last few years. In particular, we would like to mention A. J. M.
van Gasteren, A. Kaldewaij, M. Rem, J. L. A. van de Snepscheut and
J. T. Udding. Their experience and stimulation have been a great
support.

Eindhoven Edsger W. Dijkstra
W. H. J. Feijen
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A method of programming

Informatics’ is the name used since 1968 in non-Anglo-Saxon countries
for the subject called ‘computer science’ in the USA and Great Britain.
For the Anglo-Saxon term ‘computer’ Dutch uses ‘automatic calculating
machine’ or the shorter ‘calculating automaton’; both terms are adequate,
provided that — as we shall see later —we do not assign too nNarrow a
meaning to the concept of ‘calculating’.

We use the term ‘automaton’ for a mechanism which, if so
designed, can do something for us autonomously, that is, without any
further interference on our part. A familiar automaton (at least in some
countries) is, for example, the cistern of a toilet. After the starting
signal — pulling the chain or pushing the button — the rest takes care of
itself: the toilet is flushed clean, the cistern fills up and, at the right
moment, the feed tap is closed so that the cistern does not overflow,

On this basis one may think that a cigarette machine would not
deserve the name of automaton, which it has in Dutch, since the
customer must interact in all kinds of ways: for example, he or she must
insert coins and pull out a drawer. These actions, however, may be
regarded as an elaborate starting signal: the machine is an automaton for
the tobacconist, who is not disturbed at all during the transaction.

Other classic examples of automata are the clock and the music
box, which if wound up plays ‘O, du lieber Augustin’. (It was often the
same craftsman who manufactured both music boxes and clocks, whether
or not the clocks were provided with a cuckoo.)

The above mechanisms are a bit dull because, in some sense, they
do the same each time: the cistern takes care of one flushing after
another, the clock repeats its pattern every 12 hours, and the music box
lets us have ‘O, du lieber Augustin’ ad nauseam. (Since Watt’s steam
engine also belongs to this group of dull mechanisms, we should not
speak disrespectfully of this dullness.)

These mechanisms were succeeded by a more flexible type, for
example, the type of music box with a changeable cylinder: this meant
that ‘O, du lieber Augustin’ or ‘Here we go round the mulberry bush’

3




4 A method of programming

could be performed with largely the same machine. Many automata are
of this type: the pianola, the film projector, and the street organ. Again it
does not become us to speak of them disrespectfully: Jacquard’s loom and
the modern automatic controlled milling machine come into this category,
as do playback equipment for gramophone records, video discs, and
tapes.

These mechanisms have been introduced to illustrate the concept
of an automaton. They do not share the other aspect of the ‘calculating
automaton’, namely that it ‘calculates’, so that now (with due respect) we
take our leave from them.

What do we mean by ‘calculate’? Let us take a very simple
example: the addition of two natural numbers in the decimal system.
Very simple? Maybe — though, after having learned the numbers 0 to 9,
it still takes years before children get the hang of it (and some never do).
Let us see what it takes.

To begin with we learn the tables of addition as shown in Figure 1.
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F | Mo 7 RO () S 1T BB 3 ST A
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g |8 9 10 11 12 13 14 15 16 17
RO RSN B3 TAR 15T 6 R RS

Figure 1

The upper row and the left-hand column are not very difficult, and
gradually the child becomes familiar with the upper left corner of the
table: the so-called ‘calculating under ten’. After some time the bottom
right corner also becomes familiar: the child now knows by heart the
addition of two numbers under ten. This is very good: the child now
knows the answer to 100 different additions.

However. it is also clear that we cannot go on like this. There are
10 000 different additions of two numbers less then 100, 1 000 000
different additions of two numbers less than 1000, and it would obviously
be madness to try to learn such large tables by heart. Fortunately, we do
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not have to, for — as any schoolchild will have noticed — the table is not
without regularity. The next stage in our addition education, therefore,
consists of learning to exploit this regularity.

To begin with, we do not regard larger numbers as an entity, but
as a series of digits, which are dealt with one by one: we learn to
construct the sequence of digits that represents the sum from the
sequences of digits which represent the numbers to be added.

What are the ingredients of this construction process? First the
digits of the numbers to be added are added two by two. This is
represented by writing the numbers one under the other. And for this we
learn that 2037 + 642 should look like

2037
642

and not like

2037
642

This addition is easy, because for each pair we can do our calculations
‘under ten’:

2037
642
2679 *
and so far it does not matter if we work from left to right or from right to
left.
To be able to execute additions like

2037
645
2682

as well, the rules are extended with ‘carry 1’, and to cap it all the pupil is
made familiar with the cascade phenomenon which occurs when ‘carry 12
must be applied in a position where the sum of the digits is 9, as in:

2057
645
2702

This extensive examination of the decimal addition of two natural
numbers is useful not because it is presupposed that the reader cannot



6 A method of programming

add, but to provide an awareness of the many rules that are applied,
albeit virtually unconsciously.

If formulated with sufficient precision, such a combination of rules
makes up what we call an algorithm. (Above we have informally given an
algorithm for the decimal addition of natural numbers.) An algorithm is a
prescription which, provided it is faithfully executed, yields the desired
result in a finite number of steps.

With reference to the addition algorithm given, we can at once
make the following remark.

Remark. It is not necessarily true that an algorithm leaves nothing to the
imagination of the one who carries it out: irrelevant choices may be left
open. In order to add 2057 and 645, the numbers are written one under
the other, but evidently,

2057 645
645 and 2057
2702 2702

do equally well. In the corresponding multiplication algorithm this
phenomenon is more marked. Compare:

7 28
28 71
568 il o
142 196
1988 1988 T m

Remark. The addition algorithm can be applied in a great many different
cases. The fact that, as in this example, the algorithm is applicable in an
unlimited number of cases, and that, independent of the numbers to be
added, there is no upper bound for the number of steps an execution of
the algorithm will take, does not alter the fact that any individual
execution takes only a finite number of steps. |

Another algorithm is illustrated by the composition of differen-
tiation rules which, for example, enables us to compute

d sin x
& )
as!:

(COS x) 2 csiu %
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The differentiation algorithm allows some freedom concerning the order
in which the various rules are applied and is, in principle, also applicable
in an unlimited number of cases. This example is included because, while
it is customary to speak of ‘the computation of a derivative’, the
computing is here already stripped of any specific numerical associations.

Other examples of algorithms are planimetric constructions (for
the bisector of an angle, the apex of a triangle, etc.), knitting patterns,
user instructions, assembly instructions, recipes, and the rules we follow
to see if someone is listed in the telephone directory.

Remark. For the telephone directory of Amsterdam the rules are simpler,
and searching generally does not take quite as many steps as it does for
the 1982 telephone directory for Eindhoven and Region, in which the
names of subscribers are listed according to their villages. The design of
the latter directory may be considered to be faulty. |

The automatic calculating machine is so called because it can
‘calculate’ automatically in the sense of carrying out an algorithm
automatically. The computer derives its great flexibility from the fact that
the selection of the algorithm to be carried out by the mechanism is up to
us, and that in selecting this algorithm we have virtually unlimited
freedom. (Compared with the mechanisms mentioned before, the
computer represents a quantum leap.)

We can express the fact that the computer can be fed with an
algorithm of our choice by saying that the computer is ‘programmable’.
An algorithm that could be executed by a mechanism is called a
‘program’, and to design programs is called ‘to program’. Programming is
the main subject of these lectures.

Programming merits a lecture course for a number of reasons.
First of all, there is always a program needed to bridge the gap between
the general-purpose computer and the specific application, and therefore
the activity of programming takes a central place. Second, we know from
experience that someone who has not learned to think and reason
sufficiently pragmatically and soundly about the design during the
programming, will irrevocably make a mess of things. To make the
student completely familiar with the most effective known way of
reasoning about algorithms is therefore an important objective of this
course,

One warning is called for: a program is a formal text in which each
letter, each digit, each punctuation mark and each operator plays its part.
Programs must therefore be written with uncommon precision. Since
most people grow up with the idea that they can get away with a few
mistakes of spelling or grammar here and there in their writings, and
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behave accordingly, they are often taken aback by this requirement for
precision on their first introduction to programming; so much so that they
think programming is a matter of accuracy only. Once this accuracy has
become second nature, they realize that the difficulty lies somewhere else
completely: in the duty to prevent the subject from becoming unmanage-
ably complicated. (Some inexperienced people regard the necessity for
this accuracy as a fault in the computer, but they do not realize that the
computer derives its usefulness from the very faithfulness with which it
executes the algorithm assigned to it, and no other.)

Finally, the student should realize that what can be dealt with in
the narrow scope of this introductory course cannot be representative of
programming in all its possible aspects. In order to save time, and not to
make things unnecessarily difficult, we shall develop our programs for a
very simple machine from which elaborate trimmings (which all too often
prove to be snags) are missing. The particular difficulties of the
development of really large programs are outside the scope of this
introductory course.

Mechanisms and
their states

Let us consider a mechanism which, once started, performs something for
a while, and then stops. As examples, we can think of a gramophone or a
toilet cistern. The gramophone is started by putting a disc on the
turntable and lowering the stylus into the groove; it stops when, at the
end of the groove, the stylus comes 100 close to the axis of the turntable.
The cistern is started by pulling the chain; when the cistern has filled up
again, the feed tap is closed, and the process is stopped.

A mechanism, if started, not only does something for a while and
then stops, but also, since it is a mechanism, it does it automatically, that
is, without further interaction on our part. Because of this, such a
mechanism is in a different state at any moment between start and stop:
shortly after starting, it is in a state such that. it will go on for quite a
while, and shortly before the end it is in a state such that it nearly stops.

Someone who knows the mechanism involved and knows where to
Jook can always see how much progress the working mechanism has
made. In the case of the gramophone the state of progress is reflected by
the position of the arm: one look at its position is sufficient to determine
how far the playing of the record has progressed.

Remark. At different moments between start and stop, the mechanism
must be in different states. When, because of a scratch in the record, the
needle clicks back to the last groove and the gramophone thus returns to
a state it has previously been in, this condition is not fulfilled. There is
something wrong: the needle is stuck and because it cannot progress it
will not finish and stop automatically. ]

In the case of the cistern, too, the state determines how far the
autonomous process has progressed. The water level in the cistern,
however, is only partially analogous to the position of the gramophone
arm: during the whole cycle the cistern is half-full twice, once during

g




10 A method of programming

emptying and once while filling up. The distinction between the two states
is determined by the fact that the bell does or does not close off the drain
pipe. We may conclude that the state of the cistern is approximately
determined by two variables: the continuous variable of the ‘water level’
and the discrete variable ‘drain’, for which only the two values ‘open’ and
‘closed’ are available.

A R
full
Y A
Y A
half-full
Y A
Y )
empty |B C
———————— -
open closed
Figure 2

In Figure 2 the water level is represented vertically and the two
states of the drain, open and closed, horizontally. Point R is the state of
rest: cistern full and drain closed. The start, pulling the chain, opens the
drain, which remains open as long as water flows through it with sufficient
rapidity. When the cistern is empty, the bell drops again and the drain is
closed, after which the cistern fills up. (The water supply is opened when
the cistern is not full. The capacity of the supply, however, is smaller than
that of the drain, so that the supply does not prevent the cistern from
emptying. Verify that, when the capacity of the drain is twice that of the
supply, flushing the toilet, i.e. traversing the path from A to B, takes as
long as filling the cistern afterwards, i.e. traversing the path from C to R.
From the fact that flushing generally takes much less time than the filling
of the cistern afterwards, we may conclude that the ratio of the two
capacities is usually considerably larger than 2.)

Any possible state of the cistern corresponds to a point in our two-
dimensional figure, which has therefore been given the name of state
space. (In this special case we may speak of a ‘state plane’, because the
state space is two-dimensional. However, we shall use the more general
term ‘space’, as in many cases our state space will have more than two
dimensions.) The event which takes place in the period between start and

Mechanisms and their states 11

stop is reflected in the form of a path in the state space w_hich must b‘e
traversed. (Note that this path does not reflect the speed with which it is
- d. _
tTdV’eTSSThE): position of a point in the state space is hen_e denoted by two
coordinates: the water level and the fact that the drain is open or closc-:c.l.
Here. the water level is a continuous variable and the state of the drain
has been treated as a discrete variable, which has only t:he values gpen
and closed. (This means that we regard opening and closing the drain as
indivisible, instantaneous events: the drain is open or glosed, but I.lot
half-open. This kind of ‘point event’ is a useful.ldeallzatlon, not.unhke
‘point mass’ in classical mechanics.) With a view to the.struct‘ure of
computers, discussion will be confined to state spaces In whlch all
coordinates are discrete. If, for example, the state space 1s spanned by
two integer coordinates, i.e. limited to integer values, we can represent
the state space by the grid points in the plane shown in Figure 3, and the
path by ‘jumps’ from one grid point to another.

Figure 3

Remark. There are machines in which values are represented by
continuously variable physical quantities, such as voltage, current
intensity, or the rotation angle of an axis. These are the slo—called
analogue machines. They are completely outside the scope pf this bpok.
Analogue machines have always had the drawback that it 1s‘te‘:chmcally
impossible in this way to represent values with very high‘phrecmon. They
have largely lost their earlier advantage of speed, as digital computers
have become faster, so that what used to be done by analogue equipment
is now carried out more and more by digital equipment — for example,
the digital recording of music. |



Computation as a change
of state

A computer reacts to signals it receives from the external world by giving
signals in response to the signals received. Taking in information from the
external world is called the input, and yielding information is called
output. As part of the automation of 008 — the number for ‘Information’
of the Dutch telephone company — we can imagine a machine which takes
as input the name and address of a subscriber, and returns the
corresponding phone number as output to the external world.

The way in which input and output take place often differs from
one computer to another. In automating telephone information, the input
of name and address will probably be made by a telephone operator who
‘types’ this in via a keyboard (like that of a typewriter), while the output
takes place by means of a screen, so that the operator can give the
desired answer without having to leaf through large telephone directories.
It is also conceivable that the computer could produce the answer in an
audible form. The Girobank gives us an example where input and output
take place through quite different channels: input takes place by means of
punched cards (or other machine-readable forms), and output takes place
by means of addressed and printed ‘statements of account’.

Because of the large variety of input and output media we shall
largely abstract from input and output in this course, and focus our
attention on what goes on from the moment the input is completed and
the computations can commence, to the moment the computations are
completed, and the answer is ready for output.

Remark. For sake of simplicity we pass over the fact that the computation
process can start in part before the input is completed, and that
sometimes output of part of the answer is possible before the process of
computation is completed. [

The reasons for confining ourselves to the period from the end of
the input to the beginning of the output are many. Firstly, different

12
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computers resemble each other in what goes on internally far morff: tharn
in the ways in which they communicate with the externa.l Werd, what
goes on internally is therefore a subject of a far more universal nature.
Secondly, it is during this period that the real process of. computation, oin
which we should focus our attention, takes place. (A ‘th1rd reason, wh.u,h
can be mentioned now but not yet explained, is that it is a simplification
which enables us to treat partial computations on the same level as the
total computation.) : .
In what follows we shall consider computational processes which
start from an initial state of the mechanism and lead to a final gtate of the
mechanism. If it concerns the whole computation, we shall tat:lti'y assume
from now on that the initial state is directly determined by the input and
that the final state is directly determined by what must be the ogtput.
A little more precisely: the initial and final states are dCSC]‘lbeC} by
the same set of coordinates for each computation, the input Fletcrml‘nes
the value of one or more coordinates for the initial state, anq in the final
state the value of one or more coordinates represents the desired answer.

Remark. The input does not have to specify the values of all the

; |
coordinates.

In deciding to regard computations as char_lges of state, we can give
the functional specification of a program by stating the. relation k_)etw?en
the initial and the final state. A fixed plan for this functional specification
will be used, and its description illustrated by a series of sma.ll examples.

Such a functional specification consists of four ingredients:

(i) the declaration of local variables;

(i) the precondition, traditionally put in braces;

(i) the name of the program, traditionally separated from what went
before by a semicolon;

(iv) the postcondition, also traditionally put in braces.

All this is preceded by the opening bracket |L (pronounced ‘begin’)j and
followed by the corresponding closing bracket 1| (propounced ‘en@ s :

A simple example of a functional specification is the following (in
which, for the sake of discussion, the lines are numbered):

(i) I0x:int
(ii) X =X
(i) ; skip
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(iv) x =X
1|

Remark. 1f the opening and closing brackets are not on the same line,
they are vertically aligned for the sake of clarity. The functional
specification given above is so small that there would have been no
objection at all to the layout:

IC x: int {x = X}; skip {x = % 1| |

We should read this functional specification as follows. Line (i)
tells us that it concerns a state space with only one coordinate, which is
denoted by the name x, and whose value range is limited to integers. This
is the purpose of the type indication : int, which concludes the
declaration. (int is short for the Latin word integer.) The rest tells us that
the original validity of precondition (ii) is sufficient for the execution of
the program skip in line (iii), to ensure that afterwards postcondition (iv)
will hold.

When, as is the case here, the conditions contain a quantity like X,
which actually comes out of the blue, it means that the functional
specification holds for any possible value of X. (Since x is integer and
x = X, we do not have to worry about X =3}.) In other words, the above
functional specification of skip tells us that skip must leave the value of
x, whatever it may be, unchanged.

Another simple example of a functional specification of a program,
which we shall also conveniently call skip, is:

(1), bx, vazt dnt

(i1) Go=% up ye= ¥ oA iz =)
(iii)  ; skip
(iv) =X A y=¥ & z=0)

]|

This specifies that in a three-dimensional state space with
coordinates x, y and z execution of skip should leave the values of each
of the coordinates, whatever they may be, unchanged.

Remark. The order in which, separated by commas, the local names x, y
and z are listed in the declaration is irrelevant. Equivalent forms for line
(i) are therefore:

[Bix, z; vz dht
IC z, y, x: int etc.

Computation as a change of state 1))

We have introduced the three local variables here together in one
declaration. We could also have introduced each with its own declaration;
in that case, however, such independent declarations must be separated
by semicolons. For example: |

IC x: int; y: int; z: int
Mixed forms are also permitted, as in:

IC x, y: int; zt int

EXERCISE . ‘
Check that, with the above-mentioned liberties, line (i} can be written in 24
different, but equivalent, ways.

If in a complicated program variables obviously belong togcther. in
groups, the clarity of the text may be enhanced by a corresponding
declaration in groups. ||

The declaration(s) is (are) always preceded by the.opening bracket
|C. The corresponding closing bracket 1| indicates the point of the text up
to which the meaning, which is assigned to the names introduced by the
declaration, is applicable. In this way the pair of brackets |L and ]
defines the scope of the names in the text. o |

Two specifications are given above, one for . skip in a one-
dimensional state space, and one for skip in a three-dimensional space.
In this way we could define skip every time we introduce state spaces.
Because this would become far too tedious, we consider skip as dcﬁqed
in any state space: from now on skip is the universal name of the action
which does not effect any changes of state, irrespective of the state space
used to define the state.

Remark. On the face of it skip does not seem to be terribly useful.‘l.dater
we shall see that skip is just as useful as the digit 0 in the positional
number system. 1]

Further examples of functional specifications are:

IC x, y: int

K=x A y=1Y
; swap0

4 A
1|
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and
IC x, y: int
=Y A y=X
; swapl
e = (B
i
EXERCISE

Show that the functional specifications of swap0 and swap1 are equivalent.

Programs swap0 and swap? have the property that, on knowing the
final state, the initial state can be deduced. If, for example, after
execution of swapl the state is given by x = 2 A y = 3, we can
conclude that in the initial state x = 3 A y = 2. We can express
this by saying that the execution of swap1 does not destroy any
information, in contrast to the following programs, copy and euclid, for
example.

IL x, y: int

x =X
» COpy

x=X A y=X
il

If the outcome of copy isx = 5 A y = 5 we may conclude that
originally x = 5. With regard to the original value of y, which is noft
mentioned in the precondition, we cannot draw any conclusions; the
value of y may therefore have been anything at the beginning.

IL x, y: int

b O A N (R e o R e G
; euclid

x =y s x = gcdlX, V) }
1

In euclid, ged stands for ‘greatest common divisor of'. If the outcome of
euclidisx = 5 a y = 5, the initial state cannot have been anything
whatsoever. For example, x = 40 A y = 70 is out of the question,
but there are many possibilities. We could have specified the same
program euclid as follows:

IC %, y: int
K =gedlx,y) A& x>0 A y=>0

Computation as a change of state 17

; euclid
x=X%X & y=X
1 |

Examination of the final state does determine the value of X, for example
5, but for a given value of X the precondition, regarded as an equation 1n
the two unknowns x and y, has many solutions. So euclid also destroys
information.

Remark. Tt is important to realize that an incorrect functional specification
can make impossible demands, as in the following incorrect specification
for root:

IC %: int
x =X
; root
x = VX
1|

If originally x = 43, then for X = 43 the precondition is neatly
fulfilled, but with this value of X the postcondition cannot be satisfied with
integer x. (And the same holds when initially x is negative.) In shqrt, the
precondition above is too weak and must be strengthened with the
additional condition that x is a square. If, as in this and most cases, the
final state is uniquely determined by the initial state, the naming of the
values in the final state is, as a rule, the easiest way to overcome this:

IC x: int
x=X A Xz=0
; root
x = X
1| |




Programs and their
construction

In the preceding section we saw that it is the objective of a computation
to effect a change of state as laid down in a functional specification.
Because, as a rule, such a functional specification contains a number of
unspecified parameters — denoted in our examples by X, Y or Z —a
functional specification usually describes a large class of changes of state.
The program must indicate how these changes of state are to be effected.

For a limited class of changes of state this can be effected in a
single step: the initial state is then directly rendered into the final state.
Such computations take very little time; they correspond to the building
blocks with which we can build complicated programs, which can give rise
to longer computations. During such a longer computation the total
change of state is effected by the succession of a (possibly large) number
of ‘small’ changes, that is, changes that can be effected directly in one
step. The corresponding blocks from which the program is constructed
are called assignment statements, and the following section discusses how
assignment statements are written in a program, and which changes of
state correspond to each assignment statement.

Remark, Two-fold use is made of our formalism for functional
specification. For euclid, the functional specification should be seen as
the formulation of a programming exercise. For skip the functional
specification was used for the definition of a building block available to
the programmer. This latter use will be followed in the introduction of
the assignment statement.

18

The assignment statement

Consider the functional specifications of the following programs which,
for lack of imagination, we shall call SO, $1 and S2:

it X =0 A Y=y;80X=x a Y=yl

L x, y

Cx,y:int (X =8 A Y=y:S81{X=x A Y=x]
Cx,y:int X =x+3 A Y=y 2K =x A Y=yl
Cx, y:imt X =7%y A Y=y;83X=x Ao Y=y1
Dx, y:int X =10 «x —y) A Y=y St =x A Y=y1

Remark. In itself it would have been simpler to specify, for SO:
ICx,y:intfy = y}; SO{x =0 A y =]

This specification also expresses neatly that the value of x is zero after
execution of SO (regardless of its initial value: after all, x does not occur
in the precondition), and that the value of y has remained unchanged.
(Check that the functional specification of $1 could be simplified in a
similar way.) In this list such a simplification has deliberately not been
carried out, so that the functional specifications are as similar as
possible. [ ]

The functional specifications given above all have the same
Pattern, namely:

IEx,y:int X =E A Y=ypsifi=x A Y=y

With E taking the values0,88,x + 3,7 » y and10+(x — y) respectively,
and with the name $1 .
Our program notation offers the possibility of writing such

PIograms ag follows, by means of assignment statements:

18
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for S0: x=0

for §1: x= 88

for §2: x=x + 3

for 83z x=7 ¥

for S4:  x= 10 «(x — y}

(Pronounce the assignment operator := as ‘becomes’, that is, x becomes
zero’, ‘x becomes eighty-eight’, x becomes x plus three’, x becomes
seven times y’ and ‘x becomes ten times opening bracket x minus y
closing bracket.)

Thé postulate of the assignment implies that for each permissible
expression E the program x:= E satisfies the functional specification

IEX,Y:"II'VC{X=E A Y=y};x;-.—.E{)(=x A ‘{:y}j!

Any declared variable may be chosen for x; the postulate of the
assignment also implies that for any permissible expression E the program
y = E satisfies the functional specification

IDx, yrint X =x A Y=E;y=EN=x a Y=vy1]

Even more variables could have been declared; the postulate of the
assignment then also implies that for any permissible expression E the
program x= E satisfies the functional specification

|Eo Syt zahint

M =E n Y=y n TiFZ
Al

Mi=ix N Y=y A Z=172
1|

In the above ‘permissible expressions’ have been mentioned
several times without being defined further. However, a definition of
which expressions can be regarded as permissible will be postponed. In
the meantime, it is sufficient to know that the given examples of
expressions are permissible in places where the declaration x, y, 2: int is
in force. First an example will show how the postulate of the assignment
is used to make more particular assertions about a specific assignment
statement, such as x= x + 3; for example, under which precondition
x = y will hold after execution. For the sake of clarity, consider this
problem in the state space described by x, v, 2: int: z then denotes the
other variables.

By substituting the permissible expression x + 3 for E in the last
formulation of the postulate of the assignment, we get

Il x, y, z: int
e L e S 7 =z}

The assignment statement 21

=t
el sge R Al =R 1=1z

1l |

an assertion which holds for all X, ¥ and Z, in particular for all X, Y and Z
which satisfy X = Y. Restricting the application to these cases, We derive

IC %, y, 2: int

LX'-"-)(+3 A Y=y e LEZEA XE =R
= X + 3

e R e s S Xz Y
il

r

The validity of the postcondition implies x = y, so that the assertion

|Lesiyszaiint
(et s i 1=z ~ XY

P i 3
1l

holds for all X, Y and Z. By rewriting the precondition we may draw the
same conclusion for

L x, ¥, z: int
HE S 3 AT Ysdy A T W X 3 2

; X=X+ 3
x =y
1|

Since:

(i) this latter assertion holds for all X, Y and Z;
(i)  X.Y and Z occur only in the initial part of the precondition

NI R Lt S B =y BTS2

and this initial part, regarded as an equation in the unknowns X, Y
and Z, can be solved for all values of x, ¥ and z;

we can climinate X, Y and Z by dropping this initial part. We then get:

It x, y, z: int

x + 3z vy
pXI=t kB
x zy
1|
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In words: the initial validity of x + 3 = v justifies the conclusion
that, after execution of the assignment statement x= x + 3, the relation
x = y holds. (This conclusion is obviously weaker than what we knew
already: it no longer expresses that the execution of x= x + 3 leaves the
values of y and z intact.)

Here,x + 3 was a very particular choice for the right-hand side of

the assignment statement. Analogously, we could have derived
ILx,y,z: int £ = y}; x= Efx =y} i

from the postulate of the assignment for any permissible expression E.

The choice of the postcondition x = y was also arbitrary. If we
had, for example, chosenz = (x + 1) = (y + 3) = x,then we would
have derived:

|C %5 vzzs int

z « E4+D = +3) - E}
= o iE

z« x+ 1= +3 X%
1

The general pattern for finding the corresponding precondition for
the assignment statement x= E and given postcondition R is obviously
that we substitute the expression E for x in R, if necessary in brackets. It is
common practice to denote this substitution result by Rg. With this
convention we can sum up our rule as:

It x, y, 22 int Re}; x= E {R} 1]

Remark. Application of the rule to the postcondition TR yields the
assertion:

IC x, y, 2 int (Re); x= E {WR} I

From this we see that the initial validity of R: is not only sufficient, but
also necessary for x:= E to effect a state in which R holds. L

Permissible expressions |

A program is a set of instructions that can be executed by a computer.
This means that there must be no misunderstanding about what the
instructions imply. After reading this far, few people will question that
the meaning of the assignment statement

X= 2 % X
is that the value of x is doubled. But opinions about the aim of
x=x /26

are divided (if you ask a large enough number of people). In the
Netherlands, where traditionally multiplication comes before division, the
view that

x=x [ (2 % &)

is meant will prevail. In countries with other traditions, however, it will
be assumed that

= (x [/ 2) 6

is meant, Tt is clear that these kinds of ambiguities must be ruled out by
exact definitions. This inevitably requires us to define just as exactly
which expressions have an unambiguous meaning. This section 1s
concerned with this definition. In passing, the most common formalism
used for giving such definitions will be introduced, i.e. BNF (Backus-Naur
Form, named after John Backus and Peter Naur). BNF became widely
known by the way in which it was used in the famous Algo/ 60 Report of
January 1960.
. Just about the simplest permissible expression is the natural
umber, BNF will now be used to define what natural numbers look like

23



24 A method of programming

on paper. Since the notation of natural numbers consists of digits, we
shall first define what forms there are for digits. In BNF this is given by
the syntax rule:

Caiginy =0/ 1 2131 4[5l ol 781 ¢

To the left of the sign ::= (pronounced ‘is defined as’) is the name of the
syntactic unit to be defined, placed in angle brackets; to the right of the
;= sign are the forms of the syntactic unit, separated by a vertical
mark, | (pronounced ‘or’). The rule states which ten characters are digits
and, moreover, that if later on we come across (digit) in a syntactic
formula, this can denote any one of these ten characters.

Remark. The order in which alternative forms are listed in a syntax rule is
rrelevant. We could have defined the syntactic unit digit just as well by:

(digit):::9|8|7\6|S|4'\3|2|1|O m

Now we have the tool to define, if we should want to, which
character sequences belong to the syntactic unit number under thousand:

{number under thousand)
1= (digit)
| (digit)y {digit)
| (digit) {digit) (digit)

The above definition tells us that a number under thousand has
three alternative forms: a single digit, two digits in a row, or a sequence
of three digits. It would be a dismal writing lesson to write out in this way
the forms of number under billion. It would be hopeless to write in this
way the forms of a natural number. In BNF the syntactic unit of a natural
number is given by:

(natural number)
= {digit)
| (digit) (natural number)

This is a recursive definition: the syntactic unit defined occurs in its own
definition (namely in the second alternative)! The first confrontation with
a recursive definition usually sends a shiver down one’s spine: one cannot
help thinking of the snake that bites its own tail and begins to eat itself,
continuing until nothing is left. Having overcome this shiver, however,
people learn to appreciate recursive definitions; without them we would

Permissible expressions 2b

not be able to define a syntactic unit with an unlimited number of forms.

On thinking it over, this definition of (the syntax of) natural
awmber 18 not as uncanny as it may seem at first sight, thanks to the
presence of the first alternative. In the definition of digit, the ﬁr:::.t
alternative presents us with ten forms of a natural number (and by thig
the first alternative is, as it were, exhausted). With these ten forms as
possible substitutes for natural number in the second alternative, 100 new
forms are yielded, with these 100 as possible substitutes in the second
alternative we get 1000 new forms, etc.

Remark. The syntax rule
{ natural number )

= (digit)
| {natural number ) {digit)

is equivalent to the one given before. Both define the set of finite, non-

empty sequences of digits. ]

In an analogous way to our definition of digit we define:

(Jcrrer):::a]b|c|d|c|f|glht1]]]k|l|m
e e s B
AlB\C[D|ElF\G|I—I|I|JlKlL\M
N|O|P|Q|R|S|T\U]V]W|X|Y|Z

Remark. With this it has been defined that an alphabet of 52 different
characters will be used. Note that:
e the digit 0 and the letters o and O are different characters;
e the digit 1 and the letters | and I are different characters;
® the digit 9 and the letter g are different characters.
Furthermore, since the order of the alternatives in a syntax rule
has no meaning, the 52 letters arc not combined as pairs, and therefore

the letter sequence dog has nothing to do with the letter sequences Dog
or DOG. |

These examples have introduced local variables, for instance by
the declaration

X, ¥, 23 int
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introducing their ‘names’ (x, y and z respectively) in passing. Just as the
forms of a natural number have been defined, those of a name will now
be defined.

Remark. In the English literature the standard term for name is
‘identifier’. We shall stick to the syntax of Algol 60 identifiers for
names. |

{(name) ::= {letter)
| (name) (letter)
| {(name) (digit)

EXERCISE

Check that there are 199 888 different names of three characters.

Now we are ready for the definition of the syntax of expressions
which are permissible. At this stage we shall confine ourselves to the
syntactic unit called integer expression; the syntax describes how integer
expressions are constructed from:

names and natural numbers;
additive operators;
multiplicative operators;

pairs of brackets.

Remarks. At this stage the text is deliberately confined to a modest syntax
for integer expressions. Later this will be expanded a little. o

(integer expression )
2= {intterm)
| {addop) (intterm )
| {integer expression) {addop) {intterm)

This syntax rule tells us that an integer expression is a sequence in
which specimens of the syntax unit addop and specimens of the syntax
unit initerm alternate, and which ends with a (specimen of the syntax
unit) intterm. All we have to do now is to state what an addop and an
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intterm may lok like. For the former this is more simple than it is for the

latter.

(addop) =+ =
{intterm )
= (intfactor)
| {intterm ) (multop ) (intfactor)

This completes the definition of addop: a plus si.gn ora min.us sign.
The following syntax rule tells us that an intterm consists of 9116 or more
specimens of the syntactic unit intfactor, separated by.a spemfnen ohf thfz
syntactic unit multop. And all we.have to do now is to state w -dthd
multop and an intfactor may look like: here again this is simpler for the
former than it is for the latter:

(multop) = * | / | div | mod
{ intfactor )
.:= (natural number)

| (name)
| ({ integer expression})

This completes the syntactic definition of the integer expression.
Analysis of an example will show that

—ab — xmod3 + 8 xly + 1
is an integer expression.

This holds because:

(0) - ab - x mod 3 is an infeger expression
(1) + is an addop (self-evident)
(2) 8 «(y + 1) is an intterm

Assertion (0) holds because:

(0.0) — ab is an integer expression
(0.1) — is an addop (self-evident)
0.2) x mod 3 is an intterm

Assertion (0.0) holds because:

(0.0.0) — is an addop (self-evident)
(0.0.1) ab is an intterm
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Assertion (0.0.1) holds because:
(0.0.1.0) ab is an intfactor

Assertion (0.0.1.0) holds because:

(0.0.1.0.0) ab is a name

Assertion (0.0.1.0.0) holds because:

(0.0.1.0.0.0) a is a name
(0.0.1.0.0.1) b is a letter (self-evident)

Assertion (0.0.1.0.0.0) holds because:
(0.0.1.0.0.0.0) a is a letter (self-evident)

Thus assertion (0.0) is proved; (0.1) is self-evident, and (0.2) holds
because:

(0.2.0) x is an intterm
(0.2.1) mod is a multop (self-evident)
(0.2.2) 3 is an intfactor

Assertion (0.2.0) holds because:
(0.2.0.0) x is an intfactor

Assertion (0.2.0.0) holds because:
(0.2.0.0.0) X 1S a name

Assertion (0.2.0.0.0) holds because:
(0.2.0.0.0.0) x is a letter (self-evident)

Thus assertion (0.2.0) is proved; (0.2.1) is self-evident, and (0.2.2)
holds because:

(0.2.2.0) 3 is a natural number
Assertion (0.2.2.0) holds because:
(0.2.2.0.0) 3 is a digit (sclf-evident)

With this (0.2.2) is proved, and thus (0.2), and thus (0.2), and thus
(0); (1) is self-evident and the proof of (2) is left to the reader.
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We do not suggest that he or she produce such a long-winded
proof as this for (0), but that the reader should be aware of each appeal
to formal syntax. The analysis is given in such small steps in order that:
(1) the reader can imagine that this can be done by a mechanism; and (2}
the reader may appreciate the fact that a formal definition of the syntax is
essential for this. (The development and first implementation of
FORTRAN in the mid-1950s took 100 times more man-years than the
first implementation of Algol 60 in 1960. The two projects differed
enough to warrant some caution in interpreting this factor of 100;
however, they were similar enough to tend to explain this factor, among
other things, by the circumstance that there was no formal definition of
FORTRAN.)

Furthermore, this syntax of integer expressions makes it explicity
clear that additive operators are ‘left-associative’; that is, an integer
expression like— a — b + ¢, for example, is an integer expression only
in the analysis

((—a -b +c¢
and that interpretations such as

(—a) - b+ and -ta- b+
are not permitted. So the syntax for integer expressions does more than
merely define what sequences of symbols are integer expressions: it also
indicates how the expression must be interpreted; that is, which constants

and which intermediary results must be the operands of which operators
when the expression is being computed.

EXERCISE
Determine why 2k + 1is not a syntactically correct integer expression.

Remark. The multiplicative operators are also defined left-associatively
and no priority has been assigned to multiplication over division:
M8/ 2 « his thus short for m / 2) h and not form /(2 » h). If the
latter ’is intended, the brackets cannot be left out. The advice not to be
0o stingy with pairs of brackets has a much wider application, however.

There is often no consensus about what can be left out without a change
of meaning. B
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It only remains for us now to define the operators. If the additive
operators occur as binary operators, the addition is denoted by + and the
subtraction by —, and if they occur as a unary operator — that is, as the
first symbol of an integer expression — the + has no effect and the —
denotes a change of sign. The reader presumably knows what is meant by
addition, subtraction and change of sign.

The remaining multiplicative operators, /, div and mod are partial
operators, that isx / y, x div y and x mod y are not defined for all pairs
of integer values (x, y).

x / y denotes the quotient of x and y, which naturally is defined
only ify # 0; furthermore, in usingx / y, we agree to confine ourselves
to those situations in which x is an integer number of times y.

For x div y and x mod y there is only the restrictiony # 0: x div
y = g and x mod ¥ = r, where integer g and r satisfy:

x=9g--y+ral=r < absly
Note that:

xmod y = x med(— y)

(- x)divy # — xdiv y, unless xmod y = 0
(x + y)mod y = x mod y

(x + y)divy =1+ xdivy

This completes, for now, the description of what we had indicated
as permissible expressions.

Concatenation of |
statements

Until now we have only come across the assignment statement in the
form x = E, and so far, the programs we can write are rather limited for
two reasons. Firstly, the change of state they can effect is restricted to the
change of the value of one variable of the state space; secondly, its new
value is restricted to what we can express by means of a permissible
expression. We shall now see how the first restriction is overcome.

In all places where we can write a statement, we can also write a
staterment list

{ statement list)
= {statement )
| (statement list) { statement )

that is, a list of one or more statements, in the latter case connected by
the semicolon. The semicolon, which is written between two consecutive
statements, connects those two statements in the sense that execution of
the left-hand statement must be followed by that of the right-hand
statement, and that the postcondition of the left-hand statement is
identified as the precondition of the right-hand statement.

At the end of our discussion about the assignment statement (page
22) the general structure of assertions about a single assignment
Statement was given as:

[Cx, y, 22 int {8); x=E0 {R} 1|

This means that if, before the execution of x = EQ, @ is satisfied, then
after execution of x = EO the state satisfies R; this assertion is true if
equals R, i.e. the condition R in which the expression EO is substituted

for x — in brackets if necessary, but we shall no longer repeat this every
time,

With P = Q}4
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32 A method of programming

It x, y, z: int {P); v =E1; x= EO {R} 1|

is also a correct assertion, this time about the assignment statement y =

E1. The postulate about concatenation implies that these two assertions
may be combined to

IL %, v, z: int {P}; y= E1 {@); x= EO {R} ]|

or, if we eliminate @ by suppressing it, to the assertion abouty = E1;
=

U x, y, 2t int {P}; y = E1; x:= EO {R} 1

Now we can also check what assertions we can make if we switch
the two statements, that is, assertions of the form:

It %, ¥, z: int {P}; x = EO; y = E1 {R} ]|

Working from right to left, we first form @ = RL and then P = Q5. In
general, P # P — namely if x occurs in E1, or y in EO. In other words,
concatenation of statements is generally not commutative.

As an example we shall derive P, so that the assertion

IC x, y, z: int {P}

PX=X FY; Y= X — ¥ X=X - ¥
X=X a y=Y A z=1]

1l

holds.

To begin with we introduce the suppressed intermediary conditions
— two by now:

IC x, y, z: int {P}
Jx=1x +y @1

;y=x -y {a0}

JX=X — Y

X=X an y=Y A z2=1
1

Working back to front, by substituting x — y for x we get:
Qe el — il Ly =R e 7 =
Substituting y by x — y in this, we get

Ql: x - x=-y) =X A X-y=Y¥Y A z=1

Concatenation of statements 33
and after simplification
Q: y=X A x-y=Y s z2=1
Substituting x by x + y in this, we get
P: y=X & t4+y)-y=Y A z=1

and after simplification

If we compare P with the postcondition, we see that the ‘continued
concatenation’

X=X+ Yr¥= 4 - Yix=X~—Y
swaps the values of x and y and leaves all other variables undisturbed.

¥
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Figure 4

In Figure 4, showing a projection of the state space on the plane x,
Y, the path for the special case X = 2 A Y = 3 is indicated. The
figure is given only as an illustration of the fact that the statement
concatenation enables us to construct programs that effect the desired
Ch_ange of state not at one go, but in a number of consecutive steps. In
thls. metaphor the computation becomes a path through the state space
Whm}} leads from the starting point to the end point. We shall see later
;}tl;;sm actual practice these paths tend to be traversed in a great many

Figure 4 is only an illustration of the metaphor. In programming
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practice ‘such figures are never drawn. They would have the practical
drawback of becoming terribly complicated and the fundamental
drawback of referring only to a very specific case (in this case
X =2 A Y =5k

Remark. The continued concatenation above was produced only for
reasons of illustration. Later we shall come across more realistic solutions
to exchange the values of two variables. ]

The alternative statement '

In the preceding section we saw that for a given program the path
through the state space depends on the initial state, but as long as we
have only assignment statements and their concatenation at our disposal,
the same series of statements will always be executed, independently of
the initial state. We shall now show that for a given program the initial
state can also determine which statements will be executed. A study of
the functional specification of the program largest will reveal the need
for this greater flexibility:

=Y
Az = maxix, ¥}

ICx, ¥y, 2z int x = X &
;largest {x = X A ¥y =
J]

-

The problem would be trivial if max(x, y) were among the
permissible expressions, since z = max(x, y) would then satisfy the
functional specification of largest. But since max(x, y) is not among the
permissible expressions, we must do something else.

Remark. There are programming languages that allow the programmer to
add max(x, y) to the set of permissible expressions. However, the
addition requires a solution to the problem of how to write a program
that satisfies the functional specification of largest in terms of the
expressions already permissible. ]

To begin with, we observe that with the postcondition for largest

We can derive, by means of the postulate of the assignment statement for
Z = X

ILx, y, 2: int {x = Ay =Y A x=mxix, Y}

X
r2=x{x =X A y=Y A z=maxix, ¥}
1|
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