
SRC, 2008 Summary of TDL extensions 1

Periodic Execution – Giotto Modes

•  Every mode has a fixed period.
•  A task t has a frequency f within a mode.
•  The mode period is filled with f task invocations.
•  The LET of a task invocation is modePeriod / f.

time task t invocation 1
Logical

task t invocation 2

Mode Period
Mode Start Mode End

SRC, 2008 Summary of TDL extensions 2

TDL Slot Selection

•  f = 6

time
Logical

Mode Period
Mode Start Mode End

slot 1 slot 2 slot 3 slot 4 slot 5 slot 6

SRC, 2008 Summary of TDL extensions 3

TDL Slot Selection

•  f = 6

time
Logical

Mode Period
Mode Start Mode End

•  task invocation 1 covers slots 1 – 2
•  task invocation 2 covers slots 4 – 5

task invoc. 1 task invoc. 2

slot 1 slot 2 slot 3 slot 4 slot 5 slot 6

SRC, 2008 Summary of TDL extensions 4

TDL Slot Selection Allows One to Specify

•  an arbitrary repetition pattern
•  the LET more explicitly
•  gaps
•  task invocation sequences
•  optional task invocations
•  Giotto periodic task invocation as a special case

(default)

SRC, 2008 Summary of TDL extensions 5

TDL Execution

•  based on a virtual machine, called E-machine
•  executes virtual instruction set, called E-code
•  E-code is generated by TDL compiler from TDL source
•  covers one mode period
•  contains one E-code block per logical time instant

SRC, 2008 Summary of TDL extensions 6

E-code Blocks

time
Logical

Mode Period
Mode Start Mode End

task invoc. 1 task invoc. 2

slot 1 slot 2 slot 3 slot 4 slot 5 slot 6

•  E-Code block follows fixed pattern:
1.  task terminations
2. actuator updates
3. mode switches
4.  task releases

E-code
block

E-code
block

E-code
block

E-code
block

Physical

SRC, 2008 Summary of TDL extensions 7

E-code Compression

•  adjacent E-code blocks may be identical
•  compression feature would be welcome
•  new instruction:

 REPEAT <targetPC>, <N>
•  jumps N times to targetPC, then to PC + 1.
•  uses a counter per module
•  counter is reset upon mode switch

SRC, 2008 Summary of TDL extensions 8

Adding Asynchronous Activities

time
Logical

Mode Period
Mode Start Mode End

task invoc. 1 task invoc. 2

slot 1 slot 2 slot 3 slot 4 slot 5 slot 6

Priority levels
•  black: highest priority (E-code)

E-code
block

E-code
block

E-code
block

E-code
block

Physical

SRC, 2008 Summary of TDL extensions 9

Adding Asynchronous Activities

time
Logical

Mode Period
Mode Start Mode End

task invoc. 1 task invoc. 2

slot 1 slot 2 slot 3 slot 4 slot 5 slot 6

Priority levels
•  black: highest priority (E-code)
•  red: lower priority (synchronous tasks)

E-code
block

E-code
block

E-code
block

E-code
block

Physical

SRC, 2008 Summary of TDL extensions 10

Adding Asynchronous Activities

time
Logical

Mode Period
Mode Start Mode End

task invoc. 1 task invoc. 2

slot 1 slot 2 slot 3 slot 4 slot 5 slot 6

Priority levels
•  black: highest priority (E-code)
•  red: lower priority (synchronous tasks)
•  blue: lowest priority (asynchronous activities)

E-code
block

E-code
block

E-code
block

E-code
block

Physical

SRC, 2008 Summary of TDL extensions 11

Asynchronous Activities Rationale

•  event-driven background tasks
•  may be long running
•  not time critical
•  may be implemented at platform level, but:

-  platform specific
-  unsynchronized data-flow to/from E-machine

•  support added in TDL
•  Goal: avoid complex synchronization constructs and the

danger of deadlocks and priority inversions

SRC, 2008 Summary of TDL extensions 12

Kinds of Asynchronous Activities

•  task invocation
-  similar to synchronous task invocations except for

timing
-  input ports are read just before physical execution
-  output ports are visible just after physical execution
-  data flow is synchronized with E-machine

•  actuator updates
-  similar to synchronous actuator updates except for

timing
-  data flow is synchronized with E-machine

SRC, 2008 Summary of TDL extensions 13

Trigger Events

•  hardware and software interrupts
•  periodic asynchronous timers
•  port updates

Use a registry for later execution of the async activities.

Parameter passing occurs at execution time.

Registry functions as a priority queue.

SRC, 2008 Summary of TDL extensions 14

Threads and Critical Regions

hardware interrupts, timer:
highest priority

synchronous activities (E-machine):
high priority

asynchronous activities:
lowest priority

registered events
enqueue()

dequeue()

on interrupt, on timer

on port update

on port update

ports

critical region thread

SRC, 2008 Summary of TDL extensions 15

Synchronization Requirements

•  Async activities don‘t preempt anything.
•  E-machine may preempt async activities.
•  Hardware interrupts (incl. timers) may preempt

everything incl. other hardware interrupts.
•  We need a very robust thread safe registry.
•  We need a very efficient enqueue operation

-  for serving hardware interrupts quickly
-  for efficient synchronous port update triggers

•  dequeue is done asynchronously and may be slower.

SRC, 2008 Summary of TDL extensions 16

Event Registry

• enqueue sets the pending flag; constant time
• dequeue searches for the highest priority event and

clears the pending flag
•  triggering a pending event is a no-op.

event 0
event 1
event 2

priority pending

2
0
1

false

true
true

…

SRC, 2008 Summary of TDL extensions 17

Synchronizing Input Port Reading

•  reading of input ports for async activities must be atomic
•  i.e. must not be interrupted by the E-machine
•  only one async event is processed at a time
•  we use a global flag that signals E-machine execution
•  we clear this flag before input port reading
•  we set this flag in every E-machine step
•  we repeat the reading until there is no interruption

SRC, 2008 Summary of TDL extensions 18

Synchronizing Output Port Writing

•  writing output ports after async task invocation must be
atomic

•  but may be interrupted by the E-machine
•  observation: output port writing is idempotent
•  we can re-execute it atomically in the E-machine
•  only one async event is processed at a time
•  therefore we register the function (termination driver) that

does the output port writing in a global variable
•  the E-machine tests for the existence of a registered

termination driver and re-executes it

SRC, 2008 Summary of TDL extensions 19

Example Asynchronous TDL Activity

// Radio control data is received by an interrupt service routine.
// Once all channels have been received the data is passed into the
// TDL world by raising the software interrupt RCInterrupt.

module CaptureRC {

 import Types;
 import Kalman;

 public type Command = …;

 public output Command cmd;
 public output Kalman.State targetState;

 public task getRcData {
 uses doGetRcData(cmd, targetState);
 }

 asynchronous {
 [interrupt = RCInterrupt, priority = 1] getRcData();
 }

}

SRC, 2008 Summary of TDL extensions 20

Other Extensions

•  Module level output ports
•  Structured user defined types
•  Adaptations in TDL tool chain and Simulink integration
•  VisualAnalyzer
•  Incremental communication scheduling for FIBEX
•  FlexRay Startup-Protocol
•  FlexRay Configuration Editor and Checker
•  OSEK platform support
•  Combined Comm/Task-Scheduling + Genetic Alg.
•  2-step E-machine for Simulink

