Model-based development of
deterministic, portable
real-time software components

Prof. Dr. Wolfgang Pree

SoftwareResearch.net

UNIVERSITAT
SALZBURG

e Motivation for a paradigm shift
I so far: platform first, software tailored to platform
I future: software first, mapping to platforms later
I requires appropriate platform abstractions
e The Timing Definition Language (TDL) in a nut shell
e Transparent distribution of TDL components
e TDL development process

UNIVERSITAT

2 © 2008, W. Pree and SRC team SALZBURG

Motivation

UNIVERSITAT

3 © 2008, W. Pree and SRC team SALZBURG

The TDL way:

develop once

deploy on any

platform

— _/
—~

FlexRay-based communication

UNIVERSITAT

4 © 2008, W. Pree and SRC team SALZBURG

State-of-the-art:

UNIVERSITAT

5 © 2008, W. Pree and SRC team SALZBURG

functionality

UNIVERSITAT
SALZBURG

6 © 2008, W. Pree and SRC team

| timing

functionality

UNIVERSITAT

7 © 2008, W. Pree and SRC team SALZBURG

| timing

functionality

platform

UNIVERSITAT

8 © 2008, W. Pree and SRC team SALZBURG

| timing

functionality

platform

UNIVERSITAT

9 © 2008, W. Pree and SRC team SALZBURG

functionality

platform

UNIVERSITAT
SALZBURG

10 © 2008, W. Pree and SRC team

timing

func{ionality

platform

UNIVERSITAT

11 © 2008, W. Pree and SRC team SALZBURG

3D — 1,5D

‘ timing
functionality
platform
UNIVERSITAT
SALZBURG

12 © 2008, W. Pree and SRC team

TDL leads to enormous gains in efficiency and quality

eg, FlexRay development reduced by a factor of 20
1 person year => 2 person weeks

deterministic system:

simulation and executable on platform always exhibit
equivalent (observable) behavior

time and value determinism guaranteed

flexibility to change topology, even platform
automatic code generators take care of the details

UNIVERSITAT
SALZBURG

13 © 2008, W. Pree and SRC team

TDL In a nut shell

UNIVERSITAT

14 © 2008, W. Pree and SRC team SALZBURG

e A high-level textual notation for defining the timing behavior of
a real-time application.

O™

set of tasks

=)

set of
sensors

15 © 2008, W. Pree and SRC team

set of
actuators

UNIVERSITAT
SALZBURG

© 2008, W. Pree and SRC team

/ mode 1

al

task 1 [10 ms]

/

~V

task 2 [20 ms]

4

N
-

4 mode 2

A task 1 [5 ms]

task 3 [1 ms]

/

(%2)
)

'SITAT
F YSALZBURG

17

© 2008, W. Pree and SRC team

LET’-semanticg

/ mode 1

al

task 1 [10 ms]

~V

task 2 [20 ms]

4 mode 2

A task 1 [5 ms]

N

task 3 [1 ms]

-

(x2)
)

'SITAT
F YSALZBURG

release]]] terminate
Logical Execution Time (LET)

- < D

Logical <

_ task invocation »time

Physical

start suspend resume stop

ET <=WCET <= LET
results are available at 'terminate’

for digital controllers: LET can also be zero => no delays

UNIVERSITAT

18 © 2008, W. Pree and SRC team SALZBURG

19

© 2008, W. Pree and SRC team

inc

inc

inc

v

UNIVERSITAT
SALZBURG

20

4 mode 1

y task 1 [10 ms]

/

v task 2 [20 ms]

/

v/

/" mode 2

N task 1 [5 ms]

-~
6
=
_

™ task 3 [1 ms]

-

/

K@@

© 2008, W. Pree and SRC team

UNIVERSITAT
SALZBURG

21

ECU1

Program1

ECU2

Program2

ECU3

Program3

© 2008, W. Pree and SRC team

e.g. modern cars have up to 80 control units (ECUs)
ECU consolidation is a topic

run multiple programs on one ECU
leads to TDL modules

UNIVERSITAT
SALZBURG

22

ProgramX is called a module

modules may be independent

modules may also refer to each other
modules can be used for multiple purposes

© 2008, W. Pree and SRC team

UNIVERSITAT
SALZBURG

mode 1

-

task 1 [10 ms]

task 2 [20 ms]

(8)(2)

mode 2

task 1 [5 ms]

task 3 [1 ms]

&nodule Sender

23 © 2008, W. Pree and SRC team

Kmodule Receiver

mode 1

task 1 [5 ms]

task 2 [10 ms]

task 3 [5 ms]

-

mode 2

\ﬁ task 3 [10 ms]
.

.

mode 3

task 3 [5 ms]

—>

task 4 [1 ms]

_

UNIVERSITAT
SALZBURG

mode 1

task 2 [10 ms]
task 1 [5 ms] <
task 3 [5 ms]

/ mode 1

task 1 [10 ms]

\

task 2 [20 ms]

mode 2

mode 2 W
task 3 [10 ms]

mode 3

task 1 [5 ms]

task 3 [1 ms]

task 3 [65 ms] —» task4 [1 ms]

odule Sender

\ /

public

/

module Receiver

UNIVERSITAT

24 © 2008, W. Pree and SRC team SALZBURG

k2 [10 ms]

tas
task 1 [10 ms] £ ! [2k 115 me Na
/ > AE@ \ \ P ol tas

e NS

A e e
@ l@ mode 2 W >®
task 1[5 ms] l ﬂ \ﬂ task 3 [10 ms]]J A
- \
task 3 [1 ms] [W mode 3
aodule Sender ﬁ task 3 [5ms] -» task4[1 ms]

N
\ / \module Receiver

UNIVERSITAT

25 © 2008, W. Pree and SRC team SALZBURG

26

module Sender {

sensor bHoolean sl uses getSl;
actuator 11t al uses setAl;

(s1) [inc [5ms] P{at

public task inc {
output 1t o
uses inclImpl (

= 10;
o) ;

[period=bms] {

start mode main
= bms

// LET = 5ms / 1

task
[freg=1] inc ()
actuator
[freg=1] al := inc.o; // update every 5ms
mode
[freg=1] if exitMain(sl) then freeze;

[period=1000ms] {}

mode freeze

}
UNIVERSITAT
SALZBURG

© 2008, W. Pree and SRC team

27

module Receiver {

import Sender;

task clientTask {
input ‘nt il;

}

mode main [period=10ms] {
task [freg=1l] clientTask(Sender.inc.o); // LET = 10ms / 1 = 10ms

20 ms

(s1) [inc5ms] few(at,

clientTask [10ms] @

SALZBURG

© 2008, W. Pree and SRC team

28

5ms

© 2008, W. Pree and SRC team

< >, : | :
inc inc inc inc ’E
| communication of inc’s
| output to clientTask
clientTask clientTask
< > :
10 ms

UNIVERSITAT
SALZBURG

Transparent distribution

UNIVERSITAT
SALZBURG

FlexRay bus

UNIVERSITAT

30 © 2008, W. Pree and SRC team SALZBURG

Transparent distribution of TDL components:

Firstly, at runtime a set of TDL components behaves
exactly the same, no matter if all components are
executed on a single node or if they are distributed
across multiple nodes.

The logical timing is always preserved, only the physical
timing, which is not observable from the outside, may be
changed.

Secondly, for the developer of a TDL component, it
does not matter where the component itself and any
imported component are executed.

UNIVERSITAT
SALZBURG

31 © 2008, W. Pree and SRC team

32

© 2008, W. Pree and SRC team

5ms

< > : : :
inc inc inc inc t
clientTask clientTask
< > :
10 ms
UNIVERSITAT
SALZBURG

33

© 2008, W. Pree and SRC team

communication

communication

window window
1 | | |
| |
<«—2M 50— L e
inc inc inc linc t
clientTask clientTask
< > :
10 ms
UNIVERSITAT
SALZBURG

34

communication communication

window window
! ! I I
| |
< 5 ms > —> : I ::
- inc inc inc 'inc t
ECU1 ! : : ocal
I buffer
FlexRay
bus :
i local
| buffer
clientTask clientTask
< > :
10 ms
UNIVERSITAT
SALZBURG

© 2008, W. Pree and SRC team

35

© 2008, W. Pree and SRC team

& TDL:VisualDistributor
File Edit Help

DRHBS - ~

= [Buses
= = FlexRay
= [Caonnected Naodes
5= node
B9 node?
Sender Modules
= [Mades
= == nodel
= [Placed Maodules
B M
= [Caonnected Buses
= FlexRay
= ma hode?
= [Placed Madules
B M2
= [Connected Buses
== FlexRay
= [Modules
EA T
F T

MNarme

Platform Clas

| “alue

F FlexRav cluster

System

UNIVERSITAT
SALZBURG

TDL-based
development process

UNIVERSITAT
SALZBURG

TDL:VisualCreator
in Matlab®/Simulink® + timing

platform 2

UNIVERSITAT

37 © 2008, W. Pree and SRC team SALZBURG

TDL extensions

UNIVERSITAT

38 © 2008, W. Pree and SRC team SALZBURG

LET

task a 1 — 2 — 3 — .
» fime
0:1 0:2 0:3
task b 1 — 2 — 3 —
UNIVERSITAT
SALZBURG

39 © 2008, W. Pree and SRC team

LET

task a 1 — 2 — 3 .
,» time
0:1 0:2 0:3
task b 1 — 2 — 3 —
task c 1 2 3 > 4
... a waste of time?
+ determinism, composition, transparent
distribution
— contradicts conventional wisdom of control)
I i UNIVERSITAT
40 © 2008, W. Pree and S?Crt]egnlneerlng SALZBURG

>

sensor reading
| [actuator updating

T[<

v

Y

10

one control period

—

T

y
y

e actuating as fast as possible after sensor reading

e the control period should be at least 10 times as
large as the delay between reading the sensor and

setting the actuator in order to get stable controller

UNIVERSITAT

41 © 2008, W. Pree and SRC team SALZBURG

>

advance calculation {

sensor reading
| [actuator updating

T[<

A 4 {V
v

—

10

one control period

T

y
y

e the period after actuating can be used for advance
calculations (eg, computing a polynomial) which
might be necessary on slow CPUs

UNIVERSITAT
42 © 2008, W. Pree and SRC team SALZBURG

TDL support for 10:1 rule and advance calculation

split a task execution in two parts
(1) a fast step and
(2) a slow step.

Core idea: The fast step is considered to be executed in
logical zero time. In other words, the fast step is
executed synchronously by the E-Machine at the start of
the LET of a task.

The slow step is executed later but must be finished
before the end of a task’s LET.

UNIVERSITAT
43 © 2008, W. Pree and SRC team SALZBURG

44

module M1 {

sensor 11t s uses getS;
actuator 1t a := 0 uses seth;

task t {

input nt 1i;

output 1t o;

state M1State s;

uses [release] fastStep(i, s,

}

start mode main [period = 10ms]
task

[freg=1] { t(s); a := t.o;

© 2008, W. Pree and SRC team

o) ;

}

{

slowStep (1,

o, s);

UNIVERSITAT
SALZBURG

Status quo

ready
TDL:VisualCreator (stand-alone or in Matlab®/Simulink®)

TDL:VisualDistributor (extensible via plugins; currently a plugin for
FlexRay is available as product, together with plug-ins for various
cluster nodes such as the MicroAutoBox, and Renesas—AES)
The TDL:VisualDistributor is available as stand-alone tool or
in Matlab®/Simulink® and provides the following features:
Communication Schedule Generator
TDL:CommViewer
automatic generation of all node-, OS- and cluster-specific files

TDL:Compiler
TDL:Machine for Simulink, mabx, AES, INtime, OSEK

multiple slot selection (decoupling of LET and period; eg, for event
modeling)

harnessing existing FlexRay communication schedules (via FIBEX) for
their incremental extension

TDL:VisualAnalyzer (beta; recording and debugging tool)
work in progress

seamless integration of asynchronous events with TDL

‘intelligent’ FlexRay parameter configuration editor

TDL:Machine for further platforms (AutosarOS, etc.) UNIVERSITAT
45 © 2008, W. Pree and SRC team SALZBURG

Thank you for your attention!

UNIVERSITAT

46 © 2008, W. Pree and SRC team SALZBURG

