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Overview 

  Motivation for a paradigm shift 
  so far: platform first, software tailored to platform 
  future: software first, mapping to platforms later 
  requires appropriate platform abstractions 

  The Timing Definition Language (TDL) in a nut shell 
  Transparent distribution of TDL components 
  TDL development process 
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Motivation 
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The TDL way: 

develop once 

3 dSpace  
mabx 

TT  
Ethernet 

deploy on any 
platform 

C 

2 Renesas . . . 

FlexRay-based communication 
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State-of-the-art: 

3 dSpace 
mabx 

C-a 
2 DeComSys 

Renesas 

C-b 

. . . 

C-c 

. . . 
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developers have to deal with 3 dimensions 

functionality 
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developers have to deal with 3 dimensions 

functionality 

timing 
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developers have to deal with 3 dimensions 

functionality 

timing 

platform 
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TDL reduces this to 2 dimensions 

functionality 

timing 

platform 
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TDL reduces this to 2 dimensions 

functionality 

timing 

platform 

significantly  
simplified 
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TDL allows your developers to focus on the functionality 

functionality 

timing 

platform 
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TDL allows your developers to focus on the functionality 

functionality 

timing 

platform 

3D → 1,5D 
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TDL leads to enormous gains in efficiency and quality 

eg, FlexRay development reduced by a factor of 20 
  1 person year => 2 person weeks 

deterministic system: 
  simulation and executable on platform always exhibit

 equivalent (observable) behavior 
  time and value determinism guaranteed 

flexibility to change topology, even platform 
  automatic code generators take care of the details
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TDL in a nut shell 
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What is TDL? 

  A high-level textual notation for defining the timing behavior of
 a real-time application. 
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Multi-rate, multi-mode systems (I) 
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Multi-rate, multi-mode systems (II) 

LET-semantics 
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Logical Execution Time (LET) abstraction (II) 

ET <= WCET <= LET 

results are available at 'terminate’ 

for digital controllers: LET can also be zero => no delays 

time task invocation 

Logical Execution Time (LET) 

Logical 

Physical 

start stop suspend resume 

release terminate 
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sample task with LET = 5ms 

t inc inc inc inc 

5 ms 
... 
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TDL module: modes, sensors and actuators form a unit 
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Motivation for TDL modules 

  e.g. modern cars have up to 80 control units (ECUs) 
  ECU consolidation is a topic 
  run multiple programs on one ECU 
  leads to TDL modules 

ECU1 
Program1 

ECU2 
Program2 

ECU3 
Program3 
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TDL modules 

  ProgramX is called a module 
  modules may be independent 
  modules may also refer to each other 
  modules can be used for multiple purposes 

ECU 
Program1 
Program2 
Program3 
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Example: Receiver imports from Sender module 

module Sender 
module Receiver 
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module Sender 
module Receiver 

Example: Receiver imports from Sender module 

public 
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module Sender 
module Receiver 

Example: Receiver imports from Sender module 

public 

private 
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TDL syntax by example 
module Sender { 

  sensor boolean s1 uses getS1; 
  actuator int a1 uses setA1; 

  public task inc { 
    output int o := 10; 
    uses incImpl(o); 
  } 

  start mode main [period=5ms] { 
    task  
      [freq=1] inc();   // LET = 5ms / 1 = 5ms 
    actuator  
      [freq=1] a1 := inc.o;  // update every 5ms 
    mode  
      [freq=1] if exitMain(s1) then freeze; 
  } 

  mode freeze [period=1000ms] {} 
} 

s1 inc [5ms] a1 
Sender (mode main) 
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Module import 
module Receiver { 

  import Sender; 
  … 
  task clientTask { 
    input int i1; 
    … 
  } 
  mode main [period=10ms] { 
    task [freq=1] clientTask(Sender.inc.o); // LET = 10ms / 1 = 10ms 
    … 
  } 
} 

s1 a1 
Sender 

clientTask [10ms] a1 

Receiver 
inc [5ms] 

20 ms 
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LET-behavior (independent of component deployment) 

t Sender inc inc 

Receiver clientTask 

inc inc 

10 ms 

5 ms 

communication of inc’s  
output to clientTask 

clientTask 



© 2008, W. Pree and SRC team  29 

Transparent distribution 
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TDL module-to-node-assignment 

Sender 
ECU1 

ECU2 
Receiver 

FlexRay bus 
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Transparent distribution of TDL components: 

  Firstly, at runtime a set of TDL components behaves
 exactly the same, no matter if all components are
 executed on a single node or if they are distributed
 across multiple nodes.  
The logical timing is always preserved, only the physical
 timing, which is not observable from the outside, may be
 changed.  

  Secondly, for the developer of a TDL component, it
 does not matter where the component itself and any
 imported component are executed.  
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sample physical execution times on ECU1/ECU2 

t Sender inc inc 

Receiver clientTask 

inc inc 

10 ms 

5 ms 

clientTask 

ECU1 

ECU2 
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Constraints for automatic schedule generation 

Sender inc inc 

Receiver clientTask 

inc inc 

10 ms 

5 ms 

clientTask 

ECU1 

ECU2 

communication 
window 

communication 
window 

t 
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Bus schedule generation 

Sender inc inc 

Receiver clientTask 

inc inc 

10 ms 

5 ms 

clientTask 

ECU1 

ECU2 

communication 
window 

communication 
window 

local  
buffer 

local  
buffer 

t 

FlexRay 
bus 
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TDL:VisualDistributor maps TDL modules to nodes 
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TDL-based 
development process 
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preeTEC tools in the V model 

requirements 

functional model 

application code test 

verification 
+ timing 

TDL:VisualCreator 
in Matlab®/Simulink® 

TDL:VisualDistributor generiert for 
platform 2 

generated for 
platform 1 

. . . 

C 
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TDL extensions 
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Control engineering view: LET
 implies unit delays 

time 

LET 

task a 

task b 

1 2 3 

1 2 3 

o:1 o:2 o:3 
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... a waste of time? 
+  determinism, composition, transparent

 distribution 
–  contradicts conventional wisdom of control

 engineering 

time 

LET 

task a 

task b 

task c 1 2 3 4 

1 2 3 

1 2 3 

o:1 o:2 o:3 

Control engineering view: LET implies unit delays 
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10:1 rule and advance calculation 

  actuating as fast as possible after sensor reading 
  the control period should be at least 10 times as

 large as the delay between reading the sensor and
 setting the actuator in order to get stable controller  

t se
ns

or
 re

ad
in

g 
ac

tu
at

or
 u

pd
at

in
g 

1 10 
one control period 
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10:1 rule and advance calculation 

  the period after actuating can be used for advance
 calculations (eg, computing a polynomial) which
 might be necessary on slow CPUs 

t se
ns

or
 re

ad
in

g 
ac

tu
at

or
 u

pd
at

in
g 

1 10 
one control period 

advance calculation 
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  split a task execution in two parts  
 (1) a fast step and  
 (2) a slow step.  

  Core idea: The fast step is considered to be executed in
 logical zero time. In other words, the fast step is
 executed synchronously by the E-Machine at the start of
 the LET of a task.  

  The slow step is executed later but must be finished
 before the end of a task’s LET.  

TDL support for 10:1 rule and advance calculation 
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TDL syntax for 10:1 rule and advance calculation 
module M1 { 

  sensor int s uses getS; 
  actuator int a := 0 uses setA; 

  task t { 
  input int i; 
  output int o; 
 state M1State s; 

   uses [release] fastStep(i, s, o); slowStep(i, o, s); 
  } 

  start mode main [period = 10ms] { 
    task  
      [freq=1] { t(s); a := t.o; } 
  } 
} 
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Status quo 
  ready 

  TDL:VisualCreator (stand-alone or in Matlab®/Simulink®) 
  TDL:VisualDistributor (extensible via plugins; currently a plugin for

 FlexRay is available as product, together with plug-ins for various 
cluster nodes such as the MicroAutoBox, and Renesas–AES) 
The TDL:VisualDistributor is available as stand-alone tool or  
in Matlab®/Simulink® and provides the following features: 
  Communication Schedule Generator 
  TDL:CommViewer 
  automatic generation of all node-, OS- and cluster-specific files 

  TDL:Compiler 
  TDL:Machine for Simulink, mabx, AES, INtime, OSEK 
  multiple slot selection (decoupling of LET and period; eg, for event

 modeling)  
  harnessing existing FlexRay communication schedules (via FIBEX) for

 their incremental extension 
  TDL:VisualAnalyzer (beta; recording and debugging tool) 

  work in progress 
  seamless integration of asynchronous events with TDL 
  ‘intelligent’ FlexRay parameter configuration editor 
  TDL:Machine for further platforms (AutosarOS, etc.) 
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Thank you for your attention! 


