
Prof. Dr. Wolfgang Pree

SoftwareResearch.net

Model-based development of
deterministic, portable
real-time software components

© 2008, W. Pree and SRC team 2

Overview

  Motivation for a paradigm shift
  so far: platform first, software tailored to platform
  future: software first, mapping to platforms later
  requires appropriate platform abstractions

  The Timing Definition Language (TDL) in a nut shell
  Transparent distribution of TDL components
  TDL development process

© 2008, W. Pree and SRC team 3

Motivation

© 2008, W. Pree and SRC team 4

The TDL way:

develop once

3 dSpace
mabx

TT
Ethernet

deploy on any
platform

C

2 Renesas . . .

FlexRay-based communication

© 2008, W. Pree and SRC team 5

State-of-the-art:

3 dSpace
mabx

C-a
2 DeComSys

Renesas

C-b

. . .

C-c

. . .

© 2008, W. Pree and SRC team 6

developers have to deal with 3 dimensions

functionality

© 2008, W. Pree and SRC team 7

developers have to deal with 3 dimensions

functionality

timing

© 2008, W. Pree and SRC team 8

developers have to deal with 3 dimensions

functionality

timing

platform

© 2008, W. Pree and SRC team 9

TDL reduces this to 2 dimensions

functionality

timing

platform

© 2008, W. Pree and SRC team 10

TDL reduces this to 2 dimensions

functionality

timing

platform

significantly
simplified

© 2008, W. Pree and SRC team 11

TDL allows your developers to focus on the functionality

functionality

timing

platform

© 2008, W. Pree and SRC team 12

TDL allows your developers to focus on the functionality

functionality

timing

platform

3D → 1,5D

© 2008, W. Pree and SRC team 13

TDL leads to enormous gains in efficiency and quality

eg, FlexRay development reduced by a factor of 20
  1 person year => 2 person weeks

deterministic system:
  simulation and executable on platform always exhibit

 equivalent (observable) behavior
  time and value determinism guaranteed

flexibility to change topology, even platform
  automatic code generators take care of the details

© 2008, W. Pree and SRC team 14

TDL in a nut shell

© 2008, W. Pree and SRC team 15

What is TDL?

  A high-level textual notation for defining the timing behavior of
 a real-time application.

© 2008, W. Pree and SRC team 16

Multi-rate, multi-mode systems (I)

© 2008, W. Pree and SRC team 17

Multi-rate, multi-mode systems (II)

LET-semantics

© 2008, W. Pree and SRC team 18

Logical Execution Time (LET) abstraction (II)

ET <= WCET <= LET

results are available at 'terminate’

for digital controllers: LET can also be zero => no delays

time task invocation

Logical Execution Time (LET)

Logical

Physical

start stop suspend resume

release terminate

© 2008, W. Pree and SRC team 19

sample task with LET = 5ms

t inc inc inc inc

5 ms
...

© 2008, W. Pree and SRC team 20

TDL module: modes, sensors and actuators form a unit

© 2008, W. Pree and SRC team 21

Motivation for TDL modules

  e.g. modern cars have up to 80 control units (ECUs)
  ECU consolidation is a topic
  run multiple programs on one ECU
  leads to TDL modules

ECU1
Program1

ECU2
Program2

ECU3
Program3

© 2008, W. Pree and SRC team 22

TDL modules

  ProgramX is called a module
  modules may be independent
  modules may also refer to each other
  modules can be used for multiple purposes

ECU
Program1
Program2
Program3

© 2008, W. Pree and SRC team 23

Example: Receiver imports from Sender module

module Sender
module Receiver

© 2008, W. Pree and SRC team 24

module Sender
module Receiver

Example: Receiver imports from Sender module

public

© 2008, W. Pree and SRC team 25

module Sender
module Receiver

Example: Receiver imports from Sender module

public

private

© 2008, W. Pree and SRC team 26

TDL syntax by example
module Sender {

 sensor boolean s1 uses getS1;
 actuator int a1 uses setA1;

 public task inc {
 output int o := 10;
 uses incImpl(o);
 }

 start mode main [period=5ms] {
 task
 [freq=1] inc(); // LET = 5ms / 1 = 5ms
 actuator
 [freq=1] a1 := inc.o; // update every 5ms
 mode
 [freq=1] if exitMain(s1) then freeze;
 }

 mode freeze [period=1000ms] {}
}

s1 inc [5ms] a1
Sender (mode main)

© 2008, W. Pree and SRC team 27

Module import
module Receiver {

 import Sender;
 …
 task clientTask {
 input int i1;
 …
 }
 mode main [period=10ms] {
 task [freq=1] clientTask(Sender.inc.o); // LET = 10ms / 1 = 10ms
 …
 }
}

s1 a1
Sender

clientTask [10ms] a1

Receiver
inc [5ms]

20 ms

© 2008, W. Pree and SRC team 28

LET-behavior (independent of component deployment)

t Sender inc inc

Receiver clientTask

inc inc

10 ms

5 ms

communication of inc’s
output to clientTask

clientTask

© 2008, W. Pree and SRC team 29

Transparent distribution

© 2008, W. Pree and SRC team 30

TDL module-to-node-assignment

Sender
ECU1

ECU2
Receiver

FlexRay bus

© 2008, W. Pree and SRC team 31

Transparent distribution of TDL components:

  Firstly, at runtime a set of TDL components behaves
 exactly the same, no matter if all components are
 executed on a single node or if they are distributed
 across multiple nodes.
The logical timing is always preserved, only the physical
 timing, which is not observable from the outside, may be
 changed.

  Secondly, for the developer of a TDL component, it
 does not matter where the component itself and any
 imported component are executed.

© 2008, W. Pree and SRC team 32

sample physical execution times on ECU1/ECU2

t Sender inc inc

Receiver clientTask

inc inc

10 ms

5 ms

clientTask

ECU1

ECU2

© 2008, W. Pree and SRC team 33

Constraints for automatic schedule generation

Sender inc inc

Receiver clientTask

inc inc

10 ms

5 ms

clientTask

ECU1

ECU2

communication
window

communication
window

t

© 2008, W. Pree and SRC team 34

Bus schedule generation

Sender inc inc

Receiver clientTask

inc inc

10 ms

5 ms

clientTask

ECU1

ECU2

communication
window

communication
window

local
buffer

local
buffer

t

FlexRay
bus

© 2008, W. Pree and SRC team 35

TDL:VisualDistributor maps TDL modules to nodes

© 2008, W. Pree and SRC team 36

TDL-based
development process

© 2008, W. Pree and SRC team 37

preeTEC tools in the V model

requirements

functional model

application code test

verification
+ timing

TDL:VisualCreator
in Matlab®/Simulink®

TDL:VisualDistributor generiert for
platform 2

generated for
platform 1

. . .

C

© 2008, W. Pree and SRC team 38

TDL extensions

© 2008, W. Pree and SRC team 39

Control engineering view: LET
 implies unit delays

time

LET

task a

task b

1 2 3

1 2 3

o:1 o:2 o:3

© 2008, W. Pree and SRC team 40

... a waste of time?
+ determinism, composition, transparent

 distribution
– contradicts conventional wisdom of control

 engineering

time

LET

task a

task b

task c 1 2 3 4

1 2 3

1 2 3

o:1 o:2 o:3

Control engineering view: LET implies unit delays

© 2008, W. Pree and SRC team 41

10:1 rule and advance calculation

  actuating as fast as possible after sensor reading
  the control period should be at least 10 times as

 large as the delay between reading the sensor and
 setting the actuator in order to get stable controller

t se
ns

or
 re

ad
in

g
ac

tu
at

or
 u

pd
at

in
g

1 10
one control period

© 2008, W. Pree and SRC team 42

10:1 rule and advance calculation

  the period after actuating can be used for advance
 calculations (eg, computing a polynomial) which
 might be necessary on slow CPUs

t se
ns

or
 re

ad
in

g
ac

tu
at

or
 u

pd
at

in
g

1 10
one control period

advance calculation

© 2008, W. Pree and SRC team 43

  split a task execution in two parts
 (1) a fast step and
 (2) a slow step.

  Core idea: The fast step is considered to be executed in
 logical zero time. In other words, the fast step is
 executed synchronously by the E-Machine at the start of
 the LET of a task.

  The slow step is executed later but must be finished
 before the end of a task’s LET.

TDL support for 10:1 rule and advance calculation

© 2008, W. Pree and SRC team 44

TDL syntax for 10:1 rule and advance calculation
module M1 {

 sensor int s uses getS;
 actuator int a := 0 uses setA;

 task t {
 input int i;
 output int o;
 state M1State s;

 uses [release] fastStep(i, s, o); slowStep(i, o, s);
 }

 start mode main [period = 10ms] {
 task
 [freq=1] { t(s); a := t.o; }
 }
}

© 2008, W. Pree and SRC team 45

Status quo
  ready

  TDL:VisualCreator (stand-alone or in Matlab®/Simulink®)
  TDL:VisualDistributor (extensible via plugins; currently a plugin for

 FlexRay is available as product, together with plug-ins for various
cluster nodes such as the MicroAutoBox, and Renesas–AES)
The TDL:VisualDistributor is available as stand-alone tool or
in Matlab®/Simulink® and provides the following features:
  Communication Schedule Generator
  TDL:CommViewer
  automatic generation of all node-, OS- and cluster-specific files

  TDL:Compiler
  TDL:Machine for Simulink, mabx, AES, INtime, OSEK
  multiple slot selection (decoupling of LET and period; eg, for event

 modeling)
  harnessing existing FlexRay communication schedules (via FIBEX) for

 their incremental extension
  TDL:VisualAnalyzer (beta; recording and debugging tool)

  work in progress
  seamless integration of asynchronous events with TDL
  ‘intelligent’ FlexRay parameter configuration editor
  TDL:Machine for further platforms (AutosarOS, etc.)

© 2008, W. Pree and SRC team 46

Thank you for your attention!

