
1

Modularization and
Software

Architectures

2

Improving Cohesion in the Butterfly Valve
Example

interface Throttle {
bool TurnThrottleOnOff(bool onOff);
bool SetThrottlePosition(float angle); // 0..90 Grad
float GetThrottlePosition();

}

Low cohesion:

3

Split up the module Throttle while maintaining
the interface

4

Example: Simulation
of Discrete Events

5

Discrete Events on a Time Axis

Simulation time

6

Framework for discrete event simulation

7

C# Implementation of Simulate()

public void Simulate(long duration) {
long endOfSimulation= simTime + duration;
do {
if (actors.Count() != 0) {

Actor actor= (Actor) actors.Dequeue();
simTime = actor.time;
actor.DoIt();

} else // no more actors enqueued
break; // exit loop

} while (simTime <= endOfSimulation);
}

8

Classes for the simulation of a simple bank
service counter

9

The DoIt() Method of Class CustomerGenerator

10

Lodging a customer in the queue

11

Decrease of the coupling between service
station and the actors

12

Description of
Software

Architectures

13

Definition of Software Architecture

The assembly of all the components (modules)
of a software system together with their
interactions.

14

Architectural styles

In the 90s, The Software Engineering Institute (SEI) of
the Carnegie Mellon University in Pittsburgh,
Pennsylvania, considerably contributed to the
establishment of architectural styles for the description
of software architectures.
SEI originally suggested a dedicated notation for
architecture description; since 2003, SEI has used also
the UML for that.

15

Examples of well described software
architectures

Project Oberon—The Design of an Operating System
and Compiler by Wirth and Reiser (Addison-Wesley
1992).
The informal description is supplemented by schematic
representations, screenshots, and source text.

Design Patterns of Gamma et al. (Addison-Wesley 1995)

16

Overview of SEI architectural styles

Architectural style Characteristics
Data-centered Repository Architecture

Blackboard Architecture
Data-flow Batch/Sequential Architecture

Pipes&Filters Architecture
Call & Return Top-Down Architecture

Network Architecture (Object oriented)
Layered Architecture

Virtual Machine Interpreter Architecture
Rule-based Architecture

Independent Components Event-driven Architecture

17

Data-centered (I)

In a Repository architecture the data is passive.
A Blackboard architecture has quasi-active data, which
informs the clients interested in changes. The
Blackboard architecture style is similar to the Observer
design pattern (Gamma et al., 1995).

Legend:

Component (UML package)

Bidirectional data flow

18

Data-centered (II)

Advantage:
Clients are independent from each other. Thus, a client
can be changed, without affecting the others. Also
further clients can be added.

This advantage pales if the architecture is changed in
such a way that clients are coupled closely (thus
deviating from the recommended architecture style), for
example in order to improve the performance of the
system.

19

Data-centered (III)

Issues that must be addressed:

Data consistency - synchronization of read/write
operations

Data security, access control

Single point of failure

20

Data-flow style: Batch/Sequential

The style describes a succession of transformations of
input data.
Data flow-oriented architecture parts are particularly
characterized by reusability and modifiability.
In the Batch/Sequential form, each transformation
procedure must be terminated before the next one
begins.

21

Data-flow style: Pipes&Filters

In the Pipes&Filters form, data is incrementally (not sequentially in
blocks) transformed. That is, the data is divided into smaller units
and these units are processed by the processes.
Pipes are stateless and transport the data from filter to filter in such
a way that each filter autonomously determines when it needs the
next element (input) of the data stream from the preceding filter.
The difference between Pipes&Filters and Batch/Sequential is not
evident in a UML representation.

22

Data-flow style: Advantages and Disadvantages

The main advantage of data-flow is the low complexity of
interactions between components. The processing
modules are black boxes.
The data-flow-oriented architecture style is unsuitable for
modeling interactive applications.
A further disadvantage is the frequently insufficient
performance and efficiency. If filters need the entire input
stream as context, appropriate buffers must be used.
That affects the memory efficiency negatively.
The data-flow style is well suited as basis for visual-
interactive composition. It is used for example in the tool
Simulink (from MathWorks).

