
Software Engineering

Winter Semester 2011/2012

Department of Computer Science

cs.uni-salzburg.at

Motivation and Contents Overview

Dr. Stefan Resmerita

 2

Course Contents

 3

Goals

 Learning about commonly used approaches to software

development (in the small and in the large)

 Developing an understanding of what is good and what

is bad software (-construction)

 Knowing and understanding related concepts and terms

 Developing a first understanding of the „Software

development in the large“

 4

Software Engineering

 Concepts and constructs for

flexible software

 Programming language (OO)

 UML representation

 Frameworks and Design Patterns

 Software parameterization

(configuration files, resources,

script languages)

 Heuristics for adequate flexibility

 5

Software Engineering

 Concepts and constructs in Component-Based

Design

 The Module concept

 Overview of standards for components (WebServices,

JavaBeans, OSGi)

 Heuristics for adequate modularization (Balance

between Coupling and Cohesion in a Discrete Event

Simulation example)

 Software architectures

 Automatic software generation

Software Engineering

Winter Semester 2011/2012

Department of Computer Science

cs.uni-salzburg.at

Software Technology:

State of the Art and Challenges

Dr. Stefan Resmerita

 7

Context

 The phenomenon Software

 How can Software be engineered?

 8

The Phenomenon

Software

 9

The Computer as universal machine

makes Software pervasive

ca. 70 Processors

in a car

Airplane/Rocket control

 10

What is so special

about Software?

 11

The problems with software production is the

complexity of the achieved product

 Requirements specification

 Complexity control

 Re-use/Plug-in, expandability and

changeability

 Automation in the production

process

 Portability

 Documentation

 Product ergonomics (Human-

Computer Interface)

 Project organization and control

 Quality assurance and evaluation

 Cost estimation

Prototyping

Programming models

Psychology (e.g. Piaget)

Design Patterns

Frameworks

 12

Quality problems

 Software bugs: deficiencies with drastic

effects

 Incorrect bank transactions

 Y2K

 Ariane

 Mars adventures

PathFinder

Spirit

 13

Example: Ariane 5

 Construction:

 10 years & $7billion

 Maiden voyage: June 1996

 Payload: 4 scientific satellites

 14

Example: Ariane 5

 Crashed at second 39 in flight

 Software bug: number overflow

 Wrong sensor data

 Wrong steering

 Activate self-destruct

 Software component inherited from

previous versions (Ariane 4)

 15

Example: Ariane 5

 Crashed at second 39 in flight

 Software bug: number overflow

 Wrong sensor data

 Wrong steering

 Activate self-destruct

 Software component inherited from

previous versions (Ariane 4)

 Inquiry board conclusion:

“The Board is in favour of the opposite view, that software

should be assumed to be faulty until applying the

currently accepted best practice methods can

demonstrate that it is correct.”

 16

Example: PathFinder Rover on Mars

 Landed on July 4, 1997

 Problem: frequent total system resets

 17

Example: PathFinder Rover on Mars

 Landed on July 4, 1997

 Problem: frequent total system resets

 Cause: data bus locked longer than expected

 Software tasks:

 Bus management

 Communication

 Meteorological

 Solution:

 Priority inversion

 18

Example: Spirit Rover on Mars

 Landed on January 4, 2004

 Problem: frequent total system resets

 19

Example: Spirit Rover on Mars

 Landed on January 4, 2004

 Problem: frequent total system resets

 Cause: size of file system

 DOS FS on flash

 Mirrored in RAM

 Sizeof(RAM) < sizeof (Flash)

 20

Human interaction problems

 Human-Computer Interaction

 Human-Machine Interaction

 Interaction with automated systems

 Example: Korean Air Lines Flight 007

 Computer pervasiveness makes the human interaction

issue very important

 21

KAL007 flight route

 22

KAL007 Navigation Interface

 Navigation routine:

 Start in Heading

 Switch to INS

 23

KAL007 navigation modes

 Operating modes:

 Problem:

 Transition from B to

C not clear to the

pilots!

 24

Example:

Specification

problems

 25

An exact specification is often impracticable

given.: n ≥ 3,

 L: Nn  N

find.: A Program P that computes

 a: N3  Nn , such that

 L(ai) ≥ L(aJ)

 1 ≤ i ≤ 3 j  Nn \ U { ak }

 1 ≤ k ≤ j

inj

 26

...while a verbal specification is often inaccurate

 Given a list with at least three positive

 numbers

 Find a program P that gives the indices of the

 three largest elements of the list.

 27

Mastering

Complexity

 28

In classical engineering disciplines

 Bad quality can hardly be hidden

 Door cannot close well

 Unnecessary artifacts

• „Fifth wheel to the car“

 Resources are limited

 Engineering approaches mean

optimization under given basic

conditions

 29

Bad quality is not so visible in software

 Bad structuring

 „Spaghetti“ program code:

Wheel change -> the motor works no

more

 Replicated program code

 Hardly re-usable code

 The wheel is always re-invented

 30

Engineering procedures do not seem to pay off

 Hardware resources evolve according to

Moore„s Law; thoughtless handling of this issue

leads to:

 Unnecessary complexity

 No longer understandable artifacts

Windows XP (2002):

40.000.000 (!!) lines

of program code
2
7

,5
 m

 OberonOS (ETH ZH)

30.000 lines of

program code

4
,1

 c
m

 31

How can Software

be engineered?

 32

What does Software?

Input Output

Function

Main memory

fast accessible

data + programs

Processor (CPU)

Control signals

Data

Keyboard

Mouse

CD

Digital camera

...

Monitor

Printer

Disk

Loudspeaker

...

 33

Interaction with the environment

 Interactive systems: the computer is the leader of the

interaction

 Examples: Operating systems, Database systems

 Main issues: Deadlock, Fairness

 Reactive systems: the environment is the leader of the

interaction

 Examples: Industrial process control, airplane control

 Main issues: Safety, Timeliness

 34

Examples

 ABS in automotive

 Input: Rotational speeds of the wheels and user

braking

 Function: Checking whether the speeds are zero

when the user brakes

 Output: Appropriate controlling of the braking force

 Bank transfers

 Input: Transfer data (payee, payer, amount)

 Function: Validation of the transaction

 Output: New transaction lines in the accounts

