
A Framework for Command Processing in Java/Swing

Programs Based on the MVC Pattern
Andreas Naderlinger

C. Doppler Laboratory Embedded Software Systems
University of Salzburg
Jakob-Haringer-Str. 2

5020 Salzburg
Austria

andreas.naderlinger@cs.uni-salzburg.at

Josef Templ
C. Doppler Laboratory Embedded Software Systems

University of Salzburg
Jakob-Haringer-Str. 2

5020 Salzburg
Austria

josef.templ@cs.uni-salzburg.at

ABSTRACT

We present a framework for command processing in Java/Swing

programs based on the model-view-controller (MVC) pattern. In

addition to standard approaches our framework supports (1)

centralized exception handling, (2) premature command

termination, (3) pre- and postprocessing of commands, (4)

undo/redo based on event objects and model listeners, and (5)

generic undo/redo commands. The framework has been applied

successfully in a number of graphical editors as part of a tool

chain for real time programming. It proved to increase the quality

of the software by eliminating local exception handlers and by

confining the impact of undo/redo to a small add-on to the model

part of the application.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs and

Features – Frameworks, Patterns. D.2.5 [Software Engineering]:

Testing and debugging – Error handling and recovery. D.2.13

[Software Engineering]: Reusable Software – Reusable libraries.

General Terms

Design, Reliability, Languages.

Keywords

Framework, MVC, Command, Pattern, Exception, Undo, Redo,

Java, Swing

1. INTRODUCTION
As a result of the broad adoption of programming languages with

guaranteed initialization of variables, static and dynamic type

checking, array bounds checking, and automatic garbage

collection (e.g. Java, C#), one might expect that nondeterministic

program behavior is a matter of the past.

However, we still observe that in many large Java programs with a

graphical user interface there are situations where the user is

surprised by the program behavior. After some desperate mouse

clicks, the only solution is to quit and restart the application. The

program behavior appears to be as unpredictable as the behavior

of C or C++ programs with dangling pointers or other memory

errors. Unless race conditions are involved, we suspect that most

cases of unpredictable behavior can be traced down to the

proliferation of exception handlers throughout the program code.

If exceptions are handled locally or even dropped silently by a

deeply nested method call, follow up problems and exceptions

might arise at an unrelated part of the program. Using exceptions

in a disciplined way is absolutely crucial for a smooth user

experience and also helps structuring the program code and

avoiding code replication.

Some may argue that a user should never be confronted with an

exception thrown by a program and that it is better to catch

exceptions than to display them to the user. We argue that in the

regular case there should not be any exception at all, hence the

user is not bothered with exception handling. But if an exception

occurs, we prefer to notify the user about the problem rather than

silently dropping the error message or logging it to some invisible

output stream.

We encountered the above mentioned problems in the course of

developing Java-based graphical editors as part of a tool chain for

hard real-time programming. As we neither found appropriate

support in the Java library nor applicable standard design patterns,

we decided to design our own command processing framework

that supports centralized exception handling at its core. Another

problem we encountered concerns the support for undo/redo

functionality in an application based on a graphical user interface

(GUI). This feature has the potential of introducing large portions

of replicated program code and/or undesired dependencies

between components if not done properly. It turned out that both

problems are related to some degree, which led to the command

processing framework described in the subsequent sections.

2. MVC AND COMMAND PATTERN
The separation of data and its representation is one of the essential

characteristics of GUI-based applications. The model-view-

controller (MVC) pattern, an architectural pattern widely used in

software engineering, reaches back to Smalltalk [1]. MVC splits

an application into different parts, namely the application’s data

model (M), the views (V) on this data model, and the controllers

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage

and that copies bear this notice and the full citation on the first page.

To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee.

PPPJ 2008, September 9-11, 2008, Modena, Italy.

Copyright 2008 ACM 978-1-60558-223-8/08/0009...\$5.00

(C) that affect the model, typically as a response to user

interaction.

Figure 1 shows a refined representation of this trisection. The

model is the central element displayed by an arbitrary number of

unknown views and affected by arbitrarily many, in principle

completely independent, controllers. A close 1:1 relationship

between views and controllers as in the original Smalltalk

framework is unnecessarily restrictive although it exists in many

UI frameworks [2].

Figure 1. MVC pattern

The model comprises the domain specific data together with

operations for reading and writing model data. Views are

representations of the model. They are informed about model

changes by some notification mechanism (notify) that allows for

decoupling the model and its views (e.g. Observer pattern [3, page

293]). Controllers perform write operations on the model that, in

turn, notifies all views about the state change. Typically, a

controller is associated with a GUI control, such as a button or

menu item.

For applications with a graphical user interface, the Command

pattern as proposed by [3, page 233] is a popular approach for

implementing the controllers. Each user request is encapsulated in

a Command class that implements a base interface with a single

method execute(). This architecture obviously decouples the

GUI framework, which hosts the command, from the

implementation of the request. The traditional command pattern

does not address problems related to exception handling. The

command pattern as found in the Java library also lacks an

exception handling strategy as shown in more detail in the

subsequent chapters.

2.1 Command Pattern in Java
Java provides support for the command pattern by means of the

AWT delegation event model. A user control such as a button

provides a registry for listeners on the action performed event,

which is fired whenever the user clicks the control or activates it

by a keyboard input. The action listener, which must implement

the interface java.awt.ActionListener, plays the role of

the command class. The method actionPerformed() in the

ActionListener interface is the analog to the method execute()

in the command pattern. Swing defines an extended interface

named Action, which introduces a set of command attributes

such as icon, label, keyboard shortcut, etc. The abstract base class

AbstractAction serves to maintain the Action attributes.

Figure 2 shows the relation between the pattern (a) and its

realization in AWT (b) and Swing (c). The extensions introduced

in (d) will be explained below.

Figure 2. Command patterns

Since it is recommended and common practice to use the Swing

library for building GUI-based applications in Java, we designed

our command pattern for Swing only. However, the principal

ideas could also be applied to AWT.

2.2 Exception Handling Problems in Swing

Actions
It seems obvious and in fact it is common practice that every

concrete command (e.g. MyCommand1) is a direct subclass of

AbstractAction. However, this approach ignores an

important aspect, namely exceptions. Exceptions are neither

explicitly considered in the command pattern nor are exceptions

part of the interface declaration of the Java delegation event

model. The ActionListener interface defines a method

actionPerformed() to be implemented by every command

class.

public void actionPerformed(ActionEvent e);

This method signature does not allow the command

implementation to throw a checked exception and thus forces any

command to provide an exception handler to catch at least all

checked exceptions. This leads to code replication as no central

exception handling mechanism exists. Additionally, it tempts one

to handle exceptions locally in the model itself. Indeed, this is

regularly done although the model cannot know how to properly

deal with exceptions.

Unchecked exceptions are even trickier as one might easily forget

about them completely. The standard implementation logs

unchecked exceptions to the standard error output, which might

not be visible to the user. Since Java 5 there has been a

documented way of changing the default reaction to exceptions

and errors by setting a thread’s exception handler. However, this

is a quite far-reaching intervention and might be inappropriate or

even forbidden by a security manager if the application (or

component) shares its Java VM with others.

2.3 Adding Exception Handling in Actions
In our framework, we introduce an abstract class Command as a

subclass of the AbstractAction class. The implementation of

the method actionPerformed() delegates to a new abstract

method onExecute() and handles any kind of exception. This

allows for centralizing the exception handling and thereby avoids

code replication. The class Command is used as common base

class for any concrete command class. In addition, we removed

the event parameter from the signature. In the rare cases where the

event parameter is required, we make it available by means of a

getter function.

public abstract class Command extends AbstractAction {

 public abstract void onExecute() throws Exception;
 public EventObject getEvent() { … }
 …

}

Any exception thrown during command processing will terminate

the command and be handled at the very top of the call chain in

the class Command. There should not be any local exception

handlers inside the model, view, or controller implementations

(unless forced by the Java library, which occurs in some rare

cases). In addition, we encountered situations where command

processing should be terminated in a controlled way, which can be

achieved by throwing a special kind of exception. We identified

the following three categories of exceptions:

 An exception may be thrown in order to terminate a

command execution in a controlled way and the user

should be notified. Therefore, we introduce a

TerminateException that is typically used to

report user input errors for which we know in advance

that they may happen. The default handling of this type

of exception is to display the exception’s title and

message in a modal dialog box.

 An exception may be thrown to terminate a command

execution silently. Therefore we introduce a

CancelException. It is used to stop the command

processing when the user has explicitly cancelled the

current command. By default, the handler for this kind

of exception is empty.

 We regard any other kind of Throwable

(Exception or Error) as unintended and their

occurrence as an error in the program code or runtime

system. In the default exception handler implementation

these abnormal command terminations are displayed in

a modal dialog box that can optionally display the

complete stack trace.

2.4 Adding Pre- and Postprocessing to Actions
In order to allow for application specific actions related to

command execution and exception handling we introduced a

simple mechanism for command pre- and postprocessing, called a

command Processor, which can be registered with the

command framework. Command processors have to implement

the interface Processor with the two methods preProcess

and postProcess.

interface Processor {

 void preProcess(Command cmd) throws Exception;
 void postProcess(Command cmd) throws Exception;

}

Every registered command processor is executed each time before

(preProcess) and after (postProcess) the actual command

is executed. Processors are maintained as weak references in order

to prevent memory leaks. They can be used, for example, to log

command execution, as additional exception handlers (according

to [4], exception logging is a major concern of many

applications), for collection of statistical command execution

time, or for checking licensing aspects.

2.5 Sharing of Commands
As a Swing action represents a Java bean with bound decoration

properties [5], a single command instance can be shared between

multiple GUI objects such as a push button, a menu item, or a

corresponding toolbar button. If a command is disabled, for

example, all GUI elements that share this command will be

disabled as well. Sharing of commands also means that no matter

how a command is invoked by the user it executes exactly the

same shared code.

2.6 Adding more Listeners
Unfortunately, not all activities initiated by the GUI user can be

handled by an ActionListener. Selecting a node in a tree or

in a list, for example, may also need some code to be triggered but

it is not possible to register an action listener for this type of

activity. The class JTree, for example, expects a Tree-

SelectionListener and the class JList expects a List-

SelectionListener. In order to extend the applicability of

commands, we define class Command to additionally implement

the interfaces ChangeListener, PropertyChange-

Listener, TreeSelectionListener, List-

SelectionListener, and Runnable. The corresponding

event object is made available by means of a getter function. For

any remaining cases where a local exception handler is still

required, class Command provides a static method that

implements the default exception handling strategy. A

WindowListener, for example, cannot be mapped directly to

the onExecute method because it requires multiple handler

methods. Please refer to chapter 4 for a discussion on the number

and type of remaining local exception handlers that we have

encountered in our approach. A possible solution to the problem

with multi-method listeners is described in the Future Work

section.

3. UNDO/REDO
In a mature interactive application, the user expects to be able to

undo and possibly later redo the effect of executing a command.

Depending on the application’s context and on the support for

multiple users, different approaches are preferable. The so-called

restricted linear model [6] has become the de facto standard for

single user applications. All executed commands are put on an

undo stack. The user can only undo the last command on the stack

(linear). Undoing a command removes it from the undo stack and

places it on the redo stack. Redoing a command removes it from

the redo stack and pushes it again on the undo stack. When a new

command is added to the undo stack, the redo stack is cleared

(restricted).

The implementation of the restricted linear model is simple in

principle. Nevertheless, there are different ways of implementing

it in detail and it has the potential for affecting the whole

application structure and for introducing a lot of code replication,

which we tried to avoid in our framework.

3.1 Conventional Undo mechanism based on

Commands
The widely cited standard implementation for undo/redo is based

on the Command pattern [3, page 233] mentioned in section 2.

Command classes are extended by an undo- (and possibly a redo-)

method which reverses the model modification performed in the

method execute(). Additionally, in order to reverse the

performed operations, every nontrivial concrete command

implementation needs access to the model’s current state

information. The tempting and straightforward approach for

realizing undo is to store the state information directly in the

command objects. In many cases this will expose parts of the

internal structure of the model and violate the principle of

encapsulation. Furthermore, model specific data structures are

likely to be replicated in the command classes. Consequently,

source code changes in some model operation that involve

adjustments in the model’s state have to be precisely followed in

each command class that makes use of this state information.

Typically, the relations between model operations and user

commands are not obvious, and thus the software is difficult to

maintain. Attempts to make state information transparent to

commands, such as applying the Memento pattern [3, page 283],

relax the coupling between model and commands. However, in

many cases it only shifts the problem of code duplication to the

model. Additionally, the model complexity increases, as

supplementary (memento) classes have to be introduced.

We followed an approach that does not implement undo/redo on

the level of commands, but on finer-grained model operations.

Commands simply execute a sequence of model operations. If

these model operations are invertible, commands are invertible as

well without any further coding.

3.2 Undo/Redo Mechanism based on MVC
The proposed undo/redo mechanism is based on an event

notification architecture and consequently is expected to integrate

well with applications based on the model-view-controller (MVC)

architecture. The core idea of MVC is to decouple model and

views, which is established by means of a notification mechanism

(e.g. Observer pattern [3, page 293] aka Publish/Subscribe). In

case some model operation causes the model to change, all

registered views are notified in order to adjust their state. The

information on the particular kind of model change is

encapsulated in a so-called event object. This object contains any

required information needed to ensure consistency between the

model and its views.

Figure 3 shows the relation between commands and events. A

single command may produce an arbitrary sequence of events.

Undoing a command may be considered as undoing the effect of

every single event produced by a command in reverse order.

Thereby the size of the code required for undo is roughly

proportional to the number of different events, not to the number

of different commands, which may be a significant difference. The

same calculation holds for redo. In addition, if we regard events as

the unit of undo/redo, we can implement undo/redo support as

part of the model, not as part of the controllers, which allows us to

keep the model together with undo/redo functionality in its own

package without the needs of publishing internal details.

Figure 3. Commands and Events

In our approach, events form the basic unit for undo and redo.

Each event represents a model change, and each event knows how

to undo resp. redo itself.

public abstract class UndoableEvent extends EventObject {

 public abstract void undo() throws Exception;
 public abstract void redo() throws Exception;

}

All model events must subclass UndoableEvent and they must

implement undo and redo. Therefore in addition to information

about the new model state, undoable events have to store

information on previous values, too. In most cases it suffices for

the undo and redo implementation to invoke a single model

operation because this approach operates on fine-grained model

operations.

3.3 A Reusable UndoManager Component
The generic undo/redo functionality is provided by the

framework’s UndoManager component. It provides two

managed commands (undoCmd and redoCmd) that can be used

directly, for example, as an application’s menu items for

undo/redo. The commands are managed in the sense that they

adapt their label and enabled state to the current situation. In

addition the UndoManager provides methods for adding an

undoable event, starting and ending a named event sequence for

grouping of multiple events to a single entry in the undo/redo

mechanism, and for resetting the undo/redo state.

Figure 4. MVC based Undo/Redo Support

For connecting the UndoManager component to a particular

application model, a subclass of the UndoManager must be

created which implements the event listener interface of the

application model by simply delegating all relevant events to its

base class. Conceptually, this subclass acts as just another view

which is registered as a model listener. Instead of providing a

visual representation of the model, this view keeps track of all

fired events and manages the undo and redo commands. shows

the resulting MVC model including controllers for undo and redo

and a view that serves to maintain the undo/redo state of the

model.

The following code listing is a complete example for a subclass of

the UndoManager component:

class UndoView extends UndoManager
 implements MyModelListener {

 UndoView(MyModel model, Component owner) {
 super(owner);
 model.addMyModelListener(this);
 }

 public void handleEvent(MyEvent e) {
 if (e.id == MyEvent.SEQ_BEGIN) {
 beginSequence(event.caption);
 } else if (e.id == MyEvent.SEQ_END) {
 endSequence();
 } else {
 addEvent(e);
 }
}

Figure 5 exemplifies the interaction between the actors starting

from the application’s user. Events that are fired as a consequence

of model operations and which indicate a change in the model’s

state are observed by all registered views including the

UndoView. As mentioned above, invoking a single model

operation may lead to several events. To achieve a

correspondence between user actions (executed as commands)

and undo operations, events can be grouped to labeled sequences,

which can be nested arbitrarily. When the user performs an undo

(redo), the events in the top of the undo (redo) stack are executed

in the appropriate order and the undo and redo stacks are adjusted

accordingly. While performing undo (redo), the undo manager

ignores any events received from the model (disableEvents,

enableEvents). This allows us to reuse the same model operations

for normal command processing and for undo/redo and thereby

avoids code duplication.

4. STATISTICS
We have evaluated two applications which are part of a tool-chain

for real-time application development and which use the

presented framework for command processing, exception

handling and undo/redo. The evaluation gives information about

the number of exception handlers that remained for our

applications and identifies the reasons for their existence.

Additionally, we measured the total code size and the code

portion required for undo and redo in terms of lines of code.

Both applications are graphical front-ends for the development of

real-time applications based on the Timing Definition Language

(TDL). The first application, called TDL:VisualCreator [16], is a

graphical editor for specifying the timing behavior of TDL

components in a platform independent way. This tool is

seamlessly integrated in and two-way synchronized with the

simulation environment MATLAB®/Simulink® from The

MathWorks [17] with which it shares the same Java VM. The

second tool, called TDL:VisualDistributor, allows one to

configure the target system’s topology and to map TDL

Figure 5. Sequence Diagram

components to target nodes. It is a graphical configuration front-

end for code generators.

4.1 Exception Handlers
We ran a text search for catch blocks on the source code of the

mentioned applications and manually classified the exception

handler code. The following categories have been identified:

Catch & throw. Exceptions are caught and immediately re-

thrown, for example in order to map checked to unchecked

exceptions or to provide user-friendly error messages by mapping

a NumberFormatException to a TerminateException.

Top-level exception handlers. We consider exception handlers to

be at top-level of an application if there is no possibility for the

developer to catch exceptions at a higher level in the call

hierarchy. This is trivially the case for try/catch blocks

surrounding the main method of the application or the run method

of any thread. Furthermore, we rank exception handlers within

AWT event listener methods among this category, as such event

listeners act as callbacks of the AWT event dispatcher thread,

which is not under control of the application developer. Top-level

exception handlers are required as a consequence of the AWT

delegation event model, whenever it is not feasible to use class

Command. The awt, awt.dnd and swing packages in the Java

library contain 40 different interfaces that extend the

EventListener interface. The ratio of those which only

declare a single method for handling an event is 40%. These

interfaces can theoretically be covered by the Command class and

its onExecute method. When implementing any of the other

interfaces (e.g. MouseListener, TreeModelListener,

WindowListener) an exception handler is required that

forwards the exception to the centralized exception handler

provided by class Command.

Local exception handlers. This third category comprises catch

blocks that are at a lower level of the call hierarchy. Exceptions

are handled locally without being re-thrown and thus are not

propagated to a top-level handler. In certain cases, the Java library

forces developers to rely on exceptions as it provides no facilities

to check, for example, the validity of method arguments. There is

nothing like Integer.isInteger(String), for instance,

that could obviate the possibility for a NumberFormat-

Exception when trying to convert a string to an integer.

Table 1 gives an overview of the individual exception handling

categories by listing the number of exception handlers for the

evaluated tools. Compared to the lines of code (LOC) (see Table

2), we consider the number of exception handlers, in particular

local exception handlers, to be pleasantly small. Almost every

user request is implemented as a command which performs the

centralized top-level exception handling for free. The rather

increased number of top-level exception handlers in

TDL:VisualCreator is caused by the Java interfacing mechanism

provided by MATLAB®. Three local exception handlers in

TDL:VisualCreator are forced by Java's threading mechanism,

which requires one to catch the InterruptedException

after a wait() or sleep() call. Four local exception handlers

in TDL:VisualDistributor are due to a plug-in mechanism that

deals with extension classes by using Class.forName(),

which throws an exception if a class cannot be loaded. One is due

to the optional support of System.getenv() for configuring

extension classes and one is due to ignoring failed look-and-feel

selection during Swing startup.

Table 1. Number of exception handlers

Application catch & throw top-level local

TDL:VisualCreator 8 30 5

TDL:VisualDistributor 15 9 6

4.2 Code size
Table 2 gives a summary of both tools in terms of the code size

expressed by lines of code (LOC – without comments or blank

lines). For the evaluation we used the eclipse plug-in Metrics1.

Table 2. Code size in LOC

Application Total Model Undo/Redo UndoView

TDL:VisualCreator 20393 4865 457 44

TDL:VisualDistributor 10530 1673 246 32

Framework 442 214

The undo and redo related code accounts for about 2.5% of the

application in total for the TDL:VisualCreator and about 2.6% for

the TDL:VisualDistributor. Measured by the application model,

the ratio is about 10% and 17% respectively. Apart from the

UndoView, a subclass of UndoManager that represents a view of

the model data, the entire code that is used for undo/redo is

located in the applications’ model packages.

Unfortunately we cannot provide a comparison such as LOC of

the individual applications before and after applying the proposed

framework, which would be especially interesting for the

undo/redo related code. We directly applied the presented

mechanism when we extended the TDL:VisualCreator with undo

support. The TDL:VisualDistributor supported undoable

commands from the beginning. Table 3 lists the number of

implemented user commands and gives an estimation of the

number of LOC we saved simply because of centralizing the

exception handler. This avoids at least 4 LOCs for the try/catch

clause for each command.

Table 3. Number of commands and LOC saved

Application Commands Saved LOC for

exception handling

TDL:VisualCreator 52 ≥ 208

TDL:VisualDistributor 45 ≥ 180

The savings easily compensate for the part of the framework

required for command processing (442 – 214 = 228 LOC). Note

that we did not count the code required for displaying exceptions

in dialog boxes because this code would also be required without

the framework.

1 http://metrics.sourceforge.net

5. RELATED WORK
Since the pioneering work of Goodenough [11] numerous results

have been published in the field of exception handling. Cabral et

al. [4] have performed a comprehensive study on how exception

handling mechanisms are used in practice by analyzing more than

thirty applications, 16 of them were developed in Java. Their

results show that exception handlers are typically not tailored to

specific errors but perform generic operations like logging or user

notification. Garcia et al. [12] evaluate and compare various

mechanisms for exception handling implemented in different

languages and propose an ideal exception handling model.

Robillard et al. refine previously published concepts for Ada and

present guidelines for designing robust java programs with

exceptions [13]. Approaches for handling exceptions with aspect

oriented programming are presented in [14, 15].

There are a few projects, for example [7], that provide improved

command processing for Java applications. However, to our

knowledge, there is no framework for Swing-based applications

that covers command processing in combination with undo

support.

In [3], Gamma et al. describe an undo mechanism based on

coarse-grained commands, which is described in section 3.1.

Wang and Green [8] elaborate on the difficulties at applying

recovery mechanisms to object-oriented software architectures

and propose a framework that shifts a large part of history

management to the individual objects.

In the Java Foundation Classes (JFC), we encountered a set of

classes that are intended to ease the implementation of an undo

mechanism based on event listeners (javax.swing.undo),

which looks similar to our approach at a first glance. However,

besides being much more complex in the number of interfaces and

classes involved, the undo notification mechanism is orthogonal

to model change notification, which results in code duplication.

This can be seen by studying the implementation of the Swing text

editor component, which makes use of this undo mechanism. In

addition, the Swing undo mechanism does not support centralized

exception handling and it does not provide generic undo and redo

commands. Also JGraph [18], a graph visualization Java library,

uses the Swing undo package. Again, undo and model change

notification is implemented orthogonally. In addition, the JGraph

core model gets quite complex as it strongly depends on this set of

classes.

The work described in [9] contains a description of a fine-grained

approach for adding undo support to JavaBeans without

modifying existing code by using automatic code generators.

6. OUTLOOK AND FUTURE WORK
Besides exception handling problems, we observe inconsistencies

in the handling of enabled/disabled state changes of GUI controls

(grey-logic) in many large Java program. If a program contains a

large number of controls and the grey state depends on a number

of parameters, it becomes difficult to update all controls at the

right times and it spreads the code for implementing the grey-

logic across the whole program. As a solution to this problem we

envision an extension of the Command concept by a boolean

function called a guard. If the guard evaluates to true, the control

is enabled, otherwise it is disabled. In the ideal case, calling these

guard functions is done by the framework and not in the program

code.

The problem of supporting WindowListeners or, in general,

listeners with more than one handler method as mentioned in

Section 2.6, might be solved by providing special subclasses of

Command, e.g. WindowCommand. These Command classes act

as adapters for the corresponding listeners, i.e. they provide an

empty implementation of the implemented interface. Of course,

we could apply the principle of subclassing also to all interfaces

which are currently implemented by class Command. This would

result in an ActionCommand, a ListSelectionCommand etc., and it

would simplify the base class Command at the expense of

introducing a number of subclasses.

7. CONCLUSION
We presented a framework for Java/Swing applications to

overcome shortcomings in the current AWT/Swing library with

respect to exception handling in command processing.

Furthermore, we presented the integration of a light-weight

mechanism for undoing and redoing commands based on

undoable event objects that serve to undo/redo elementary model

operations as opposed to undoing the effect of a command as a

whole. The approach fits particularly well with applications based

on the MVC pattern and has been applied successfully in a

number of graphical editors for the TDL tool chain. It helped us to

eliminate almost all local exception handlers, which increased the

software quality and at the same time reduced the code size.

Undo/redo support has been added to our editors with only a very

small fraction of the code required for the rest of the applications

and without any unintended structural changes or violations of

abstraction boundaries.

The source code of our Command framework is available on

request via e-mail.

8. ACKNOWLEDGEMENTS
The command framework presented in this paper has been

inspired partially by utility classes developed as part of an earlier

project of one of the authors [19]. This subproject, however, is

unpublished and it did not include support for undo/redo. The

grey-logic support as proposed in the Future Work section has

been prototyped in the mentioned subproject and was originally

inspired by the BlackBox Component Builder framework [20].

We would like to thank Johannes Pletzer, Wolfgang Pree and

Gerald Stieglbauer for carefully proofreading this paper. We

would also like to thank the anonymous reviewers for their

comments and suggestions. They helped us to improve the

presentation considerably.

9. REFERENCES
[1] S. Burbeck. Applications Programming in Smalltalk-80:

How to use Model-View-Controller, 1987.

[2] A. Fowler. A Swing Architecture Overview,

http://java.sun.com/products/jfc/tsc/articles/architecture

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns - Elements of Reusable Object-Oriented Software.

ISBN 0-201-63361-2, Addison-Wesley, 2002.

[4] B. Cabral and P. Marques. Exception Handling: A Field

Study in Java and .NET. In ECOOP’07: Proceedings of the

21st European Conference on Object-Oriented

Programming, pages 151-175, Berlin, Springer, 2007.

[5] Sun Microsystems: The JavaBeans Specification 1.01.

http://java.sun.com/products/javabeans/docs/spec.html

[6] R. Mancini, A. Dix and S. Levialdi. Reflections on Undo.

Technical Report RR9611, University of Huddersfield, 1996,

http://www.comp.lancs.ac.uk/~dixa/papers/undo-techrep-

96/tech9611.pdf

[7] Brico, http://sourceforge.net/projects/brico

[8] H. Wang and M. Green. An Event-Object Recovery Model

for Object-Oriented User Interfaces. In UIST’91:

Proceedings of the 4th annual ACM Symposium on User

Interface Software and Technology, pages 107-115, New

York, 1991. ACM.

[9] H. Washizaki and Y. Fukazawa. Dynamic Hierarchical Undo

Facility in a Fine-Grained Component Environment. In

CRPIT’02: Proceedings of the 40th International Conference

on Tools Pacific, pages 191-199, Darlinghurst, Australia,

2002.

[10] J. Gosling, B. Joy, G. Steele, and G. Bracha. The JAVA

Language Specification. Sun Microsystems, Inc, Mountain

View, California, USA, 2000.

[11] J. B. Goodenough. Exception Handling: Issues and a

Proposed Notation, Commun. ACM, 18(12):683-696, 1975.

[12] A. F. Garcia, C. M. F. Rubira, A. B. Romanovsky, and J. Xu.

A Comparative Study of Exception Handling Mechanisms

for Building Dependable Object-Oriented Software. Journal

of Systems and Software, 59(2): 197–222, 2001.

[13] M. P. Robillard and G. C. Murphy. Designing Robust Java

Programs with Exceptions. In FSE’00: Proceedings of the 8th

ACM SIGSOFT International Symposium on Foundations of

Software Engineering, 2000. ACM.

[14] F. C. Filho, A. Garcia, and C. M. F. Rubira. Error Handling

as an Aspect. In BPAOSD’07: Proceedings of the 2nd

Workshop on Best Practices in Applying Aspect-Oriented

Software Development, New York, 2007. ACM.

[15] M. Lippert and C. V. Lopes. A Study on Exception Detection

and Handling using Aspect-Oriented Programming. In

ICSE’00: Proceedings of the 22nd International Conference

on Software Engineering, pages 418-427, New York, 2000.

ACM.

[16] TDL tool suite, http://www.preeTEC.com

[17] The MathWorks, http://www.mathworks.com

[18] JGraph, http://www.jgraph.com

[19] J. Templ. The KITE Application Server Architecture. In

Lecture Notes in Computer Science, Volume 2789/2003,

ISBN 978-3-540-40796-6, pages 37-48, 2003. Springer.

[20] BlackBox, http://www.oberon.ch/blackbox.html

