
Prof. Dr. Wolfgang Pree

SoftwareResearch.net

Model-based development of
deterministic, portable
real-time software components

© 2008, W. Pree and SRC team 2

Overview

  Motivation for a paradigm shift
  so far: platform first, software tailored to platform
  future: software first, mapping to platforms later
  requires appropriate platform abstractions

  The Timing Definition Language (TDL) in a nut shell
  Transparent distribution of TDL components
  TDL development process

© 2008, W. Pree and SRC team 3

Motivation

© 2008, W. Pree and SRC team 4

The TDL way:

develop once

3 dSpace
mabx

TT
Ethernet

deploy on any
platform

C

2 Renesas . . .

FlexRay-based communication

© 2008, W. Pree and SRC team 5

State-of-the-art:

3 dSpace
mabx

C-a
2 DeComSys

Renesas

C-b

. . .

C-c

. . .

© 2008, W. Pree and SRC team 6

developers have to deal with 3 dimensions

functionality

© 2008, W. Pree and SRC team 7

developers have to deal with 3 dimensions

functionality

timing

© 2008, W. Pree and SRC team 8

developers have to deal with 3 dimensions

functionality

timing

platform

© 2008, W. Pree and SRC team 9

TDL reduces this to 2 dimensions

functionality

timing

platform

© 2008, W. Pree and SRC team 10

TDL reduces this to 2 dimensions

functionality

timing

platform

significantly
simplified

© 2008, W. Pree and SRC team 11

TDL allows your developers to focus on the functionality

functionality

timing

platform

© 2008, W. Pree and SRC team 12

TDL allows your developers to focus on the functionality

functionality

timing

platform

3D → 1,5D

© 2008, W. Pree and SRC team 13

TDL leads to enormous gains in efficiency and quality

eg, FlexRay development reduced by a factor of 20
  1 person year => 2 person weeks

deterministic system:
  simulation and executable on platform always exhibit

 equivalent (observable) behavior
  time and value determinism guaranteed

flexibility to change topology, even platform
  automatic code generators take care of the details

© 2008, W. Pree and SRC team 14

TDL in a nut shell

© 2008, W. Pree and SRC team 15

What is TDL?

  A high-level textual notation for defining the timing behavior of
 a real-time application.

© 2008, W. Pree and SRC team 16

Multi-rate, multi-mode systems (I)

© 2008, W. Pree and SRC team 17

Multi-rate, multi-mode systems (II)

LET-semantics

© 2008, W. Pree and SRC team 18

Logical Execution Time (LET) abstraction (II)

ET <= WCET <= LET

results are available at 'terminate’

for digital controllers: LET can also be zero => no delays

time task invocation

Logical Execution Time (LET)

Logical

Physical

start stop suspend resume

release terminate

© 2008, W. Pree and SRC team 19

sample task with LET = 5ms

t inc inc inc inc

5 ms
...

© 2008, W. Pree and SRC team 20

TDL module: modes, sensors and actuators form a unit

© 2008, W. Pree and SRC team 21

Motivation for TDL modules

  e.g. modern cars have up to 80 control units (ECUs)
  ECU consolidation is a topic
  run multiple programs on one ECU
  leads to TDL modules

ECU1
Program1

ECU2
Program2

ECU3
Program3

© 2008, W. Pree and SRC team 22

TDL modules

  ProgramX is called a module
  modules may be independent
  modules may also refer to each other
  modules can be used for multiple purposes

ECU
Program1
Program2
Program3

© 2008, W. Pree and SRC team 23

Example: Receiver imports from Sender module

module Sender
module Receiver

© 2008, W. Pree and SRC team 24

module Sender
module Receiver

Example: Receiver imports from Sender module

public

© 2008, W. Pree and SRC team 25

module Sender
module Receiver

Example: Receiver imports from Sender module

public

private

© 2008, W. Pree and SRC team 26

TDL syntax by example
module Sender {

 sensor boolean s1 uses getS1;
 actuator int a1 uses setA1;

 public task inc {
 output int o := 10;
 uses incImpl(o);
 }

 start mode main [period=5ms] {
 task
 [freq=1] inc(); // LET = 5ms / 1 = 5ms
 actuator
 [freq=1] a1 := inc.o; // update every 5ms
 mode
 [freq=1] if exitMain(s1) then freeze;
 }

 mode freeze [period=1000ms] {}
}

s1 inc [5ms] a1
Sender (mode main)

© 2008, W. Pree and SRC team 27

Module import
module Receiver {

 import Sender;
 …
 task clientTask {
 input int i1;
 …
 }
 mode main [period=10ms] {
 task [freq=1] clientTask(Sender.inc.o); // LET = 10ms / 1 = 10ms
 …
 }
}

s1 a1
Sender

clientTask [10ms] a1

Receiver
inc [5ms]

20 ms

© 2008, W. Pree and SRC team 28

LET-behavior (independent of component deployment)

t Sender inc inc

Receiver clientTask

inc inc

10 ms

5 ms

communication of inc’s
output to clientTask

clientTask

© 2008, W. Pree and SRC team 29

Transparent distribution

© 2008, W. Pree and SRC team 30

TDL module-to-node-assignment

Sender
ECU1

ECU2
Receiver

FlexRay bus

© 2008, W. Pree and SRC team 31

Transparent distribution of TDL components:

  Firstly, at runtime a set of TDL components behaves
 exactly the same, no matter if all components are
 executed on a single node or if they are distributed
 across multiple nodes.
The logical timing is always preserved, only the physical
 timing, which is not observable from the outside, may be
 changed.

  Secondly, for the developer of a TDL component, it
 does not matter where the component itself and any
 imported component are executed.

© 2008, W. Pree and SRC team 32

sample physical execution times on ECU1/ECU2

t Sender inc inc

Receiver clientTask

inc inc

10 ms

5 ms

clientTask

ECU1

ECU2

© 2008, W. Pree and SRC team 33

Constraints for automatic schedule generation

Sender inc inc

Receiver clientTask

inc inc

10 ms

5 ms

clientTask

ECU1

ECU2

communication
window

communication
window

t

© 2008, W. Pree and SRC team 34

Bus schedule generation

Sender inc inc

Receiver clientTask

inc inc

10 ms

5 ms

clientTask

ECU1

ECU2

communication
window

communication
window

local
buffer

local
buffer

t

FlexRay
bus

© 2008, W. Pree and SRC team 35

TDL:VisualDistributor maps TDL modules to nodes

© 2008, W. Pree and SRC team 36

TDL-based
development process

© 2008, W. Pree and SRC team 37

preeTEC tools in the V model

requirements

functional model

application code test

verification
+ timing

TDL:VisualCreator
in Matlab®/Simulink®

TDL:VisualDistributor generiert for
platform 2

generated for
platform 1

. . .

C

© 2008, W. Pree and SRC team 38

TDL extensions

© 2008, W. Pree and SRC team 39

Control engineering view: LET
 implies unit delays

time

LET

task a

task b

1 2 3

1 2 3

o:1 o:2 o:3

© 2008, W. Pree and SRC team 40

... a waste of time?
+ determinism, composition, transparent

 distribution
– contradicts conventional wisdom of control

 engineering

time

LET

task a

task b

task c 1 2 3 4

1 2 3

1 2 3

o:1 o:2 o:3

Control engineering view: LET implies unit delays

© 2008, W. Pree and SRC team 41

10:1 rule and advance calculation

  actuating as fast as possible after sensor reading
  the control period should be at least 10 times as

 large as the delay between reading the sensor and
 setting the actuator in order to get stable controller

t se
ns

or
 re

ad
in

g
ac

tu
at

or
 u

pd
at

in
g

1 10
one control period

© 2008, W. Pree and SRC team 42

10:1 rule and advance calculation

  the period after actuating can be used for advance
 calculations (eg, computing a polynomial) which
 might be necessary on slow CPUs

t se
ns

or
 re

ad
in

g
ac

tu
at

or
 u

pd
at

in
g

1 10
one control period

advance calculation

© 2008, W. Pree and SRC team 43

  split a task execution in two parts
 (1) a fast step and
 (2) a slow step.

  Core idea: The fast step is considered to be executed in
 logical zero time. In other words, the fast step is
 executed synchronously by the E-Machine at the start of
 the LET of a task.

  The slow step is executed later but must be finished
 before the end of a task’s LET.

TDL support for 10:1 rule and advance calculation

© 2008, W. Pree and SRC team 44

TDL syntax for 10:1 rule and advance calculation
module M1 {

 sensor int s uses getS;
 actuator int a := 0 uses setA;

 task t {
 input int i;
 output int o;
 state M1State s;

 uses [release] fastStep(i, s, o); slowStep(i, o, s);
 }

 start mode main [period = 10ms] {
 task
 [freq=1] { t(s); a := t.o; }
 }
}

© 2008, W. Pree and SRC team 45

Status quo
  ready

  TDL:VisualCreator (stand-alone or in Matlab®/Simulink®)
  TDL:VisualDistributor (extensible via plugins; currently a plugin for

 FlexRay is available as product, together with plug-ins for various
cluster nodes such as the MicroAutoBox, and Renesas–AES)
The TDL:VisualDistributor is available as stand-alone tool or
in Matlab®/Simulink® and provides the following features:
  Communication Schedule Generator
  TDL:CommViewer
  automatic generation of all node-, OS- and cluster-specific files

  TDL:Compiler
  TDL:Machine for Simulink, mabx, AES, INtime, OSEK
  multiple slot selection (decoupling of LET and period; eg, for event

 modeling)
  harnessing existing FlexRay communication schedules (via FIBEX) for

 their incremental extension
  TDL:VisualAnalyzer (beta; recording and debugging tool)

  work in progress
  seamless integration of asynchronous events with TDL
  ‘intelligent’ FlexRay parameter configuration editor
  TDL:Machine for further platforms (AutosarOS, etc.)

© 2008, W. Pree and SRC team 46

Thank you for your attention!

