
Chapter 2

ScalaCheck versus JUnit: A Complete
Example

Now that you have a theoretical introduction to ScalaCheck concepts, let’s
explore a practical example. This chapter presents a small Java library that
we’ll test with JUnit and ScalaCheck. Although I won’t explain everything
in detail, you should get a rough understanding of the tasks involved when
using ScalaCheck. By direct comparisons to JUnit, you will develop an un-
derstanding of the differences and similarities.

Don’t worry if you get a little confused over the ScalaCheck syntax in
this chapter, since I won’t be going into much detail. Just try to visualize an
overall picture of how ScalaCheck compares to traditional unit testing. The
next chapter describes more closely how the different parts of ScalaCheck
work together and what possibilities you have when you’re designing your
properties.

2.1 The class under test

The code we will unit test is a small library of string handling routines, writ-
ten in Java. The complete source code is given in Listing 2.1.

2.2 Using JUnit

We will start off by writing and running JUnit tests for the library. I’ll be
using JUnit 4 in my examples.

Cover · Overview · Contents · Discuss · Suggest · Index

Section 2.2 Chapter 2 · ScalaCheck versus JUnit: A Complete Example 26

import java.util.StringTokenizer;

public class StringUtils {

public static String truncate(String s, int n) {
if(s.length() <= n) return s;
else return s.substring(0, n) + "...";

}

public static String[] tokenize(
String s, char delim

) {
String delimStr = new Character(delim).toString();
StringTokenizer st = new StringTokenizer(

s, delimStr);
String[] tokens = new String[st.countTokens()];
int i = 0;
while(st.hasMoreTokens()) {

tokens[i] = st.nextToken();
i++;

}
return tokens;

}

public static boolean contains(
String s, String subString

) {
return s.indexOf(subString) != -1;

}

}

Listing 2.1 · StringUtils.java: the class under test.

Cover · Overview · Contents · Discuss · Suggest · Index

Section 2.2 Chapter 2 · ScalaCheck versus JUnit: A Complete Example 27

We define a class that contains all the unit tests for our library. Look at
the implementation below:

import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runners.JUnit4;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
import static org.junit.Assert.assertFalse;

@RunWith(JUnit4.class)
public class StringUtilsTest {

@Test public void testTruncateShortString() {
String s = StringUtils.truncate("abc", 5);
assertEquals("abc", s);

}
@Test public void testTruncateLongString() {

String s = StringUtils.truncate("Hello World", 8);
assertEquals("Hello Wo...", s);

}
@Test public void testTokenize() {

String[] tokens = StringUtils.tokenize(
"foo;bar;42", ';');

String[] expected = { "foo", "bar", "42" };
assertTrue(java.util.Arrays.equals(tokens, expected));

}
@Test public void testTokenizeSingle() {

String[] tokens = StringUtils.tokenize(
"Hello World", ',');

String[] expected = { "Hello World" };
assertTrue(java.util.Arrays.equals(tokens, expected));

}
@Test public void testContainsTrue() {

assertTrue(StringUtils.contains("abc", "bc"));
}
@Test public void testContainsFalse() {

assertFalse(StringUtils.contains("abc", "42"));
}

}

Cover · Overview · Contents · Discuss · Suggest · Index

Section 2.3 Chapter 2 · ScalaCheck versus JUnit: A Complete Example 28

As you can see, I’ve tried to include different kinds of test cases for each
unit test. Let’s now see whether the library passes the tests. We compile the
library and its tests, and then use the console test runner in JUnit to run the
tests.

$ javac -cp junit-4.11.jar \
StringUtils.java StringUtilsTest.java

$ java -cp .:junit-4.11.jar:hamcrest-core-1.3.jar \
org.junit.runner.JUnitCore StringUtilsTest

JUnit version 4.11
......
Time: 0.006

OK (6 tests)

Great! All six tests passed, which shows that our library behaved cor-
rectly. Now let’s turn to ScalaCheck and look at how to define equivalent
properties in it.

2.3 Using ScalaCheck

In ScalaCheck, you define properties instead of tests. To define a set of prop-
erties for our library under test, we extend org.scalacheck.Properties
class, which could be seen as corresponding to the TestCase class in JU-
nit. Consider the property definitions for our small string utility library in
Listing 2.2.

The Prop.forAll method is a common way of creating properties in
ScalaCheck. There are also other ways, which we’ll describe in more detail
in later chapters. The forAll method takes an anonymous function as its
parameter, and that function in turn takes parameters that are used to express
a boolean condition. Basically, the forAll method is equivalent to what
in logic is called a universal quantifier. When ScalaCheck tests a property
created with the forAll method, it tries to falsify it by assigning different
values to the parameters of the provided function, and evaluating the boolean
result. If it can’t locate a set of arguments that makes the property false,
then ScalaCheck will regard the property as passed. This testing process is
described in detail in Chapter 7.

Cover · Overview · Contents · Discuss · Suggest · Index

Section 2.3 Chapter 2 · ScalaCheck versus JUnit: A Complete Example 29

import org.scalacheck.Properties
import org.scalacheck.Prop
import org.scalacheck.Gen.{listOf, alphaStr, numChar}

object StringUtilsProps extends
Properties("StringUtils")

{
property("truncate") =

Prop.forAll { (s: String, n: Int) =>
val t = StringUtils.truncate(s, n)
(s.length <= n && t == s) ||
(s.length > n && t == s.take(n)+"...")

}

property("tokenize") =
Prop.forAll(listOf(alphaStr), numChar) {

(ts, d) =>
val str = ts.mkString(d.toString)
StringUtils.tokenize(str, d).toList == ts

}

property("contains") = Prop.forAll {
(s1: String, s2: String, s3: String) =>

StringUtils.contains(s1+s2+s3, s2)
}

}

Listing 2.2 · ScalaCheck properties for StringUtils.

As you can see, the types of parameters vary. In the truncate property,
we declare one string parameter s and one integer parameter n. That means
that the property should hold for all possible pairs of strings and integers.

The second property, describing tokenize, differs a bit from what you
have seen before. Instead of specifying the types of parameters, we tell
ScalaCheck explicitly which data generators to use. In this case, we use
Gen.listOf in combination with Gen.alphaStr to generate lists of alpha-
only strings, and Gen.numChar to generate digit characters. We still define
the property as a function literal, but now we don’t need to specify the types
of its parameters since they are given by the explicit generators.

Cover · Overview · Contents · Discuss · Suggest · Index

Section 2.3 Chapter 2 · ScalaCheck versus JUnit: A Complete Example 30

Which types are available for use in a forAll property? ScalaCheck has
built-in support for common Java and Scala types, so you can use ordinary
types like integers, strings, dates, lists, arrays, and so on. However, you can
also add support for any custom data type, by letting ScalaCheck know how
to generate your type. I’ll describe how this is done in Chapter 3.

Just as in JUnit, there’s a console-based test runner in ScalaCheck:

$ javac StringUtils.java
$ scalac -cp .:scalacheck.jar StringUtilProps.scala
$ scala -cp .:scalacheck.jar StringUtilProps
! StringUtils.truncate: Exception raised on property
evaluation.
> ARG_0: ""
> ARG_1: -1
> ARG_1_ORIGINAL: -1110151355
> Exception: java.lang.StringIndexOutOfBoundsException:
String index out of range: -1
java.lang.String.substring(String.java:1911)
StringUtils.truncate(StringUtils.java:7)
StringUtilsProps$$anonfun$1.apply(StringUtilsProps.scala:9)
StringUtilsProps$$anonfun$1.apply(StringUtilsProps.scala:8)
org.scalacheck.Prop$$anonfun$forAll$10$$anonfun$apply$25
.apply(Prop.scala:759)
! StringUtils.tokenize: Falsified after 5 passed tests.
> ARG_0: List("")
> ARG_0_ORIGINAL: List("", "yHa", "vlez", "Oyex", "lhz")
> ARG_1: 2
+ StringUtils.contains: OK, passed 100 tests.

What happened here? It certainly doesn’t look as if the test passed,
does it? Let’s try to break things up a bit first. ScalaCheck tested these
three properties: StringUtils.truncate, StringUtils.tokenize, and
StringUtils.contains. For each property, ScalaCheck prints the test re-
sults, starting with an exclamation mark for failed properties and a plus sign
for properties that passed the tests. Hence, we can conclude that the first two
properties failed, and the third one succeeded. Let’s investigate the failures
in ScalaCheck more closely.

Cover · Overview · Contents · Discuss · Suggest · Index

Section 2.3 Chapter 2 · ScalaCheck versus JUnit: A Complete Example 31

ScalaCheck’s output shows that for the StringUtils.truncate prop-
erty, we encountered a StringIndexOutOfBoundsException during test-
ing. The arguments that caused the exception were an empty string and
the integer value -1. These arguments correspond to the parameters s and
n in the truncate property definition in StringUtilsProps.scala.If we
look at the library code, the failure is not hard to understand. The given ar-
guments will lead to an invocation of "".substring(0, -1), and the API
documentation for the String class clearly states that such indices will cause
an exception to be thrown.

There are several ways to make the truncate property pass, and we must
now decide exactly how we want the truncate method to behave. Here is a
list of alternatives:

1. Let truncate throw an exception for invalid input, and clearly specify
the kind of exception it will throw. Either we can leave the method
as it is, throwing the same exception as String.substring does, or
we can throw another type of exception. In any case, we’ll have to
do something about the property, since we want it to verify that the
correct exception is thrown.

2. Let the truncate method be completely unspecified for invalid inputs.
We simply state a precondition for the method and if the caller breaks
that condition, there’s no guarantee for how truncate will behave.
This can be a reasonable approach in some situations, but we still need
to make our property respect the precondition.

3. Handle invalid inputs in another reasonable way. For example, if a
negative integer is used in a call to truncate, then it could make sense
to return an empty string. This approach requires us to change both
the implementation (the truncate method) and the specification (the
property).

Notice how ScalaCheck forced us to think about the general behavior of
truncate and not just about a few concrete test cases. If you are experienced
in writing unit tests, you might spot the exception case above and write tests
covering it. However, ScalaCheck seemed to spot it for free.

Now, for each possible alternative in the list above, let’s see how we
would change code.

Cover · Overview · Contents · Discuss · Suggest · Index

Section 2.3 Chapter 2 · ScalaCheck versus JUnit: A Complete Example 32

1. Throw the exception. We let the implementation remain the same,
and update the property to respect the fact that an exception should be
thrown for invalid input:

property("truncate") =
Prop.forAll { (s: String, n: Int) =>

lazy val t = StringUtils.truncate(s, n)
if (n < 0)

Prop.throws(
classOf[StringIndexOutOfBoundsException]

) { t }
else

(s.length <= n && t == s) ||
(s.length > n && t == s.take(n)+"...")

}

The new version of the property uses a handy feature of the Scala lan-
guage called lazy evaluation. By marking the variable t with the key-
word lazy, the expression to the right of the assignment operator is not
evaluated until the value of t is used. Therefore, the exception is not
thrown during assignment. We then use ScalaCheck’s Prop.throws
operator, which makes sure that the property passes only if the correct
type of exception is thrown. The classOf operator is built into Scala
and used for retrieving the java.lang.Class instance for a particular
type.

2. Remain unspecified. The precondition for the truncate method is
simply that the integer parameter must be greater than or equal to
zero. We state this in the property by using ScalaCheck’s implica-

tion operator, ==>. To get access to this operator, we need to import
Prop.BooleanOperators that makes some boolean property opera-
tors implicitly available in the importing scope. By specifying a pre-
condition in this way, we keep ScalaCheck from testing the property
with input values that don’t fulfill the condition.

import Prop.BooleanOperators

property("truncate") =

Cover · Overview · Contents · Discuss · Suggest · Index

Section 2.3 Chapter 2 · ScalaCheck versus JUnit: A Complete Example 33

Prop.forAll { (s: String, n: Int) =>
(n >= 0) ==> {

val t = StringUtils.truncate(s, n)
(s.length <= n && t == s) ||
(s.length > n && t == s.take(n)+"...")

}
}

Preconditions in ScalaCheck properties are discussed in Chapter 4.

3. Handle it. In the third alternative, we wanted our method to return
an empty string when confronted with invalid inputs. This is a simple
change in the implementation:

public static String truncate(String s, int n) {
if(n < 0) return "";
else if(s.length() <= n) return s;
else return s.substring(0, n) + "...";

}

The property is updated to cover the empty string case:

property("truncate") =
Prop.forAll { (s: String, n: Int) =>

val t = StringUtils.truncate(s, n)
if(n < 0) t == ""
else

(s.length <= n && t == s) ||
(s.length > n && t == s.take(n)+"...")

}

Each solution above makes the truncate property pass; it’s up to the
implementer to decide exactly how the method should behave. If we run the
tests again, after having picked one of the alternatives, we get the following
output:

Cover · Overview · Contents · Discuss · Suggest · Index

Section 2.3 Chapter 2 · ScalaCheck versus JUnit: A Complete Example 34

$ scala -cp .:scalacheck.jar StringUtilProps
+ StringUtils.truncate: OK, passed 100 tests.
! StringUtils.tokenize: Falsified after 3 passed tests.
> ARG_0: List("")
> ARG_0_ORIGINAL: List("", "")
> ARG_1: 9
+ StringUtils.contains: OK, passed 100 tests.

Now only the tokenize property fails. We can see that the property
was given a single string "" (an empty string) and the delimiter token 2.
However, to debug the property and implementation, it would be nice to see
more information about the property evaluation. For example, it would be
beneficial if we could somehow see the value produced by tokenize when
given the generated input. In fact, there are several ways to collect data from
the property evaluation, which I’ll describe in Chapter 5. In this specific
case, the simplest solution is to use a special equality operator of ScalaCheck
instead of the ordinary one. We import Prop.AnyOperators that makes a
number of property operators implicitly available, and then simply change
== to ?= in the property definition:

property("tokenize") = {
import Prop.AnyOperators
Prop.forAll(listOf(alphaStr), numChar) { (ts, d) =>

val str = ts.mkString(d.toString)
StringUtils.tokenize(str, d).toList ?= ts

}
}

Let’s see what ScalaCheck tells us now:

$ scala -cp .:scalacheck.jar StringUtilProps
+ StringUtils.truncate: OK, passed 100 tests.
! StringUtils.tokenize: Falsified after 3 passed tests.
> Labels of failing property:
Expected List("") but got List()
> ARG_0: List("")
> ARG_0_ORIGINAL: List("", "E", "zd")
> ARG_1: 4
+ StringUtils.contains: OK, passed 100 tests.

Cover · Overview · Contents · Discuss · Suggest · Index

Section 2.4 Chapter 2 · ScalaCheck versus JUnit: A Complete Example 35

Because ScalaCheck generates random input, the exact results of each
run are not the same. Don’t worry if the output you see is different.

ScalaCheck now reports a label for the failing property. Here, we can see
exactly what went wrong in the comparison at the end of our property defi-
nition. Apparently, tokenize doesn’t regard that empty string in the middle
as a token. Actually, this is a feature of the standard Java StringTokenizer
class. If there are no characters between two delimiters, StringTokenizer
doesn’t regard that as an empty string token, but instead as no token. Whether
this is a bug or not is completely up to the person who is defining the speci-
fication. In this case, I would probably change the implementation to match
the property, but you could just as well adjust the specification.

2.4 Conclusion

I won’t take this example further here. After this quick overview, the upcom-
ing chapters will describe ScalaCheck’s features in greater detail. However,
let me summarize what I wanted to show with this exercise.

First, while there are many differences between ScalaCheck and JUnit,
they are quite similar on the surface. Instead of writing JUnit tests, you write
ScalaCheck properties. Often you can replace several tests with one property.
You manage and test your property collections in much the same way as your
JUnit test suites. In this chapter, I only showed the console test runner of
ScalaCheck, but other ways of running tests are shown in Chapter 7.

The differences between JUnit and ScalaCheck lie in the way you think

about your code and its specification. In JUnit, you throw together several
small usage examples for your code units, and verify that those particular
samples work. You describe your code’s functionality by giving some usage
scenarios.

In property-based testing, you don’t reason about usage examples. In-
stead, you try to capture the desired code behavior in a general sense, by
abstracting over input parameters and states. The properties in ScalaCheck
are one level of abstraction above the tests of JUnit. By feeding abstract
properties into ScalaCheck, many concrete tests will be generated behind
the scenes. Each automatically generated test is comparable to the tests that
you write manually in JUnit.

What does this buy us, then? In Chapter 1, I reasoned about the advan-
tages of property-based testing theoretically, and hopefully this chapter has

Cover · Overview · Contents · Discuss · Suggest · Index

Section 2.4 Chapter 2 · ScalaCheck versus JUnit: A Complete Example 36

demonstrated some of it practically. What happened when we ran our JUnit
tests in the beginning of this chapter? They all passed. And what happened
when we tested the ScalaCheck properties? They didn’t pass. Instead, we
detected several inconsistencies in our code. We were forced to think about
our implementation and its specification, and difficult corner cases surfaced
immediately. This is the goal of property-based testing; its abstract nature
makes it harder to leave out parts and create holes in the specification.

It should be said that all the inconsistencies we found with ScalaCheck
could have been found with JUnit as well, if we had picked tests with greater
care. You could probably come a long way with JUnit tests just by applying
a more specification-centered mindset. There’s even a feature in JUnit 4
called theories that resembles property-based testing—it parameterizes the
test cases—but there’s no support for automatically producing randomized
values the way ScalaCheck does. There’s also nothing like ScalaCheck’s
rich API for defining custom test case generators and properties.

Lastly, there is no need for an all-or-nothing approach when it comes to
property-based testing. Cherry-picking is always preferred. Sometimes it
feels right using a property-based method; in other situations, it feels awk-
ward. Don’t be afraid to mix techniques, even in the same project. With
ScalaCheck, you can write simple tests that cover one particular case, as well
as thorough properties that specify the behavior of a method completely.

I hope that you are now intrigued by ScalaCheck’s possibilities. The next
chapter describes the fundamental parts of ScalaCheck and their interactions.

Cover · Overview · Contents · Discuss · Suggest · Index

Chapter 3

ScalaCheck Fundamentals

The two most fundamental concepts in ScalaCheck are properties and gen-

erators. This chapter will introduce the classes that represent properties in
ScalaCheck, and bring up some technical details about the API. A follow-
ing chapter will then present the multitude of different methods that exists in
ScalaCheck’s API for constructing properties.

Generators are the other important part of ScalaCheck’s core. A genera-
tor is responsible for producing the data passed as input to a property during
ScalaCheck’s verification phase. Up until now we have sort of glanced over
how ScalaCheck actually comes up with the values for the abstract arguments
that your properties state truths about. The second part of this chapter will
show what a generator is and demonstrate situations where you can make
more explicit use of them.

The final section will talk about ScalaCheck’s test case simplification
feature, that was briefly mentioned in Chapter 1.

3.1 The Prop and Properties classes

A single property in ScalaCheck is the smallest testable unit. It is always
represented by an instance of the org.scalacheck.Prop class.

The common way of creating property instances is by using the various
methods from the org.scalacheck.Prop module. Here are some ways of
defining property instances:

import org.scalacheck.Prop

val propStringLength = Prop.forAll { s: String =>

Cover · Overview · Contents · Discuss · Suggest · Index

Section 3.1 Chapter 3 · ScalaCheck Fundamentals 38

val len = s.length
(s+s).length == len+len

}

val propDivByZero =
Prop.throws(classOf[ArithmeticException]) { 1/0 }

val propListIdxOutOfBounds = Prop.forAll { xs: List[Int] =>
Prop.throws(classOf[IndexOutOfBoundsException]) {

xs(xs.length+1)
}

}

The first property is created by using the Prop.forAll method that
you have seen several times before in this book. The second property uses
Prop.throws that creates a property that tries to run a given statement each
time the property is evaulated. Only if the statement throws the specified
exception the property passes. The property propListIdxOutOfBounds in
the example above shows that Prop.forAll not only accepts boolean con-
ditions, but you can also return another property that then must hold for all
argument instances.

The property values above are instances of the Prop class, and you can
give the values to ScalaCheck’s testing methods to figure out whether or not
they pass.

When defining several related properties, ScalaCheck also has a class
named org.scalacheck.Properties that can be used to group a bunch
of properties together. It provides a way to label the individual property
instances, and makes it easier for ScalaCheck to present the test results in
a nice way. Using the Properties class is the preferred way of defining
properties for your code. The code below shows how to use Properties to
define a set of properties.

import org.scalacheck.Properties
import org.scalacheck.Prop.{forAll, throws}

object MySpec extends Properties("MySpec") {

property("list tail") =
forAll { (x: Int, xs: List[Int]) =>

(x::xs).tail == xs
}

Cover · Overview · Contents · Discuss · Suggest · Index

Section 3.2 Chapter 3 · ScalaCheck Fundamentals 39

property("list head") = forAll { xs: List[Int] =>
if (xs.isEmpty)

throws(classOf[NoSuchElementException]) { xs.head }
else

xs.head == xs(0)
}

}

The Properties.property method is used to add named properties to
the set. If we check the property collection in the Scala console we can see
the names printed:

scala> MySpec.check
+ MySpec.list tail: OK, passed 100 tests.
+ MySpec.list head: OK, passed 100 tests.

You mostly don’t need to handle individual property instances, but some-
times it can be useful to reuse parts of properties, or combine several proper-
ties into one. For example, there is a && operator that creates a new property
out of two other property instances. All the operators and methods that can
be used to create properties are defined in the org.scalacheck.Prop mod-
ule, and most of them are described in Chapter 5.

3.2 Generators

Up until now, we have never been concerned with how data is generated
for our properties. Through the Prop.forAll method, we have simply
told ScalaCheck to give us arbitrary strings, integers, lists, and so on, and
ScalaCheck has happily served us the data when the properties have been
evaluated.

However, sometimes we want a bit more control over the test case gener-
ation. Or we want to generate values of types that ScalaCheck know nothing
about. This section will introduce the generators and show how you can
make more explicit use of them.

Cover · Overview · Contents · Discuss · Suggest · Index

Section 3.2 Chapter 3 · ScalaCheck Fundamentals 40

The Gen class

A generator can be described simply as a function that takes some generation
parameters and produces a value. In ScalaCheck, generators are represented
by the Gen class, and the essence of this class looks like this:

class Gen[+T] {
def apply(prms: Gen.Params): Option[T]

}

As you can see, a generator is parameterized over the type of values it
produces. In ScalaCheck, there are default Gen instances for each supported
type (Gen[String], Gen[Int], Gen[List], etc.). You can also see that
the Gen.apply method returns the generated value wrapped in an Option
instance. The reason for this is that sometimes a generator might fail to
generate a value. In such cases, None will be returned. I will get back to why
generators might fail in Chapter 6.

Normally, you don’t deal with the Gen class explicitly, even when creat-
ing custom generator instances. Instead, you use one or more of the many
methods in the module org.scalacheck.Gen. This module is quite inde-
pendent from the other parts of ScalaCheck, so if you want you can use the
generators in a project of your own just for data generation purposes, not
only in the ScalaCheck properties you specify.

Let’s fire up the Scala interpreter, define a generator, and see how to
generate a value with it:

scala> import org.scalacheck.Gen
import org.scalacheck.Gen

scala> val myGen = Gen.choose(1,10)
myGen: org.scalacheck.Gen[Int] = Gen()

scala> myGen(Gen.Params())
res0: Option[Int] = Some(7)

scala> myGen.sample
res1: Option[Int] = Some(5)

First, we imported the Gen module. Then we created a generator, myGen,
using the Gen.choose method. This method creates generators that will

Cover · Overview · Contents · Discuss · Suggest · Index

Section 3.2 Chapter 3 · ScalaCheck Fundamentals 41

generate random numbers in the given inclusive range. We can see from the
type Gen[Int] of myGen that it will generate integers.

Finally, we used myGen to generate values in two different ways. In the
first example, we can see how closely a generator resembles a function. We
just apply the default generation parameters that are defined in Gen, and we
get the generated value in return. In the second example, we use the sample
method that exists on every generator; it is a convenient way of doing exactly
the same thing.

In the example, you can also see that the generator returns its value as an
Option type, which was mentioned previously. The generators you can cre-
ate by using the Gen.choose method will never fail, but will always deliver
a Some-instance containing a value.

The parameters a generator uses to generate data contain information
about which random number generator should be used and how large the
generated data should be. Chapter 6 will describe the parameters more
closely; for now, you can just use Gen.Parameters() or the sample method
as shown previously.

Defining custom generators

As I’ve mentioned, there are many methods you can use to create your own
generators in the Gen module. These methods are called combinators, since
you can use them as basic building blocks for generating more complex
structures and classes. To combine them together, you use Scala’s versa-
tile for statement, which is mostly used in loop constructs but in fact is much
more general. Here is an example of its use with generators:

import org.scalacheck.Gen.choose

val myGen = for {
n <- choose(1, 50)
m <- choose(n, 2*n)

} yield (n, m)

In this example, myGen generates randomized tuples of integers, where
the second integer always is larger than or equal to the first, but not more than
twice as large. With the sample method, we can check that it is working as
expected:

Cover · Overview · Contents · Discuss · Suggest · Index

Section 3.2 Chapter 3 · ScalaCheck Fundamentals 42

scala> myGen.sample
res0: Option[(Int, Int)] = Some((45,60))

scala> myGen.sample
res1: Option[(Int, Int)] = Some((29,37))

You can define generators to build any structure. Consider the following
simple types that model shapes and color:

trait Color
case object Red extends Color
case object Green extends Color

trait Shape { def color: Color }
case class Line(val color: Color) extends Shape
case class Circle(val color: Color) extends Shape
case class Box(val color: Color,

val boxed: Shape) extends Shape

We can now define generators for the Color and Shape types:

import org.scalacheck.Gen

val genColor = Gen.oneOf(Red, Green)

val genLine = for { color <- genColor } yield Line(color)
val genCircle = for { color <- genColor } yield Circle(color)
val genBox = for {
color <- genColor
shape <- genShape

} yield Box(color, shape)

val genShape: Gen[Shape] =
Gen.oneOf(genLine, genCircle, genBox)

In this example, we used Gen.oneOf, which takes an arbitrary number
of generators (or plain values) and creates a new generator that will use one
of the provided generators at random when it is evaluated. As you can see,
genBox and genShape are recursive generators. There are some things you
should be aware of when defining recursive generators in order to not cause
infinite recursions and huge data structures. This will be covered in Chap-
ter 6. However, the above generator definition should be just fine, because it
converges quickly as we can see when we try it out:

Cover · Overview · Contents · Discuss · Suggest · Index

Section 3.2 Chapter 3 · ScalaCheck Fundamentals 43

scala> genShape.sample
res0: Option[Shape] = Some(Line(Green))

scala> genShape.sample
res1: Option[Shape] =

Some(Box(Blue,Box(Red,Circle(Green))))

As I’ve said, data generators are not exclusively related to properties;
you can use the Gen module as an API for defining data generators for any
setting really. Chapter 6 will provide reference information about most of
the methods in Gen, and also show how to use the generator parameters, both
when evaluating generators and when defining them.

Making explicit use of generators in properties

In most of the properties shown earlier, ScalaCheck has automatically picked
suitable generator instances and used them behind the scenes when evaluat-
ing the properties. However, you can instruct ScalaCheck explicitly to use
a certain generator in a property definition. You can use Prop.forAll with
one extra parameter to inform ScalaCheck which generator to use:

import org.scalacheck.{Gen, Prop}

val evenInt = for {
n <- Gen.choose(-1000, 1000)

} yield 2*n

val propDivide = Prop.forAll(evenInt) { n: Int =>
val half = n/2
n == 2*half

}

You can also specify several explicit generators for one property:

import org.scalacheck.Prop.forAll
import org.scalacheck.Gen.{posNum, negNum}

val p = forAll(posNum[Int], negNum[Int]) { (n,m) =>
n*m <= 0

}

Cover · Overview · Contents · Discuss · Suggest · Index

Section 3.2 Chapter 3 · ScalaCheck Fundamentals 44

Another common usage of explicit generators is to nest forAll invoca-
tions, and let the inner one use an explicit generator that is defined in terms
of the generated value in the outer forAll:

import org.scalacheck.Prop.forAll
import org.scalacheck.Gen.choose

val propPrefix = forAll { s: String =>
forAll(choose(0, s.length)) { n =>

val prefix = s.substring(0, n)
s.startsWith(s)

}
}

Instead of nesting forAll calls, we could have defined a custom genera-
tor in the following way:

import org.scalacheck.Arbitrary.arbitrary
import org.scalacheck.Gen.choose

val genStringWithN = for {
s <- arbitrary[String]
n <- choose(0, s.length)

} yield (s,n)

We can now specify the property with only one forAll call:

import org.scalacheck.Prop.forAll

val propPrefix = forAll(genStringWithN) { case (s,n) =>
val prefix = s.substring(0, n)
s.startsWith(s)

}

Notice that we have to use a case-expression since our property takes
one tuple as its argument, not two separate arguments.

Whether you use nested forAll calls or custom generators is largely
a matter of taste. If you have a lot of input arguments to your properties,
putting them in a separate generator can make the property easier to read.

Cover · Overview · Contents · Discuss · Suggest · Index

Section 3.2 Chapter 3 · ScalaCheck Fundamentals 45

Adding implicit support for custom generators

I gave you a quick introduction to defining generators and then using them
with the Prop.forAll method. However, you can also add implicit support
for your own generators so you can write properties for your own classes in
exactly the same way you would for the standard types, without explicitly
specifying which generator to use in every property.

The key to this lies in Scala’s built-in support for implicit methods and
values. ScalaCheck can pick up default generators for any type if an implicit
instance of the Arbitrary class for the given type exists. The Arbitrary
class is simply a factory that provides a generator for a given type. In the
example below, we first define a generator for a simple type and then make
an implicit Arbitrary instance for it by using the Arbitrary module.

import org.scalacheck.Gen.{choose, oneOf}

case class Person (
firstName: String,
lastName: String,
age: Int

) {
def isTeenager = age >= 13 && age <= 19

}

val genPerson = for {
firstName <- oneOf("Alan", "Ada", "Alonzo")
lastName <- oneOf("Lovelace", "Turing", "Church")
age <- choose(1,100)

} yield Person(firstName, lastName, age)

Given this Person generator, making an implicit Arbitrary[Person]
instance is simple:

scala> import org.scalacheck.Arbitrary
import org.scalacheck.Arbitrary

scala> implicit val arbPerson = Arbitrary(genPerson)
arbPerson: org.scalacheck.Arbitrary[Person] =

org.scalacheck.Arbitrary$$anon$1@1391f61c

As long as arbPerson is in scope, we can now write properties like this:

Cover · Overview · Contents · Discuss · Suggest · Index

Section 3.3 Chapter 3 · ScalaCheck Fundamentals 46

scala> import org.scalacheck.Prop.forAll
import org.scalacheck.Prop.forAll

scala> val propPerson = forAll { p: Person =>
p.isTeenager == (p.age >= 13 && p.age <= 19)

}

3.3 Test case simplification

As soon as ScalaCheck manages to falsify a property, it will try to simplify,
or shrink, the arguments that made the property false. Then it will re-evaluate
the property with the simplified arguments. If the property still fails, simpli-
fication will continue. In the end, the smallest possible test case that makes
the property false will be presented along with the the original arguments
that caused the initial failure. We can demonstrate this by defining a prop-
erty that is intentionally wrong, to trigger the simplification mechanism in
ScalaCheck:

import org.scalacheck.Prop.forAll
import org.scalacheck.Gen.choose

val propNoPairs = forAll { xs: List[Byte] =>
forAll(choose(0, xs.length-2)) { i =>

xs(i) != xs(i+1)
}

}

The property states that there never exists a pair of equal items in a ran-
dom list, which simply is false. Let’s see what happens if we check the
property:

scala> propNoPairs.check
! Falsified after 11 passed tests.
> ARG_0: List("127", "127")
> ARG_0_ORIGINAL: List("-104", "127", "127", "-1", "89")
> ARG_1: 0

Cover · Overview · Contents · Discuss · Suggest · Index

Section 3.4 Chapter 3 · ScalaCheck Fundamentals 47

ScalaCheck correctly finds a test case (ARG_0_ORIGINAL) that makes the
property false. Then this value is repeatedly simplified until ARG_0 remains,
that still makes the property false.

ScalaCheck has the ability to simplify most data types for which it has
implicit generators. There is no guarantee that the simplification will be per-
fect in all cases, but they are helpful in many situations. Where ScalaCheck
has no built-in simplification support, you can add it yourself, just as you
can add implicit generators for custom types. Therefore, you can give your
own types and classes exactly the same level of support as the standard ones
in ScalaCheck. In Chapter 6, you will be shown how to define such custom
simplifiers for your own types.

3.4 Conclusion

This chapter has presented the fundamental parts of ScalaCheck, getting you
ready to use it in your own projects. The next chapter will focus less on the
technical details of ScalaCheck, and instead provide general techniques and
ways to think when coming up with properties for your code. Later chapters
will then revisit the topics of this chapter, digging deeper into the details of
the API.

Cover · Overview · Contents · Discuss · Suggest · Index

