
1

OO concepts
UML representation
Objects, Classes, Messages/Methods
Inheritance, Polymorphism, Dynamic Binding
Abstract Classes, Abstract Coupling

2

Polymorphism (I)

An object type can be poly (=multiple) morph (=form).
This can be depicted in the same way as plug-
compatibility:

Objects compatible
with the plug

„Plug“-Standard

3

Inheritance example

Customer

+checkRegularCustomer():boolean

Customer

+checkRegularCustomer():boolean

PrivateCustomer

+checkRegularCustomer():boolean

PrivateCustomer

+checkRegularCustomer():boolean

CorporateCustomer

+checkRegularCustomer():boolean
+report(doc:ActivityReport):void

CorporateCustomer

+checkRegularCustomer():boolean
+report(doc:ActivityReport):void

4

Polymorphism (II)

Objects of type CorporateCustomer (subclass) keep at
least the same contract as objects of type Customer
(superclass).
Therefore it is meaningful to consider that an object of
class Ai, which is a subclass of class A, is not only of
type Ai but also of the types given by all Ai‘s
superclasses (starting with A).
An object has not only one type. It has multiple
types, and the number of types is given by the position
of the class from which the object is generated in the
class hierarchy.

5

Polymorphism – Example (I)

Customer customer = new Customer();
PrivateCustomer privateCustomer = new PrivateCustomer();
CorporateCustomer corporateCustomer= new CorporateCustomer();

Customer

checkRegularCustomer() customer

PrivateCustomer

checkRegularCustomer() privateCustomer

CorporateCustomer
checkRegularCustomer() corporateCustomer

report(ActivityReport)

6

Customer

PrivateCustomer

CorporateCustomer

Polymorphism – Example (II)

customer = privateCustomer; // OK

checkRegularCustomer() customer

checkRegularCustomer() privateCustomer

checkRegularCustomer() corporateCustomer

report(ActivityReport)

7

Customer

PrivateCustomer

CorporateCustomer

Polymorphism – Example (III)

customer = corporateCustomer; // OK

checkRegularCustomer() customer

checkRegularCustomer() privateCustomer

checkRegularCustomer() corporateCustomer

report(ActivityReport)

8

Customer

PrivateCustomer

CorporateCustomer

Polymorphism – Example (IV)

privateCustomer = customer; // wrong

checkRegularCustomer() customer

checkRegularCustomer() privateCustomer

checkRegularCustomer() corporateCustomer

report(ActivityReport)

9

Customer

PrivateCustomer

CorporateCustomer

Polymorphism – Example (V)

corporateCustomer = customer; // wrong

checkRegularCustomer() customer

checkRegularCustomer() privateCustomer

checkRegularCustomer() corporateCustomer

report(ActivityReport)

10

Polymorphism – Example (VI)

The reason for failure is that an object which is an
instance of class Customer does not understand all
method calls that an object which is an instance of class
CorporateCustomer understands.

(1) corporateCustomer = customer;
(2) corporateCustomer.report(monthlyReport);

(1) Type mismatch: cannot convert from
CorporateCustomer to Customer

(2) The method report(activityReport) is undefined for
the type Customer.

11

Polymorphism – Example (VII)

Person

+getBirthDate():String
+getHealthHistory():String

Person

+getBirthDate():String
+getHealthHistory():String

HospitalHospital InvestorInvestor

Company

+getDevelopmentPlan():Plan

Company

+getDevelopmentPlan():Plan

Hotel

+Customer[]
+addCustomer(Customer):void

Hotel

+Customer[]
+addCustomer(Customer):void

PrivateCustomer

+checkRegularCustomer():boolean

PrivateCustomer

+checkRegularCustomer():boolean

CorporateCustomer

+checkRegularCustomer():boolean
+report(doc:ActivityReport):void

CorporateCustomer

+checkRegularCustomer():boolean
+report(doc:ActivityReport):void

Hotel

+PrivateCustomer[]
+CorporateCustomer[]
+addPrivateCustomer(PrivateCustomer):void
+addCorporateCustomer(CorporateCustomer():void

Hotel

+PrivateCustomer[]
+CorporateCustomer[]
+addPrivateCustomer(PrivateCustomer):void
+addCorporateCustomer(CorporateCustomer():void

Customer

+checkRegularCustomer():boolean

Customer

+checkRegularCustomer():boolean

12

Static and dynamic type

Static type
Accurately given by the declaration in the program text
Example: customer is of static type Customer

Dynamic type
The type of the referenced object at runtime
Example: after customer=corporateCustomer, the dynamic
type of customer is CorporateCustomer

A variable with a static type can have several dynamic types during
its lifetime, depending of the width and depth of the class hierarchy

13

Dynamic binding (I)

Dynamic binding: The compiler does not specify which
method is called at runtime . The method is determined
at runtime based on

The method name
The variable‘s dynamic type

Customer c;
if (i>0) then

c = new CorporateCustomer();
else

c = new PrivateCustomer();
...
c.checkRegularCustomer();

14

Dynamic binding (II)

The variable customer1 references an object generated
from the class CorporateCustomer (and thus has the
dynamic type CorporateCustomer). Hence, the call to
checkRegularCustomer() is linked to the method as
implemented in CorporateCustomer.

In Java, all methods are dynamically bound, except for
the ones explicitly marked by using the keyword static.

In C++, by contrast, methods must be explicitly marked
as dynamically bound by using the keyword virtual.

15

Dynamic binding (III)

Dynamic binding can be used for the plug-in concept

For example, the yellow object may implement m1()
differently than the red object

m1()

m1()

m1()

call m1

16

The diamond problem

Animal

+talk():void

Animal

+talk():void

BestPetBestPet

Cat

+talk():void

Cat

+talk():void

Dog

+talk():void

Dog

+talk():void

Animal myPet = new BestPet();
myPet.talk();

This problem does not
occur in Java

17

Is-A and Has-A

TankTank

BigMetal

+load():void

BigMetal

+load():void

Cannon

+load():void

Cannon

+load():void

Car

+load():void

Car

+load():void

Typical error: Is-A instead of
Has-A

18

Type test and type guard in Java

Type test: Inquiry of the dynamic type
Type guard: runtime checking of type casting

Example:

if(customer instanceof CorporateCustomer){ // test

CorporateCustomer corpCust = (CorporateCustomer)customer; //guard
...

}

if(customer instanceof CorporateCustomer)

((CorporateCustomer)customer).report(monthlyReport);

19

Understanding
Interactions

Between Objects

20

Object Game

Play a hotel room
reservation
scenario

