
 1

 Component

Diagrams

 2

Components

 Classes can be grouped in components. In UML, a
component can be represented as follows:

 Components correspond to modules in module-oriented
languages.

 C++: Reproduction of modules through .h, .c files

 Smalltalk: Groups of classes, no modules

 Oberon and Java: Modularity supported directly by the
language

 3

Ports, Interfaces and Connectors

 Ports: interaction points

 Interfaces:

 Provided

 Required

 Connectors:

 Assembly

 Delegation

C1 p[1..*]

 4

 Deployment

Diagrams

 5

Notation

 This representation is developed from Booch' s process

diagram. It expresses the assignment of main programs

and/or active objects to processors for distributed

systems running on multiple processors.

 6

Example: CORBA

 7

Hands-On Exercise: Web Shop

 A Webshop is typically a distributed

application, where multiple layers are

involved.

 How could the topology of the system

look?

 Which components are on which

computational nodes?

 8

Three-tier Architecture

 9

Web Shop: Topology

 10

Construction of

Flexible

Software

 11

Contents

 Configuration parameters

 Concepts and contruction principles for

flexible, object-oriented product families

 Design Patterns

 12

Configuration

 13

Definition

 Configuration parameters are placed in

configuration files.

 Configuration parameters correspond to

persistent, global (= static) variables.

 14

Example

aa

CurrencyConversion

0.01

Konfigurationsdatei

:ConfigInterpreter
:Converter

roundingParam: float

. . .

0.01Rundungsgenauigkeit

. . .

Softwarekomponente
Legende:

:ObjectName Objekt

externe Datei

 15

Generating the Configuration File

aa

. . .

Komponente

Editor

Example:

GUI Configuration file = Resource file

Visual, interactive construction with help from resource editors

 16

Concepts and
Construction Principles

for Flexible Object-
Oriented Product

Families

 17

The Callback Style of Programming (I)

 DoSomething calls a function which it has received as an
argument. This shows the meaning of the callback style
of programming:

 One can conceptually distinguish whether a function or a
procedure is called directly (call) or whether a function
or a procedure passed as a parameter is called
indirectly (by means of callback).

DoSomething(...)

Compare(...)

calls to

Placeholder for
a function

 18

The Callback Style of Programming(II)

void DoSomething(int (*Compare)(void*, void*),
 void* elem1, void* elem2)

int StringCompare(void* string1, void* string2) {

 return strcmp(// C-Bibliotheksfunktion strcmp

 (char*)string1,

 (char*)string2

);

 } // StringCompare

DoSomething(StringCompare, “first“, “second“);

 19

The Callback Style of Programming(III)

 20

Definition

 Product Family: A piece of software from

which different applications can be formed

by the callback style of programming, i.e.

its behavior is changeable and/or

expandable.

 21

Abstract Coupling

GPS-Komponente

Nav igationskomponente

Galileo-Komponente

Nav igationskomponente

GPS- Komponente

Navigationskomponente

Galileo- Komponente

ćSteckerŅ PosSy stem

GetPos()

call GetPos()

GetPos()

„Stecker“ PosSystem

 22

Abstract Coupling by Abstract Classes

Navigation system example:

 23

Alternative: Interfaces

 24

Abstract Coupling by Interfaces

Navigation system example:

 25

Template

and Hook

Methods

 26

Definition

 If a method is called in another method’s

implementation, then we call the calling

method the Template method and the

called method the Hook method.

 The template method addressed here has nothing to do

with the C++ language construct template.

 27

Both Methods in the Same Class

 28

Template and Hook Methods in Different

Classes

 29

The same method can be both Template and

Hook depending on the context

 30

Combinations With Recursiveness

 31

Hook Method

Construction

Principle

 32

Hook Method: Adaptation of T() by overwriting

of H()

 33

Adaptation by Overwriting the Hook Method H()

 34

Application Example: Navigation System(I)

 35

Application Example: Navigation System(II)

 Problem: Galileo is

not a specialization of

GPS!

 36

Summary Hook Method

+ Simplicity: For an adaptable behavior, one must plan

only a hook method.

- Adaptability requires sub-classing and overwriting of the

hook method.

 In many cases, the hook method construction principle

is sufficient to achieve the flexibility required for

adaptation.

 37

The Hook Object

Construction

Principle

 38

Hook Object: Adaptation of T() by plugging in

an H Object

 39

Adaptation by Composition (I)

 Adaptability at runtime

 40

Adaptation by Composition (II)

T sampleT= new T();

sampleT.DefineH(new H1());

H1

T

ćStecker Ņ vom statischen Typ H

Hm()

call Hm()

„Plug“ of static type H

 41

Application Example: Navigation System(I)

 42

Application Example: Navigation System(II)

 Composition for achieving a navigation system:

 (a) GPS-based

 (b) Galileo-based

GPS

Navigation

GetPos()

call GetPos()

Galileo

Navigation

GetPos()

call GetPos()

(a) (b)

 43

Extension of the Pluggable Components at

Runtime?

Navigation navigation= new Navigation(...);

String nameOfAddtlClass= “UMTSTriangulation“;

Object anObj= new nameOfAddtlClass; // not possible

 // correct solution follows

navigation.SetPosSystem((PosSystem)anObj);

 44

Using dynamic class loading in Java

Navigation navigation= new Navigation(...);

String nameOfAddtlClass= “UMTSTriangulation“;

ClassLoader classLoader = navigation.getClass.getClassLoader();

try {

 Class newPosSystCls = classLoader.loadClass(nameOfAddtlClass);

 PosSystem newPosSystObj = (PosSystem) newPosSystCls.newInstance();

 navigation.SetPosSystem(newPosSystObj);

 } catch (ClassNotFoundException e) { e.printStackTrace(); }

 45

By Reflection in .NET/C#

 Navigation navigation= new Navigation(...);

 . . .

 String nameOfAddtlClass= “UMTSTriangulation“;

 Type typeOfAddtlClass= Type.GetType(nameOfAddtlClass);

 Object anObj;

 PosSystem posSys;

 if (typeOfAddtlClass != null) {

 anObj= Activator.CreateInstance(typeOfAddtlClass);

 if (anObj != null && anObj is PosSystem)

 posSystem= (PosSystem) anObj;

 else ... // error handling

 }

 navigation.SetPosSystem(posSys);

 46

Summary Hook Object

+ Simple configuration, also at runtime

- Higher complexity of design and

implementation than in the hook method

principle

 47

The Composite

Construction

Principle

 48

Composite: A tree of objects can be used like

an individual object

 The names of template and hook methods are the same

 References to H-objects are managed by AddH() and

RemoveH()

 49

Example: Definition of an Object Hierarchy

 T root= new T();

 T subRoot= null;

 root.AddH(new H2());

 subRoot= new T();

 root.AddH(subRoot);

 root.AddH(new H1());

 subRoot.AddH(new T());

 subRoot.AddH(new H2());

 50

The object hierarchy can be used by the

structure of the template method like an object

void M() {

 for each hObj in hList

 hObj.M();

 }

 M () is not a recursive method, however it operates on a

recursive data structure (tree).

 51

Example: Composition of an 8-flight Pattern

From Segments

 52

 53

The 8-loop

 FlightPattern loop= new FlightPattern();

 loop.SetStartPos(new Position(gL, gB) + new Position(0, 0, 3));

 loop.AddSeg(new Circle (horizontalPlane, 7, right)); // radius: 7 m; right dir.

 loop.AddSeg(new Circle (horizontalPlane, 7, left)); // radius: 7 m; left dir.

 54

IsValidPattern() cheks whether a flight

pattern leads to a ground contact

 IsValidPattern () is implemented in FlightPattern in

accordance with the Composite template method

 Similarly: FlyIt (), CalcLength (), CalcReqTime ()

 FlyIt () is already implemented by using

FlightSegment - > CalcNextPos ()

 55

Composite Variant: Administration and

Functionality in One Class

 T and H class merged

 Semantics of the composition changes

 The fundamental characteristic to be able to define an

object hierarchy remains

 56

Example: Complex Documents

 A document that comprises text and different other
documents like drawings, audio or video clips, is
responsible for the administration of the contained
documents and offers additional functionality for editing the
embedded documents.

 57

Summary Composite

+ Simple formation of flexible object hierarchies

+ New elements (subclasses of the hook class) without

change of the template class

- Complexity of interactions between objects arranged in

the hierarchy, in order to accomplish the automatic

iteration over the tree hierarchy.

 Object hierarchies occur very frequently and in many

ranges of application, e.g. in window―grouped GUI

elements, parts lists, workflows.

