Modularization and
Software
Architectures

UNIVERSITAT
SALZBURG

interface Throttle {
bool TurnThrottleOnOff(bool onOff);

}

bool SetThrottlePosition(float angle); // 0..90 Grad

float GetThrottlePosition();

Low cohesion:

Throttle A

TurnThrottleOnO#

l'.iet'i'hmtﬂans -

SetThrottlePos -

Hardware-spezifischer Tell

Regler-implementierung

UNIVERSITAT
SALZBURG

<<interface>>
Throttle

TurnThrettleOnOf{(...)
SetThrottlePosition(...)
GetThrottlePosition(]

JAT

throttleHWA. TurnThrottleOnOff(...) |
~

throttleHWA SetActuatorCurrent(_.)

Throttlelmplementation

w<interface==
ThrottleHW Abstraction

return rl

~TurnThrottleOnOf{...)
' SetThrottlePosition(...)

GetThrottlePosition(]

TurnThrottleQnOf(...)
SetActuatorCurrent]...)
GetThrottlePosition(}

throttleHWA.GetThrottlePosition[);

BMWThrottle

TurnThrottleOnOff(...)
SetActuatorCurrent(...)
GetThrottlePosition{)

UNIVERSITAT
SALZBURG

Example: Simulation
of Discrete Events

UNIVERSITAT
SALZBURG

3 | Simulation time
! t
0 3 \5\ / 9

Actors

UNIVERSITAT
SALZBURG

Simulation

simTime: long
actors: SortedQueue

0

manages

*

Actor

time: long

Simulation()
Schedule(a: Actor)

Simulate(duration: long)
Reset()

Actor(t: long)
Dolt()

UNIVERSITAT
SALZBURG

public void Simulate(long duration) {
long endOfSimulation= simTime + duration;
do {
If (actors.Count() !'=0) {
Actor actor= (Actor) actors.Dequeue();
simTime = actor.time;
actor.Dolt();
} else /I no more actors enqueued
break; // exitloop
} while (simTime <= endOfSimulation);

UNIVERSITAT
SALZBURG

manages
Simulation > Actor
SimpleServiceStation oot D S Customer CustomerGenerator
waltingLine: FIFOQueue arrivalTime: long Dolt()
RequestService(Customer c) Dolt()
Free() Activate()
UNIVERSITAT

SALZBURG

: SimpleServiceStaton c¢: Customer : CustomerGenerator nextCG: CustomerGenerator

: Simulation
Dolt() !
. : .
(] - new
le RequestService(c)
" Schedule(nextCG)

generate customer and
request its service

generate next customer
generator and schedule it

UNIVERSITAT
SALZBURG

: Simulation : SimpleService Station c: Customer c: CustomerGenerator : Customer
: FIFOQueue RequesSenice(c)
Enqueue(c) I
returns ¢ b] customer has to wait
- Free()
Dequeue() [«
otf— .
» Activate() P customer gets served
Schedule(c)
customer is being served
Dolt()
P customer leaves system
Free()
UNIVERSITAT

10

SALZBURG

11

manages

Simulation Acior
<<interface>> *
ServiceStation 4.| Customer CustomerGenerator
processEvent(Event e) arrivalTime: long Dolt()
JAN Dot
1 Activate()
1
-1
SimpleServiceStation l:_
waitingLine: FIFOQueue 1
processEvent(Event e)
UNIVERSITAT

SALZBURG

Description of
Software
Architectures

UNIVERSITAT
SALZBURG

The assembly of all the components (modules)
of a software system together with their
Interactions.

UNIVERSITAT
SALZBURG

13

14

e In the 90s, The Software Engineering Institute (SEI) of
the Carnegie Mellon University in Pittsburgh,
Pennsylvania, considerably contributed to the
establishment of architectural styles for the description
of software architectures.

e SEI originally suggested a dedicated notation for
architecture description; since 2003, SEI has used also

the UML for that.

UNIVERSITAT
SALZBURG

15

e Project Oberon—The Design of an Operating System
and Compiler by Wirth and Reiser (Addison-Wesley
1992).

The informal description is supplemented by schematic
representations, screenshots, and source text.

e Design Patterns of Gamma et al. (Addison-Wesley 1995)

UNIVERSITAT
SALZBURG

16

Architectural style

Characteristics

Data-centered

Repository Architecture
Blackboard Architecture

Data-flow Batch/Sequential Architecture
Pipes&Filters Architecture
Call & Return Top-Down Architecture

Network Architecture (Object oriented)
Layered Architecture

Virtual Machine

Interpreter Architecture
Rule-based Architecture

Independent Components

Event-driven Architecture

UNIVERSITAT
SALZBURG

17

[] 1

:Client :Client

Legend:

// m Component (UML package)
- Bidirectional data flow
1

: Shared Data

e In a Repository architecture the data is passive.

e A Blackboard architecture has guasi-active data, which
Informs the clients interested in changes. The
Blackboard architecture style is similar to the Observer
design pattern (Gamma et al., 1995).

UNIVERSITAT
SALZBURG

Advantage:

e Clients are independent from each other. Thus, a client
can be changed, without affecting the others. Also
further clients can be added.

e This advantage pales if the architecture is changed Iin
such a way that clients are coupled closely (thus
deviating from the recommended architecture style), for

example in order to improve the performance of the
system.

UNIVERSITAT
SALZBURG

18

19

Issues that must be addressed:

e Data consistency - synchronization of read/write
operations

e Data security, access control

e Single point of failure

UNIVERSITAT
SALZBURG

5 F_BF 6

—x
q q-

— :Validate ‘Sort

:Report

e The style describes a succession of transformations of
Input data.

e Data flow-oriented architecture parts are particularly
characterized by reusability and modifiability.

e In the Batch/Sequential form, each transformation
procedure must be terminated before the next one
begins.

UNIVERSITAT
SALZBURG

20

21

Token [

— e
:Parser e

:Lexical

s ol

In the Pipes&Filters form, data is incrementally (not sequentially in
blocks) transformed. That is, the data is divided into smaller units
and these units are processed by the processes.

Pipes are stateless and transport the data from filter to filter in such
a way that each filter autonomously determines when it needs the
next element (input) of the data stream from the preceding filter.

The difference between Pipes&Filters and Batch/Sequential is not
evident in a UML representation.

UNIVERSITAT
SALZBURG

22

The main advantage of data-flow is the low complexity of
Interactions between components. The processing
modules are black boxes.

The data-flow-oriented architecture style is unsuitable for
modeling interactive applications.

A further disadvantage is the frequently insufficient
performance and efficiency. If filters need the entire input
stream as context, appropriate buffers must be used.
That affects the memory efficiency negatively.

The data-flow style is well suited as basis for visual-
Interactive composition. It is used for example in the tool

Simulink (from MathWorks).

UNIVERSITAT
SALZBURG

