
1

Programming Language 
Constructs as Basis for 
Software Architectures



2

From individual parts to components

In the 50s:
Machine/Assembler programs: bound to specific 
hardware

In the 60s-70s:
Higher programming languages (such as Pascal, C)
Instructions can be combined into 
functions/procedures

Individual parts
In the 80s and 90s:

Functions/procedures are combined into Modules 
(Modula, Oberon, C++, Java, C#)

Software components



3

Example: A File handler component

Read file

Write file

. . .

Si
m

pl
e 

In
te

rf
ac

e

Hidden implementation details:
-Access to hard disc
-Splitting up file contents, etc.



4

Architecture-Patterns

Software-Patterns



5

The Timeless Way of Building

Christopher Alexander, Professor of 
Architecture, Univ. of California, Berkeley:

1979 published Books:
The Timeless Way of Building
A Patttern Language (253 Patterns)

Quality without a name

Discovered by the Software-Community 
in 1991



6

Example: Windows Overlooking Life



7

Examples of 
Software Patterns



8

How can software PlugIn-Architectures be 
created?

Described in Architecture manuals (1995):
E. Gamma, R. Helm, R. Johnson, J. Vlissides:
Design Patterns: Elements of Reusable Software

W. Pree:
Design Patterns for Object-Oriented Software 
Development



9

What are PlugIn-Architectures?

Modern cooking machine: plugging in 
various tools makes it a mixer, a 
mincer, a blender

New automodels resemble older 
ones in their core: chassis, 
transmission, engine pallet.



10

Software Examples

Dedicated software:
Hotel reservation system
Car rental system
Ski rental system
Motorcycle rental system
etc.

PlugIn-Architecture:
Reservation system
(of rental property)



11

Dedicated Software

Dependence between components is hard-coded 

Coupling with another component requires changes

Hotel room

Car



12

Pattern: PlugIn-Architectures require the 
definition of „Plugs“

Plug „Rental property“

Plug-compatible
Components



13

The so-called dynamic binding of calls makes changes 
in the source code unnecessary

m1()

m1()

m1()

call m1



14

The Rental property „Plug“

Defines general, abstract characteristics:

isFree(Period)
reserve(Period)
estimatedPrice(Period)
etc.



15

Software Techniques –
Quo vadis?



16

Cost intensive maintenance of 
software, which is 20 - 30 years old
Engineering approaches will be 
established at least in sub - domains 
such as safety critical systems



17

The simple, mechanical 
view is hardly scalable

Biological systems model
→ Internet growth by a 
factor of 100 million



Analysis and Design with UML

Software Engineering I
Winter 2006/2007

Basics of Object-Oriented 
Modeling

Dr. Stefan Resmerita



19

Tools for OO 
Analysis and 

Design



20

OO expectations

Improved modularity
Improved reusability

Potential for reusable software architectures 
(= generic complex components) has not been fully 
investigated so far

General development model
Analisys → Design → Implementation

Support for OO modeling is important



21

What can be expected from OOAD Tools (I)

Great designs come from great 
designers, not from great tools. 

Tools help bad designers create 
ghastly designs much more 
quickly.

Grady Booch
(1994)



22

What can be expected from OOAD Tools (II)

OOAD tools can perform:
Providing and editing diagrams based on various OO 
notations 
Checking of consistency and constraints

Does an object have the called method?
Are the invariants (e.g. single instance, etc.) satisfied?
...

Completness evaluation
Are all the Methods/Classes used?
...



23

Conventional (SA/SD) versus OO tools (I)

The main differences regard two aspects:

(1) Software Architecture
Conventional tools are based on a 
separation between data and functions

OO tools are based on the grouping of 
data and functions into meaningful 
„closed“ objects



24

Conventional (SA/SD) versus OO tools (II)

(2) Semantic possibilities 

Relationships in the conventional ER
One-to-one (1:1) – has_a, is_a
One-to-many (1:m) – owns, contains, 
is_contained_in
Many-to-many (m:n) – consists_of 



25

Conventional (SA/SD) versus OO tools (III)

OO modeling has more comprehensive 
means of expression

Class/Object relations and dependancies
Inheritance
Association
Has_a (by value, by reference)
Uses_a (by value, by reference)

Class attributes
Is_abstract, is_metaclass
Is_parameterized

Access rights



26

OO Techniques at the beginning of the 90s

OOD / Rational Rose
Grady Booch

Object Modeling Technique (OMT)
James Rumbaugh et al.

OO Software Engineering
Ivar Jacobson et al.

OO Analysis (OOA)
Peter Coad und Ed. Yourdon

Responsibility-Driven Design (RDD)
Rebecca Wirfs-Brock et al.

OO System Analysis (OOSA)
Sally Shlaer and Steve Mellor

. . .



27

Example for Booch notation

Folder

TextDocument

Mailer

1

N

1

1

N

N

1



28

Example of OMT notation

Mailer

... ...Folder

Mailbox

EmployeeGroup

Employee DesktopItem



29

Common features of OOAD methods (I)

They aim to represent the physical world 
without artificial transformations as a 
software system

Application of the same concepts in all 
phases of software development
The border between Analysis and Design 
becomes more blurred

Moreover, very vague usage guidelines are 
indicated



30

Common features of OOAD methods (II)

OOAD methods permit the modeling of the 
following aspects of a system:

Static aspects
The Class/Object model stands in the 
foreground
Higher abstraction levels are represented by 
Subsystems

Dynamic aspects
Interaction diagram 
State diagram
Use case diagram



31

Differences between OOAD methods

The differences between the methods lie mostly in the 
notation
The notations are to a large extent language 
independent
=> Standardization is obvious

All of the OO methodologies have 
much in common and should be 
contrasted more with non-OO 
methodologies than with each other.

James Rumbaugh
(1991)



32

UML influences

The Unified Modeling Language contains various 
aspects and notations from different methods

Booch
Harel (State Charts)

Rumbaugh (Notation)
Jacobson (Use Cases)
Wirfs-Brock (Responsibilities)
Shlaer-Mellor (Object Life Cycles)
Meyer (Pre- und Post-Conditions)



33

The UML standard

The first draft (version 0.8) was published in 1995
Various adjustments and the inclusion of Ivar 
Jacobson led to version 0.9 in 1996
Version 1.0 (an then 1.1) was submitted to the 
Object Management Group (OMG) in 1997 as 
basis for standardisation
Version 1.3 came out in 1999
Version 1.4.2 became an international standard in 
2005
Current OMG standard: version 2.0
Version 2.1 is in the works



34

The Unified Modeling Language (I)

What is the UML?

Language
Communication
Exchange of ideas

Modeling language
Words and rules for representing 
aspects of systems



35

The Unified Modeling Language (II)

What is UML not?

No method
Specifies how models are made but not 
which and when 
This is a task of the software 
development process

Method = Process + Modeling Language



36

The Unified Modeling Language (III)

Why is UML needed?

Model visualization
Model specification
Model checking
System construction

Forward and reverse engineering
System documentation



37

The Unified Modeling Language (IV)

Models
Projections of systems on certain aspects
Used for understanding systems



38

OO concepts 
UML representation
Objects, Classes, Messages/Methods
Inheritance, Polymorphism, Dynamic Binding
Abstract Classes, Abstract Coupling



39

OO versus Procedural (I)

Procedural: Separation between data and procedures



40

OO versus Procedural (II)

Object-oriented: Data and procedures form a logical 
unit an Object



41

Objects(I)

An object is a representation of 

A physical entity 
E.g. Person, Car, etc.

A logical entity
E.g. Chemical process, 
mathematical formula, etc.



42

Objects (II)

The main characteristics of an object are:

Its identity
Its state

Its behavior



43

Objects (III)

State
The state of an object consists of its 
static attributes and their dynamic values

Values can be primitive: int, double, 
boolean
Values can be references to other 
objects, or they can be other objects



44

Objects(IV)

Example
Drinks machine

1) Ready
2) Busy
3) Ready

Attributes – values
Paid: boolean
Cans: number of cans

Pay

Remove drink



45

Objects(V)

The behavior of an object is specified by 
its methods (=operations)

In principle, methods are conceptually 
equivalent to procedures/functions:

Methods = Name + Parameters + 
Return values



46

Objects(VI)

Example 
Rectangle

Name of the operation: setColor
Parameter: name of the color (e.g. Red)
Return values: none

Calling an operation of an object is 
reffered to as sending a message to the 
object



47

Objects(VII)

Identity
The identity of an object is the 
characteristic that differentiates the 
object from all the other objects

Two objects can be different even if 
their attributes, values and methods 
coincide



48

Object – Orientation 

Classification
Object grouping

Polymorphism 
Static and dynamic types
Dynamic binding

Inheritance
Type hierarchy



49

Classification

Class 

A class represents a set of objects 
that have the same structure and the 
same behavior

A class is a template from which 
objects can be generated



50

Classification Example

Class Person
Attributes:

Name: String
Age: int

Operations:
eat, sleep, ...

Object of type Person: Steffen
Attributes:

Name: Steffen
Age: 24



51

Class as a template/type (I)

Comparison with C

struct{
int day, month, year;

} date;
date d1, d2;

⇒ All are accessible
⇒ There is no method



52

Class as a template/type (II)

A class indicates which type an object has, 
i.e., which messages understands and which 
attributes it has.

A class consists of
A unique name
Attributes and their types
Methods/Operations


