
 1

The Decorator

Construction

Principle

 2

Motivation: Changes of a Class With Many

Subclasses (I)

 Changes of M3() and M7() of class A necessary

 Change source text of A, if available?

 Change by inheritance?

 3

Motivation: Changes of a Class With Many

Subclasses (II)

 For one class (e.g., A1m) the adaptation is meaningful

 For all subclasses of A this is too complicated

 4

Motivation: Changes of a Class With Many

Subclasses (III)

 In programming languages that support multiple inheritance, so-
called mixin classes can be defined.

 Nevertheless a subclass must be formed for each class whose
behavior is to be adapted.

 5

Adapting a class by composition rather than by

inheritance

 All A’s methods are overwritten in the class WrapperOfA, as the method call
is delegated in each case to an object referenced by the instance variable
wrappedA - with exception of those which are changed.

 Since WrapperOfA is a subclass of A, any time an object of static type A is
demanded, an instance of the class WrapperOfA can be used. Since the
instance variable wrappedA has the static type A, it can refer to each object
of a subclass of A.

“decorated” A

 6

Decorator: Adaptation by composition with as

many objects as desired

 The names of the template and hook methods are the same

 Setting of the decorated object with SetH()

 An instance of the decorator (filter) T as well as an instance of a

subclass of H can be used by clients like an H-object. However, the

behavior of the H-object is modified accordingly.

 H + decorator(s) can be used as a single object (see Composite).

 7

Design suggestion when using several

Decorator classes

 8

Exemples of Compositions

 9

Example: Smoothing Flight Patterns

 10

 11

Use of the Decorator Class Smoother

 FlightPattern triangle= new FlightPattern();

 triangle.SetStartPos(...);

 triangle.AddSeg(new Smoother(new Line(...)));

 triangle.AddSeg(new Smoother(new Line(...)));

 triangle.AddSeg(new Line(...));

 12

Basic conditions for the application of the

Decorator construction principle (I)

 The signature of H, which is the root class of the

subtrees, is not to be extended by the subclasses of H.

The reason for this is that additional methods in the

subclasses cannot be considered into the Decorator.

 In order to guarantee fulfillment of this demand, it is

necessary to transfer the common aspects of all

subclasses of H into the root class. This requirement is

not satisfied by many class libraries. In such cases, the

application of the Decorator construction principle is not

possible to full extent (see Decorator Smoother).

 13

Basic conditions for the application of the

Decorator construction principle (II)

In our example, some specific methods for the mentioned objects must be explicitly

called – for example, SetDirection() in Circle - since they cannot be passed on by a

Smoother instance:

 Circle circle= new Circle (...);

 circle.SetDirection (cRight);

 Smoother smoother= new Smoother (circle);

If the mentioned demand would be fulfilled, a Smoother instance could be treated like

each specific FlightSegment object:

 Smoother smoother= new Smoother (new Circle (...));

 smoother.SetDirection (cRight);

A possibility of eliminating the flight-segment-specific methods is to let all characteristics

be indicated only over the constructor of the respective class:

 Smoother smoother= new Smoother (new Circle (…, cRight));

 14

Application of the Decorator principle to the

design of more “lightweight” root classes

 The Decorator construction principle can be used to

make classes close of the root of the class tree more

lightweight. Functionality that is not needed in all classes

is implemented in Decorator classes. Only the objects

which need this special functionality receive it by

composition with the appropriate Decorator instance.

 The Decorator construction principle can be fruitfully

used both with the (first) design of a class hierarchy and

with the extensions of class hierarchies.

 15

Example: Clipping Mechanism in GUI libraries

 Clipping mechanism: cutting a GUI element to its fixed

size

 Since the Clipping mechanism is not needed for all GUI

elements, it is meaningful to plan the Clipping

mechanism by a decorator class Clipper rather than in

the root of the subtree (see the Decorator example in

Gamma et al., 1995).

 16

Summary Decorator

+ Simple adaptation by object composition

+ New decorator elements (Template classes, which are

subclasses of the Hook class) can be defined, without

having to change the subclasses of the Hook class.

+ „More lightweight “classes can be realized elegantly

- The Hook class should fulfill the mentioned basic

condition (factoring in behavior from all subclasses)

- Additional indirection in method calls

- Complex interactions between involved objects

 17

The Chain of

Responsibility

Construction

Principle

 18

Chain Of Responsibility (COR)

public void M(){

... // try to satisfy the request

if (requestSatisfied == true)

 return;

else

 nextTH.M();

}

:Client
:TH

:TH

M()
M()

 19

COR by Gamma et al.

 Different implementation of request servicing (the hook
part) are provided by subclassing

 The subclasses must also care for the template part!

TH

M()

hRef

1

TH1

M()

TH2

M()

 20

COR With a Separate Hook

public final void TM(){

requestSatisfied = HM();

if (requestSatisfied == true)

 return;

else

 nextTH.TM();

}

TH

TM()

HM():bool

hRef

1

TH1

HM()

TH2

HM()

t

h

 21

Application: Factory Floor Automation

 Grid layout

 Processing machines

 Mobile robots navigate between machines

Robot2

Machine1

Machine2

Machine3

Machine4 Robot1

 22

Examples of robots

 Transportation robots

 Cleaning robots

 Painting robots

 Teams of robots!

 23

Example: COR and Composite

Team111

TranspRobot1 TranspRobot2

Team11

Team112

Team1

Team12

PaintRobot1 PaintRobot2

CleanRobot2 TranspRobot4

CleanRobot1

 24

Summary of the

Characteristics of OO

Construction

Principles

 25

Characteristics of Template and Hook Methods

Construction Principles

Hook Method Hook Object Composite Decorator COR

F
e

a
tu

re
s
 o

f
T

()
 a

n
d

 H
()

P
la

c
in

g

N
a
m

in
g

In
h
e
ri
ta

n
c
e

T() and H()

 in the same

 class

T() and H() in separate classes

T() = H()

T() and H()

 have different names

T() and H()

 have the same name

n.a.

H() inherits from T()

T() = H()

 26

Adaptability

Construction Principles

Hook Method Hook Object Composite Decorator COR

N
u
m

b
e
r

o
f

in
v
o
lv

e
d
 o

b
je

c
ts

A
d
a
p
ta

b
ili

ty

1

1(T) + 1(H)

 or

1(T) + N(H)

N objects which are used in the same

way as a single object

By inheritance

and

instantiation of

the

corresponding

class

By composition

(at runtime, if necessary)

 27

Construction

Principles and

Design Patterns

 28

14 out of the 23 Design Patterns from Gamma

et al. Refer to OO Product Families

aa

Konstruktionsprinzipien für OO Produktfamilien

Entwurfsmuster für OO Produktfamilien

basiert auf

Factory Method

Template Method
Bridge

State

Strategy

Observer

Command

Builder Abstract Factory

Prototype

Interpreter

Hook-Method Hook-Object

Composite

Chain-Of-Responsibility

Decorator

 29

Template and Hook Methods in the Factory

Method Design Pattern

 30

Factory Method Example

Transportation

getNewVehicle():Vehicle

getPrice(j:Job):float

checkAvailable(j:Job):bool

TranspRequest(j:Job):bool

Vehicle

Move()

SetJob(j:Job)

StartJob(j:Job)

*

RoadTransportation

getNewVehicle():Vehicle

getPrice(j:Job):float

Truck

Move()

 31

Semantics of the Hook method/class is the

basis for the naming in Design Patterns

 The name and the functionality of the Hook method
and/or the Hook class express which aspect is kept
flexible in a design pattern.

 In the Factory Method the object production is kept
flexible.

 The same applies to the design patterns Abstract
Factory, State, Strategy, Builder, Observer, Command,
Prototype and Interpreter.

 This kind of the naming is meaningful and therefore it is
recommended in the development of new design
patterns. We postulate the following rule: Hook
semantics determines the name of the design pattern.
This enables a systematical designation of DPs.

 32

Flexible Object Production Based on Meta-

Information (e.g. in Java and C#)

+ No subclassing necessary

- Static type checking is bypassed

 33

Factory Method (Hook Method) 

Abstract Factory (Hook Object)

 The Hook method FactoryMethod () is simply shifted in a

separate class or interface

 34

Abstract Factory Example

RobotFactory

CreateTranspRobot()

CreatePaintRobot()

CreateCleanRobot()

IRobotFactory

CreateTranspRobot()

CreatePaintRobot()

CreateCleanRobot()

RoboSoftFactory

CreateTranspRobot()

CreatePaintRobot()

CreateCleanRobot()

SimulatorEngine

processUserCommand()

1 refRobotFactory

// if user command is „TransportItem“

refRobotFactory.CreateTranspRobot()

return new IRobotTransport();

return new RobSoftTransport();

 35

The Strategy Design Pattern: Example

PathFinder

genPath(j:Job):Path

*

TransportationRobot

getPathFinder():PathFinder

execute()

ShortestLength

genPath(j:Job):Path

ShortestTime

genPath(j:Job):Path

Robot

current_job:Job

current_path:Path

initialize()

getPathFinder():PathFinder

takeJob(j:Job):bool

execute()

EmergencyRobot

getPathFinder():PathFinder

execute()

path_find

 36

The Strategy Design Pattern: Structure

Used when

 A family of algorithms is needed

 A behavior is selected from a given set of behaviors by

multiple conditional statements

 37

The State Design Pattern: Example

RobotState

powerOff(r:Robot)

startJob(r:Robot)

Error

powerOff(r:Robot)

startJob(r:Robot)

Robot

processEvent(event:String)

startMoving()

stopMoving()

logErrorMessage()

saveJobStatus()

state

Executing

powerOff(r:Robot)

startJob(r:Robot)

Traveling

powerOff(r:Robot)

startJob(r:Robot)

Ready

powerOff(r:Robot)

startJob(r:Robot)

Idle

powerOff(r:Robot)

startJob(r:Robot)

 38

The State Design Pattern: Structure

Use:

 To implement state transition logic of the type

event[condition]/action without large conditional

statements

 When the same event may occur in different states with

different conditions or actions

