Mode Start M E
Mode Period ode End

< D
Logical T
task t invocation 1 task t invocation 2

® Every mode has a fixed period.

® Atask t has a frequency f within a mode.

® The mode period is filled with ftask invocations.
® The LET of a task invocation is modePeriod / f.

SRC, 2008 Summary of TDL extensions

time
>



Mode Start M E
Mode Period ode End

< tq
lslot1 slot2 slot3 slot4 slot5 slot6 |

<

Logical

time
>

SRC, 2008 Summary of TDL extensions 2



Mode Start Mode End

Mode Period

<

< >
. Islot1 slot2 slot3 slot4 slotS slot6 |
Logical

task invoc. 1 task invoc. 2 time

® task invocation 1 covers slots 1 — 2
® task invocation 2 covers slots 4 — 5

SRC, 2008 Summary of TDL extensions 3



® an arbitrary repetition pattern
® the LET more explicitly

® gaps

® task invocation sequences

® optional task invocations

® Giotto periodic task invocation as a special case
(default)

SRC, 2008 Summary of TDL extensions



® based on a virtual machine, called E-machine

® executes virtual instruction set, called E-code

®* E-code is generated by TDL compiler from TDL source
® covers one mode period

® contains one E-code block per logical time instant

SRC, 2008 Summary of TDL extensions



Mode Start Mode End

Mode Period
- < tq
lslot1 slot2 slot3 slot4 slot5 slot6 }

Logical < T T
task invoc. 1 task invoc. 2

Physical

~ E-code E-code E-code E-code
block block block block

* E-Code block follows fixed pattern:
1. task terminations
2. actuator updates
3. mode switches
4. task releases

SRC, 2008 Summary of TDL extensions

time
>



¢ adjacent E-code blocks may be identical
® compression feature would be welcome
® new instruction:
REPEAT <targetPC>, <N>
® jumps N times to targetPC, then to PC + 1.
® uses a counter per module
® counter is reset upon mode switch

SRC, 2008 Summary of TDL extensions 7



Mode Start Mode End

Mode Period
R - >
_ lslot1 slot2 slot3 slot4 slot5 slot6 }
Logical < T T
L task invoc. 1 task invoc. 2 time
S X X
Physical <
" E-code E-code E-code E-code
block block block block

Priority levels
® black: highest priority (E-code)

SRC, 2008 Summary of TDL extensions 8



Mode Start Mode End

Mode Period
R - >

. {slot1 slot2 slot3 slot4 slotS slot6 |
Logical < T T

task invoc. 1 task invoc. 2 time

B ]
Physical <

" E-code E-code E-code E-code
block block block block

Priority levels
* black: highest priority (E-code)
® red: lower priority (synchronous tasks)

SRC, 2008 Summary of TDL extensions 9



Mode Start Mode End

Mode Period
-~ < D

. {slot1 slot2 slot3 slot4 slotS slot6 |
Logical < T T

L task invoc. 1 task invoc. 2 time

Physical <

" E-code E-code E-code E-code
block block block block

Priority levels

* black: highest priority (E-code)

® red: lower priority (synchronous tasks)

® blue: lowest priority (asynchronous activities)

SRC, 2008 Summary of TDL extensions 10



Asynchronous Activities Rationale

event-driven background tasks

may be long running

not time critical

may be implemented at platform level, but:
platform specific
unsynchronized data-flow to/from E-machine

support added in TDL

Goal: avoid complex synchronization constructs and the
danger of deadlocks and priority inversions

SRC, 2008 Summar y of TDL extensions 11




Kinds of Asynchronous Activities

task invocation
similar to synchronous task invocations except for
timing
input ports are read just before physical execution
output ports are visible just after physical execution
data flow is synchronized with E-machine

actuator updates
similar to synchronous actuator updates except for
timing
data flow is synchronized with E-machine

SRC, 2008 Summary of TDL extensions 12




® hardware and software interrupts
® periodic asynchronous timers
® port updates

Use a registry for later execution of the async activities.

Parameter passing occurs at execution time.

Registry functions as a priority queue.

SRC, 2008 Summary of TDL extensions 13



SRC, 2008

hardware interrupts, timer:
highest priority

on interrupt, on timer

synchronous activities (E-machine):

high priority

on port update

A
y

ports

A
A 4

asynchronous activities:
lowest priority

on port update

enqueue()

A 4

registered events

dequeue()

thread

critical region

Summary of TDL extensions

14



Synchronization Requirements

Async activities don‘t preempt anything.
E-machine may preempt async activities.

Hardware interrupts (incl. timers) may preempt
everything incl. other hardware interrupts.

We need a very robust thread safe registry.
We need a very efficient enqueue operation

for serving hardware interrupts quickly

for efficient synchronous port update triggers
dequeue Is done asynchronously and may be slower.

SRC, 2008 Summary of TDL extensions 15




priority pending
event 0 2 false
event 1 0 true
event 2 1 true

* enqueue sets the pending flag; constant time
the highest priority event and

* dequeue searches for
clears the pending flag

® triggering a pending event is a no-op.

SRC, 2008 Summary of TDL extensions




Synchronizing Input Port Reading

reading of input ports for async activities must be atomic
I.e. must not be interrupted by the E-machine

only one async event is processed at a time

we use a global flag that signals E-machine execution
we clear this flag before input port reading

we set this flag in every E-machine step

we repeat the reading until there is no interruption

17

SRC, 2008 Summary of TDL extensions




Synchronizing Output Port Writing

writing output ports after async task invocation must be
atomic

but may be interrupted by the E-machine
observation: output port writing is idempotent
we can re-execute it atomically in the E-machine
only one async event is processed at a time

therefore we register the function (termination driver) that
does the output port writing in a global variable

the E-machine tests for the existence of a registered
termination driver and re-executes it

SRC, 2008 Summary of TDL extensions 18




// Radio control data is received by an interrupt service routine.
// Once all channels have been received the data is passed into the
// TDL world by raising the software interrupt RCInterrupt.

module CaptureRC {

import Types;
import Kalman;

public type Command =

.
ees y

public output Command cmd;
public output Kalman.State targetState;

public task getRcData {

uses doGetRcData (cmd, targetState);

asynchronous {

[interrupt = RCInterrupt, priority = 1] getRcData();

SRC, 2008

Summary of TDL extensions

19



Other Extensions

Module level output ports

Structured user defined types

Adaptations in TDL tool chain and Simulink integration
VisualAnalyzer

Incremental communication scheduling for FIBEX
FlexRay Startup-Protocol

FlexRay Configuration Editor and Checker

OSEK platform support

Combined Comm/Task-Scheduling + Genetic Alg.
2-step E-machine for Simulink

SRC, 2008 Summar y of TDL extensions 20




