
1

OO concepts
UML

Representation

2

Use Cases

3

Use Case: First Artifact

Use cases help in:
Better understanding of requirements
Documentation of requirements

Use cases connect the different modelling
views of a system

4

Use Case: Basis for Communication

Use Cases (scenarios) represent an important
communication conveyor, by which the end
users of a system and the developers exchange
information.

Components of a Use Case model:
System functions (Use Cases)
Environment (Actors)
Relations between Use Cases and Actors
(Use Case Diagrams)

5

Actors

UML representation:

Examples of actors:
Students who register for courses
External account system
Receptionist that serves a hotel reservation system

6

Use Cases (I)

A Use Case models a dialogue between an
actor and the system. It describes which
functionality the system offers to an actor.

UML representation:

7

Use Cases (II)

The following questions are helpful in defining use cases:

What are the tasks of an actor?
Will an actor produce information in the system, store
it, change it, delete it, or just read it?
Which use cases will produce, store, change, delete,
or read this information?
Does an actor have to be informed about certain
events in the system?
Can all functional requirements be fulfilled with the
use cases ?

8

Use Cases (III)

Example of the short description of a use case:
Name: Student course registration
This use case is started by a student. For a certain
semester, a timetable can be read, changed, or deleted.

Flow of Events:
Can be described in a text document
Suggestion for a template:

Preconditions
Main flow and possible sub-flows
Alternative flows

9

Use Cases (IV)

Example: Selection (by professors) of offered courses

Pre conditions:
The use case “Offering Courses” must be achieved
before this use case begins.
Main flow
This use case begins when a professor logs in the
course management system and enters his/her
password. The system verifies whether the password is
valid (E-1) and requests the professor to select the
current term or a future term (E-2). Afterwards the
professor selects the desired activity: Add, delete, read,
print or terminate.

10

Use Case (V)

If adding is selected, the sub-flow S-1 is followed:
Add a course offer is performed.

…
Sub-flows

S-1: Add a course offer
Course name and number can be entered by appropriate input fields

(E-3): The system connects the professor with the offered course
(E-4): The use case begins again.

…
Alternative flows
(E-1): A wrong name or password was entered. The user can again
enter both or terminate the use case.

11

Use Case Diagram (I)

Use case diagrams show some or all actors and use
cases, as well as relations between these entities.

Typically there are:
A main use case diagram, which graphically depicts the
most important actors and main functionality

Further use case diagrams, e.g. :
A diagram that shows all use cases for a certain actor
A diagram that shows a use case and all its relations

12

Use Case Diagram (II)

Example:

13

Use Case Diagram (III)

The “Uses” relationship shows that functionality in a use
case is required in another use case.
The “Extends” - relationship expresses optional behavior
in a use case.

Both relations are represented by a dependence arrow
and designated by stereotyped names.
In UML there is the so-called Stereotype concept, which
allows extensions of the fundamental modeling
elements. The names of stereotypes are given between
<< and >>.
Stereotypes can be used to describe the relations
between use cases.

14

Use Case Diagram (IV)

Example:

15

Hands-On Exercise (I)

WebShop

Customer: -
Browses the offer
Selects a product
Pays with credit card or by bank transfer

Seller:
Introduces new products into the catalog
Removes old products from the catalog

16

Hands-On Exercise (II)

17

Hands-On Exercise (III)

Registration: main flow

The use case begins when the user selects the
registration option.

The system requests the user to fill out a form with its
name, address, age, nickname and password (E-1).

Afterwards the system sends an e-mail to the user to
indicate a successful registration.

18

Hands-On Exercise (IV)

Alternative flows:

E-1: If the form is not completed, the user is
requested to fill out the empty fields

E-1: If the nickname is already in use, the user is
required to provide another nickname

...

19

CRC Cards

20

CRC Cards (I)

Which classes are used in order to model
a scenario?

How do these classes work together?

21

CRC Cards (II)

Class, Responsibility, Collaboration

Beck and Cunningham, OOPSLA’89
Developed CRC-Cards in order to be able to
descriptively teach the paradigm change from
procedural to OO.
Direct introduction to the idea of
Responsibility Driven Design (Wirfs-Brock
1990).

22

CRC Cards (III)

4x6 Index Card
Specifies:

Class name
Responsibilities
Collaborators

23

Example

24

CRC Cards (IV)

Advantages
Communication between designers
From data containers to responsibilities
Collaboration between classes is more easily
understood.
The card size determines a granularity of
class description that enforces a high level
specification of classes.

25

Packages
and

Package Diagrams

26

Packages

Packages are mainly used in order to
group classes which belong together
logically.

UML notation:

27

Packages (II)

Packages can be nested, in order to be
able to better structure complicated
architectures.

UML gives the option to list the names of
the classes that belong to a package.

28

Package Diagrams

The following relations between packages can be
defined:

Dependence:

It is used to express that classes in a package use
classes of another package.
Generalization

It is used to show that the classes in a package fulfill
contracts of the classes of the other package

29

Example: E-Commerce Application

30

State-
Transition
Diagrams

31

Notation Elements

State Transition Diagrams show the dynamic behavior of
a class instance or of a whole system

State symbol:

Transition symbol:

state name

actions

event / action

32

Notation Elements (II)

An action can be written as follows:

Method call e.g. converter.ReadFile()
Event triggering e.g. DeviceFailure
Begin activity e.g. Start Converting
Stop activity e.g. Stop Converting

33

Example

Controller in a greenhouse:

Idle Daytime

Nighttime

define
climate

temperature drop or rise /
AdjustTemp()

sunset /
LightOff()

sunrise /
LightOn()

temperature drop or rise /
AdjustTemp()

terminate climate

terminate climate

34

Additional notation (I)

Actions can also be defined within a state:
If the system enters the state, if the system exits the
state

If the system is in a state: e.g. do Heating
Transitions can have attached conditions (guards),
which are indicated in square brackets.

Heating

entry StartUp()
exit ShutDown() too cool

[restart time >=
 5 minutes]

35

Additional notation (II)

Conditions can contain also time limits:
timeout (Heating, 30s) TRUE, if system is longer

than 30 sec. in the
state Heating

States can be nested, if needed:

Ready

Startup

Running

Cooling

compressor
running

fan
running

36

Additional Notation (III)

State with history:
A state which contains sub-states may have a history
mark
When the state is exited, the last active sub-state is
remembered
When the state is re-entered, the last active sub-state
is entered

History is indicated with the decoration

H

37

Example

H

Heating

entry StartUp()
exit ShutDown()

Idle

too cool
[restart time >=
 5 minutes]

too hot

OK

Ready

Startup

Running

Cooling

compressor
running

fan
running

loggedlog
ready

create
log

created

posted

post

Failure

failure failure
cleared

failure

38

Example: GUI

Dialog sequence as state-transition diagram:

39

Hands-On Exercise

40

Hands-On Exercise (II)

Which states can a telephone have?

Are there substates?

Which transitions are there?

Are there conditions for the transitions?

41

Component
Diagrams

42

Components

Classes can be grouped in components. In UML, a
component can be represented as follows:

Components correspond to modules in module-oriented
languages.
C++: Reproduction of modules through .h, .c files
Smalltalk: Groups of classes, no modules
Oberon and Java: Modularity supported directly by the
language

43

Ports, Interfaces and Connectors

Ports: interaction points
Interfaces:

Provided
Required

Connectors:
Assembly
Delegation

C1p[1..*]

44

Deployment
Diagrams

45

Notation

This representation is developed from Booch' s process
diagram. It expresses the assignment of main programs
and/or active objects to processors for distributed
systems running on multiple processors.

greenhouse 1

greenhouse 2

gardener
workstation

46

Example: CORBA

47

Hands-On Exercise: Web Shop

A Webshop is typically a distributed
application. Normally three layers are
involved.
How could the topology of the system
look?
Which components are on which
computational nodes?

48

Three-tier Architecture

49

Web Shop: Topology

