
1

Construction of
Flexible Software

Composition
Decorator

2

The Decorator
Construction

Principle

3

Motivation: Changes of a Class With Many
Subclasses (I)

Changes of M3() and M7() of class A necessary
Change source text of A, if available?
Change by inheritance?

4

Motivation: Changes of a Class With Many
Subclasses (II)

For one class (e.g., A1m) the adaptation is meaningful
For all subclasses of A this is too complicated

5

Motivation: Changes of a Class With Many
Subclasses (III)

In programming languages that support multiple inheritance, so-
called mixin classes can be defined.
Nevertheless a subclass must be formed for each class whose
behavior is to be adapted.

6

Adapting a class by composition rather than by
inheritance

All A’s methods are overwritten in the class WrapperOfA, as the method call
is delegated in each case to an object referenced by the instance variable
wrappedA - with exception of those which are changed.
Since WrapperOfA is a subclass of A, any time an object of static type A is
demanded, an instance of the class WrapperOfA can be used. Since the
instance variable wrappedA has the static type A, it can refer to each object
of a subclass of A.

“decorated” A

7

Decorator: Adaptation by composition with as
many objects as desired

The names of the template and hook methods are the same
Setting of the decorated object with SetH()
An instance of the decorator (filter) T as well as an instance of a
subclass of H can be used by clients like an H-object. However, the
behavior of the H-object is modified accordingly.
H + decorator(s) can be used as a single object (see Composite).

8

Design suggestion when using several
Decorator classes

9

Two Exemplary Compositions

10

Example: Smoothing Flight Patterns

11

12

Use of the Decorator Class Smoother

FlightPattern triangle= new FlightPattern();

triangle.SetStartPos(...);

triangle.AddSeg(new Smoother(new Line(...)));

triangle.AddSeg(new Smoother(new Line(...)));

triangle.AddSeg(new Line(...));

13

Basic conditions for the application of the
Decorator construction principle (I)

The signature of H, which is the root class of the
subtrees, is not to be extended by the subclasses of H.
The reason for this is that additional methods in the
subclasses cannot be considered into the Decorator.
In order to guarantee fulfillment of this demand, it is
necessary to transfer the common aspects of all
subclasses of H into the root class. This requirement is
not satisfied by many class libraries. In such cases, the
application of the Decorator construction principle is not
possible to full extent (see Decorator Smoother).

14

Basic conditions for the application of the
Decorator construction principle (II)

In our example, some specific methods for the mentioned objects must be explicitly
called – for example, SetDirection() in Circle - since they cannot be passed on by a
Smoother instance:

Circle circle= new Circle (...);
circle.SetDirection (cRight);
Smoother smoother= new Smoother (circle);

If the mentioned demand would be fulfilled, a Smoother instance could be treated like
each specific FlightSegment object:

Smoother smoother= new Smoother (new Circle (...));
smoother.SetDirection (cRight);

A possibility of eliminating the flight-segment-specific methods is to let all characteristics
be indicated only over the constructor of the respective class:

Smoother smoother= new Smoother (new Circle (…, cRight));

15

Application of the Decorator principle to the
design of more “lightweight” root classes

The Decorator construction principle can be used to
make classes close of the root of the class tree more
lightweight. Functionality that is not needed in all classes
is implemented in Decorator classes. Only the objects
which need this special functionality receive it by
composition with the appropriate Decorator instance.

The Decorator construction principle can be fruitfully
used both with the (first) design of a class hierarchy and
with the extensions of class hierarchies.

16

Example: Clipping Mechanism in GUI libraries

Clipping mechanism: cutting a GUI element to its fixed
size

Since the Clipping mechanism is not needed for all GUI
elements, it is meaningful to plan the Clipping
mechanism by a decorator class Clipper rather than in
the root of the subtree (see the Decorator example in
Gamma et al., 1995).

17

Summary Decorator

+ Simple adaptation by object composition
+ New decorator elements (Template classes, which are

subclasses of the Hook class) can be defined, without
having to change the subclasses of the Hook class.

+ „More lightweight “classes can be realized elegantly
- The Hook class should fulfill the mentioned basic

condition (factoring in behavior from all subclasses)
- Additional indirection in method calls
- Complex interactions between involved objects

