
 1

Modularization and

Software

Architectures

 2

Overview of SEI architectural styles

Architectural style Characteristics

Data-centered Repository Architecture

Blackboard Architecture

Data-flow Batch/Sequential Architecture

Pipes&Filters Architecture

Call & Return Top-Down Architecture

Network Architecture (Object oriented)

Layered Architecture

Virtual Machine Interpreter Architecture

Rule-based Architecture

Independent Components Event-driven Architecture

 3

Call & Return (I)

 The Call&Return style is used for describing typical

control flow for imperative programming: Procedures,

functions and methods of a module are called from other

modules and upon finishing their execution the control

jumps back to immediately after the calling place.

 Top-down form of the Call&Return architectural

style: In conventional, not object-oriented

implementations, the Call&Return leads to a top-down-

oriented architecture, i.e. a (main or root) procedure/

function/method calls further procedures/functions/

methods, etc.

 4

Call & Return (II)

 In network and/or object-oriented implementations

of the Call&Return architectural style:

 The constructs available in object-oriented languages

allow the formation of network-oriented architectures

alongside with the hierarchical structuring of top-

down-oriented architectures. Method calls take place

in a network of objects.

 5

Call & Return (III)

 A further form of the Call&Return architectural style is

the so-called layered architecture, which is used in

order to introduce abstractions.

 A layer corresponds to a module which offers a certain

functionality and which can contain a number of other

modules.

 Each layer exposes an interface to be used by the above

layer and uses an interface implemented by the layer

below.

 6

Example: Layer architecture of AUTOSAR

(Automotive Open Systems Architecture)

more information at

www.autosar.org

 7

Advantages of the layered architecture

 Abstractization

 Ease of change: a layer affects at most two adjacent
layers

 Information hiding

 Standardized layer interfaces for libraries and
frameworks

 8

Issues to be addressed in layered

architectures

 Determining the right abstractization level

 Avoiding multi-layer crossing

 Performance

 9

Virtual Machine (I)

 A virtual machine serves for providing functionality which
is needed for the execution of an application, without
making available details specific to the hardware and/or
system software on which the application may run.

 Portability is improved by using this architectural style.

 10

Virtual Machine (II)

 Interpreter architecture: The concept of the virtual
machine has strengthened since the introduction of
Java, becoming more commonly used. The fact that
software portability can be improved by using virtual
machines was already shown at the beginning of the 70s
by the definition of the P-Code (Pascal code). Thus
Pascal compilers, which produced P-Code instead of
machine code, became portable. A virtual machine
(which interpreted the P-Code), had to be made
available for each hardware platform on which the
compiled code had to be executed.

 Rule-based architecture: Expert systems, which work
by interpreting rules (mostly of logical inference).

 11

Independent Components (I)

 This architectural style postulates loose coupling
between independent components. We call components
independent, if the components do not directly call
functions/procedures/methods of other components.

 A usual way to loosely connect independent components
is by so-called event-oriented linkages: A component
registers itself with another component, from which it
wants to be informed about changes. When a change
(event) occurs, a component informs all its registered
components. The coupling is loose, because the
component only informs other components about a
change, without specifying what they have to do. They
may or may not react to the change.

 12

Independent Components (II)

 The video-clip component registers itself with the buttons
of the controller component, to be informed about
occurring events. When pressing the “Play” button, for
example, the video-clip component is informed by the
button with the message that the event „pressed“
occurred. The video-clip component can react now to
this event by playing the clip.

