
 1

Programming Language

Constructs as Basis for

Software Architectures

 2

From individual parts to components

In the 50s:

 Machine/Assembler programs: bound to specific
hardware

In the 60s-70s:

 Higher programming languages (such as Pascal, C)

 Instructions can be combined into
functions/procedures
 Individual parts

In the 80s and 90s:

 Functions/procedures are combined into Modules
(Modula, Oberon, C++, Java, C#)
Software components

 3

Example: A File handler component

Read file

Write file

. . .

S
im

p
le

 I
n

te
rf

a
c
e

Hidden implementation details:

-Access to hard disc

-Splitting up file contents, etc.

 4

Architecture-Patterns

Software-Patterns

 5

The Timeless Way of Building

Christopher Alexander, Professor of
Architecture, Univ. of California, Berkeley:

Books published in 1979:

The Timeless Way of Building

A Pattern Language (253 Patterns)

 Quality without a name

Discovered by the Software community
in 1991

 6

Example: Windows Overlooking Life

 7

Examples of

Software Patterns

 8

How can software PlugIn-Architectures be

created?

Described in Architecture manuals (1995):

 E. Gamma, R. Helm, R. Johnson, J. Vlissides:

Design Patterns: Elements of Reusable Software

 W. Pree:

Design Patterns for Object-Oriented Software

Development

 9

What are PlugIn-Architectures?

 Modern cooking machine: plugging in
various tools makes it a mixer, a
mincer, a blender

 New automobile models resemble
older ones in their core: chassis,
transmission, engine pallet.

 10

Software Examples

 Dedicated software:

 Hotel reservation system

 Car rental system

 Ski rental system

 Motorcycle rental system

 etc.

 PlugIn-Architecture:

 Reservation system
(of rental property)

 11

Dedicated Software

Dependence between components is hard-coded

Coupling with another component requires changes

Hotel room

Car

 12

Pattern: PlugIn-Architectures require the

definition of „Plugs“

Plug „Rental property“

Plug-compatible

Components

 13

The so-called dynamic binding of calls makes changes

in the source code unnecessary

m1()

m1()

m1()

call m1

 14

The Rental property „Plug“

Defines general, abstract characteristics:

 isFree(Period)

 reserve(Period)

 estimatedPrice(Period)

 etc.

 15

Software Techniques –

Quo vadis?

 16

 Cost intensive maintenance of

software, which is 20 - 30 years old

 Engineering approaches will be

established at least in sub - domains

such as safety critical systems

 17

 The simple, mechanical

view is hardly scalable

 Biological systems model

 Internet growth by a

factor of 100 million

 Development process:

 Analisys Design

Implementation

Analysis and Design with UML

Software Engineering

Winter 2011/2012

Basics of Object-Oriented

Modeling

Dr. Stefan Resmerita

 19

Tools for OO

Analysis and

Design

 20

OO expectations

 Improved modularity

 Improved reusability

 Potential for reusable software architectures

 (= generic complex components) has not been fully

investigated so far

 Support for OO modeling is important

 21

What can be expected from OOAD Tools (I)

Great designs come from great

designers, not from great tools.

Tools help bad designers create

ghastly designs much more

quickly.

 Grady Booch

(1994)

 22

What can be expected from OOAD Tools (II)

 OOAD tools can perform:

 Providing and editing diagrams based on various OO

notations

 Checking of consistency and constraints

Does an object have the called method?

Are the invariants (e.g. single instance, etc.) satisfied?

 ...

 Completness evaluation

Are all the Methods/Classes used?

 ...

 23

Conventional (SA/SD) versus OO tools (I)

The main differences regard two aspects:

 (1) Software Architecture

 Conventional tools are based on a

separation between data and functions

 OO tools are based on the grouping of

data and functions into meaningful

„closed“ objects

 24

Conventional (SA/SD) versus OO tools (II)

 (2) Semantic possibilities

 Relationships in the conventional ER

 One-to-one (1:1) – has_a, is_a

 One-to-many (1:m) – owns, contains,

is_contained_in

 Many-to-many (m:n) – consists_of

 25

Conventional (SA/SD) versus OO tools (III)

 OO modeling has more comprehensive

means of expression

 Class/Object relations and dependencies

 Inheritance

Association

Has_a (by value, by reference)

Uses_a (by value, by reference)

 Class attributes

 Is_abstract, is_metaclass

 Is_parameterized

 Access rights

 26

OO Techniques at the beginning of the 90s

 OOD / Rational Rose
 Grady Booch

 Object Modeling Technique (OMT)

 James Rumbaugh et al.

 OO Software Engineering
 Ivar Jacobson et al.

 OO Analysis (OOA)
 Peter Coad und Ed. Yourdon

 Responsibility-Driven Design (RDD)
 Rebecca Wirfs-Brock et al.

 OO System Analysis (OOSA)
 Sally Shlaer and Steve Mellor

 . . .

 27

Example for Booch notation

1

 28

Example of OMT notation

aaa

Mailer

... ...Folder

Mailbox

EmployeeGroup

Employee DesktopItem

 29

Common features of OOAD methods (I)

 They aim to represent the physical world

without artificial transformations as a

software system

 Application of the same concepts in all

phases of software development

 The border between Analysis and Design

becomes more blurred

 Moreover, very vague usage guidelines are

indicated

 30

Common features of OOAD methods (II)

 OOAD methods permit the modeling of the

following aspects of a system:

 Static aspects

 The Class/Object model stands in the

foreground

Higher abstraction levels are represented by

Subsystems

 Dynamic aspects

 Interaction diagram

State diagram

Use case diagram

 31

Differences between OOAD methods

 The differences between the methods lie mostly in the

notation

 The notations are to a large extent language

independent

 => Standardization is obvious

All of the OO methodologies have

much in common and should be

contrasted more with non-OO

methodologies than with each other.
 James Rumbaugh

(1991)

 32

UML influences

 The Unified Modeling Language contains various

aspects and notations from different methods

 Booch

Harel (State Charts)

 Rumbaugh (Notation)

 Jacobson (Use Cases)

 Wirfs-Brock (Responsibilities)

 Shlaer-Mellor (Object Life Cycles)

 Meyer (Pre- und Post-Conditions)

 33

The UML standard

 The first draft (version 0.8) was published in 1995

 Various adjustments and the inclusion of Ivar

Jacobson led to version 0.9 in 1996

 Version 1.0 (an then 1.1) was submitted to the

Object Management Group (OMG) in 1997 as

basis for standardisation

 Version 1.3 came out in 1999

 Version 1.4.2 became an international standard in

2005

 Current OMG standard: version 2.3

 Version 2.4 available as beta2

 34

The Unified Modeling Language (I)

What is the UML?

 Language

 Communication

 Exchange of ideas

 Graphical modeling language

 Drawings, words and rules for

representing aspects of systems

 35

The Unified Modeling Language (II)

What is UML not?

 No method

 Specifies how models are made but not

which and when

 This is a task of the software

development process

Method = Process + Modeling Language

 36

The Unified Modeling Language (III)

Why is UML needed?

 Model visualization

 Model specification

 Model checking

 System construction

 Forward and reverse engineering

 System documentation

 37

The Unified Modeling Language (IV)

 Models

 Projections of systems on certain aspects

 Used for understanding systems

 38

OO concepts

UML representation

 Objects, Classes, Messages/Methods

 Inheritance, Polymorphism, Dynamic Binding

 Abstract Classes, Abstract Coupling

 39

OO versus Procedural (I)

 Procedural: Separation between data and procedures

 40

OO versus Procedural (II)

 Object-oriented: Data and procedures form a logical

unit an Object

 41

Objects(I)

An object is a representation of

 A physical entity

 E.g. Person, Car, etc.

 A logical entity

 E.g. Chemical process,

mathematical formula, etc.

 42

Objects (II)

The main characteristics of an object are:

Its identity

Its state

Its behavior

 43

Objects (III)

 State

 The state of an object consists of its

static attributes and their dynamic values

 Values can be primitive: int, double,

boolean

 Values can be references to other

objects, or they can be other objects

 44

Objects(IV)

 Example

 Drinks machine

1) Ready

2) Busy

3) Ready

 Attributes – values

 Paid: boolean

 Cans: number of cans

Pay

Remove drink

 45

Objects(V)

 The behavior of an object is specified by

its methods (=operations)

 In principle, methods are conceptually

equivalent to procedures/functions:

 Methods = Name + Parameters +

Return values

 46

Objects(VI)

 Example

 Rectangle

Name of the operation: setColor

Parameter: name of the color (e.g. Red)

Return values: none

 Calling an operation of an object is

reffered to as sending a message to the

object

 47

Objects(VII)

 Identity

 The identity of an object is the

characteristic that differentiates the

object from all the other objects

 Two objects can be different even if

their attributes, values and methods

coincide

 48

Object – Orientation

 Classification

 Object grouping

 Polymorphism

 Static and dynamic types

 Dynamic binding

 Inheritance

 Type hierarchy

 49

Classification

 Class

 A class represents a set of objects

that have the same structure and the

same behavior

 A class is a template from which

objects can be generated

 50

Classification Example

 Class Person

 Attributes:

Name: String

Age: int

 Operations:

 eat, sleep, ...

 Object of type Person: Oliver

 Attributes:

Name: Oliver

Age: 24

 51

Class as a template/type (I)

 Comparison with C

struct{

 int day, month, year;

 } date;

 date d1, d2;

 All are accessible

 There is no method

 52

Class as a template/type (II)

 A class indicates which type an object has,

i.e., which messages understands and which

attributes it has.

 A class consists of

 A unique name

 Attributes and their types

 Methods/Operations

 53

Classes in UML (I)

 UML notation for a class:

Example Structure

 54

Classes in UML (II)

Notation for attributes:

 A only the attribute name

 : C only the attribute class

 A : C attribute name and class

 A : C = D attribute default value

 timeWhenStarted A

 : Date : C

 timeWhenStarted : Date A : C

 timeWhenStarted : Date = 1.1.1999 A : C = D

 timeWhenStarted = 1.1.1999 A = D

 55

Classes in UML (III)

Notation for Methods/Operations:

 m() only the method name

 m(arguments): R method name, arguments

 type of returning parameter

Example:

 printInvoice() m()

 printInvoice(itemNo: int): bool m(arguments): R

 56

Classes in UML (IV)

 Adornments (decorations) : additional graphical

elements (represented by triangles in the Booch method)

 Methods and attributes have attached graphic symbols
to express access rights: public, private, protected

Example:

 +sleep(Hours:int)

 Standalone adornment: Note

 57

Example: access rights

Unnecessary complexity,

since there is no dependency

between x and y

Better alternative

 58

Classes in Java

public class Person{

 String name;

 int age;

 ...

 public int getAge(){

 return age;

 }

 public void setAge(int theAge){

 age = theAge;

 }

}

Class name

Attributes

Operations

 59

Using classes in Java

 Classes are used in Java to specify the type of

variables and to instantiate objects

 Keyword: new

 Example:

 Person manager = new Person(“Martin“);

Declaration of

variable „manager“

Instantiation of an object of

class Person with name Martin

 60

Example: Hotel reservation

 What can be modeled as classes in a

hotel reservation system?

 What attributes will the classes have?

 What operations?

 Which instances (objects) of these

classes will there be?

 What sorts of relations will take place

between the objects/classes?

