
1

OO concepts
UML representation
Objects, Classes, Messages/Methods
Inheritance, Polymorphism, Dynamic Binding
Abstract Classes, Abstract Coupling

2

Abstract Classes
and

Abstract Coupling

3

Why abstract classes?

OO languages are used in many software projects in the
same manner as module-oriented languages (Modula-2,
Ada) for Lego-style building from separate parts:

Classes are a language construct for implementing
modules/abstract data types
Such software modules can be adapted to new
projects by sub-classing

In order to achieve reusable software architectures, it
is essential to employ a skillful combination of
subclassing (and thus polymorphism) and dynamic
binding in the form of abstract classes.

4

Abstract classes (I)

Provide default (general) behavior
Only few methods are implemented

Require subclasses to provide more specific behavior
Some method names and their parameters are fixed,
but their implementation must be provided by
subclasses

Represent a standardization of the class interface for all
subclasses

5

Abstract classes (II)

The classes resulted from grouping common
characteristics do not reflect usually objects of the
real world, but an abstractization of them. Therefore
one calls these classes abstract classes.

A further reason for this naming is that it does not
makes sense to generate instances from such
classes. Abstract classes contain “dummy”
implementations or no implementations (→ abstract
methods) for some methods.

6

Abstract Coupling (I)

Other classes can be implemented based on abstract
classes. The coupling between a class (e.g. class B)
and an abstract class (e.g. class A) can take place in
several ways:

B has an instance variable of the static type A
One or more methods of B have a parameter of the
static type A
B accesses a global variable of the static type A

7

Abstract coupling (II)

The classes coupled with an abstract class can work
with objects of arbitrary subclasses of the abstract class
without change. This is due to polymorphism and
dynamic binding.
The behavior of these components can thus be changed
not by changing the components themselves, but by
technically clean modifications of the behavior of
abstract classes, which is done in their subclasses.

Abstract classes + abstract coupling = the basis for
OO Frameworks (semifinished designs).

8

Abstract coupling (III)

The main issue is to find good
abstractions so that other software
components can be realized by building
on the abstractions.

Abstract classes evolve typically
only in interaction with the classes
coupled with them.

9

Example: reservation system

10

Frameworks – static view

. . .

CreditCardEMoney

Framework-
Klassen

Framework-
Adaption

.

A1

A

Payment

Promotion

FreqShopping

. . .

. . .

abstract classes
(here each with one
abstract method)

Framework
classes

Framework
adaptation

11

Black-Box versus White-Box Framework types

vor der Adaptierung

EMoneyPayment

nach der Adaptierung

12

Hands-on exercise

Web shop

13

Case Study Web Shop (I)

Design a Web shop from which one can buy
books over Internet.

A component should be „the catalog“, which
administers the books

14

Case Study Web Shop (II)

First design:

15

Case Study Web Shop (III)

Problem: Now also CDs and
computer games are to be ordered.
The catalog must be extended
accordingly.

16

Case Study Web Shop (IV)

New design

17

Collaboration
and Sequence

Diagrams

18

Collaboration Diagram (I)

In a Collaboration diagram there are only simple relationships
between objects

()

Optionally, the message flow between objects can be represented.
(However, sequence diagrams are more suitable in this respect.)

message, ...

Message is: [no:] method()
- method() is as given in the class diagram
- no is an optional number, which defines the order of the method
calls.

19

Collaboration Diagram (II)

Example:

20

Sequence Diagram (I)

A sequence diagram essentially expresses the same
semantics as a collaboration diagram, but it is usually
easier to read

Collaboration diagrams offer the advantage that
additional information can be represented (e.g. relations
between objects)

Collaboration diagrams can be transformed
automatically into sequence diagrams.

21

Sequence Diagram (II)

Example:

22

Case Study: Web Shop(I)

Catalog dynamics:
How are products inserted into the
catalog?
How does the sequence diagram look?
How does the collaboration diagram
look?

23

Case Study: Web Shop(II)

24

Case Study: Web Shop(III)

