
1

OO concepts
UML representation
Objects, Classes, Messages/Methods
Inheritance, Polymorphism, Dynamic Binding
Abstract Classes, Abstract Coupling

2

Classes in UML (I)

UML notation for a class:

ExampleStructure

3

Classes in UML (II)

Notation for attributes:
A only the attribute name
: C only the attribute class
A : C attribute name and class
A : C = D attribute default value

timeWhenStarted → A
: Date → : C
timeWhenStarted : Date → A : C
timeWhenStarted : Date = 1.1.1999 → A : C = D
timeWhenStarted = 1.1.1999 → A = D

4

Classes in UML (III)

Notation for Methods/Operations:

m() only the method name
m(arguments): R method name, arguments

type of returning parameter

Example:
printInvoice() → m()
printInvoice(itemNo: int): bool →m(arguments): R

5

Classes in UML (IV)

Adornments (decorations) : additional graphical
elements (represented by triangles in the Booch method)

Methods and attributes have attached graphic symbols
to express access rights: public, private, protected
Example:
+sleep(Hours:int)

Standalone adornment: Note

6

Example: access rights

Unnecessary complexity,
since there is no dependency
between x and y

Better alternative

7

Classes in Java

public class Person{

String name;
int age;
...

public int getAge(){
return age;

}
public void setAge(int theAge){
age = theAge;

}
}

Class name

Attributes

Operations

8

Using classes in Java

Classes are used in Java to specify the type of
variables and to instantiate objects
Keyword: new
Example:

Person manager = new Person(“Martin“);

Declaration of
variable „manager“

Instantiation of an object of
class Person with name Martin

9

Example: Hotel reservation

What can be modeled as classes in a
hotel reservation system?
What attributes will the classes have?
What operations?
Which instances (objects) of these
classes will there be?
What sorts of relations will take place
between the objects/classes?

10

Objects in UML

Object notation

Martin : Person

object

object
name

object
class

An object diagram provide a run time snapshot of the
system, representing objects and the connections
between them

11

Object diagram

12

Class relationships (I)

An association can be refined by other relations

Often one models first only the fact that two classes are
related and refines later this general notation element

Association

Inheritance
Aggregation (has-a)

Dependence

13

Class relationships (II)

Each association can be named with a text label (like in
the ER-model)
Role names can be specified at association ends
Multiplicity can be marked at association ends
A class can have an association with itself, expressing a
relationship between objects of the same class

Class A Class Blabelmultiplicity A
role A

multiplicity B
role B

14

Class relationships (III)

Multiplicity specification:

1 exactly one
* any (0 or more)
0..* any (0 or more)
1..* 1 or more
0..1 0 or 1
2..5 range of values
1..5, 9 range of values or nine

15

Class relationships (IV)

Example:

16

Inheritance
Polymorphism

Dynamic Binding

17

Inheritance (I)

A class defines the type of an object

If one models for example a class Customer
and a class CorporateCustomer, one expects
that each object of type CorporateCustomer to
be also of type Customer. The type
CorporateCustomer is a subtype of Customer.

18

Inheritance (II)

A superclass generalizes a
subclass
A subclass specializes a
superclass
A subclass inherits methods and
attributes of its superclass

19

Inheritance(III)

A subclass has the following possibilities
to specialize its behavior:

Defining new operations and attributes
Modifying existing operations
(overwriting methods of the superclass)

Flatten view:

iv1
iv2
iv3

m1()
m2()
m3()
m4()

m1()
m4()
m5()

iv4

iv1
iv2
iv3

m1()
m2()
m3()
m4()

m5()
m4()
m3()
m2()
m1()

iv4
iv3
iv2
iv1

20

Inheritance (IV)

UML Notation

Customer

+checkRegularCustomer():boolean

Customer

+checkRegularCustomer():boolean

PrivateCustomer

+checkRegularCustomer():boolean

PrivateCustomer

+checkRegularCustomer():boolean

CorporateCustomer

+checkRegularCustomer():boolean
+report(doc:ActivityReport):void

CorporateCustomer

+checkRegularCustomer():boolean
+report(doc:ActivityReport):void

21

Inheritance (V)

„delta“ view Flatten view
(not in standard UML!)

22

Inheritance and access rights

Private members of a superclass are not accessible in
subclasses
Protected members of a superclass are accessible only
in subclasses
Public members are accessible everywhere
Access rights can be specified globally for a superclass
(C++):
class R : private A{ /* ... */ };
class S : protected A{ /* ... */ };
class T : public A{ /* ... */ };

23

Inheritance in Java

Java supports simple inheritance, where each class has
at most one superclass

The keyword is extends

Example:

public class CorporateCustomer extends Customer{
...

}

