
1

Construction of
Flexible Software

Chain of Responsibility
Design Patterns by Template & Hook
Factory Method, Abstract Factory

2

Chain Of Responsibility (COR)

public void M(){

... // try to satisfy the request

if (requestSatisfied == true)
return;

else
nextTH.M();

}

:Client
:TH

:TH

M() M()

3

COR by Gamma et al.

Different implementation of request servicing (the hook
part) are provided by subclassing

The subclasses must also care for the template part!

TH

M()

hRef

1

TH1

M()

TH2

M()

4

COR With a Separate Hook

public final void TM(){
requestSatisfied = HM();
if (requestSatisfied == true)

return;
else

nextTH.TM();
}

TH

TM()
HM():bool

hRef

1

TH1

HM()

TH2

HM()

t
h

5

Example: COR and Composite

Team111

TranspRobot1 TranspRobot2

Team11

Team112

Team1

Team12

PaintRobot1 PaintRobot2

CleanRobot2 TranspRobot4

CleanRobot1

6

Summary of the
Characteristics of OO

Construction
Principles

7

Characteristics of Template and Hook Methods

Construction Principles

Hook Method Hook Object Composite Decorator COR

Fe
at

ur
es

 o
f T

()
 a

nd
 H

()

Pl
ac

in
g

N
am

in
g

In
he

rit
an

ce

T() and H()

in the same

class

T() and H() in separate classes T() = H()

T() and H()

have different names

T() and H()

have the same name

n.a. H() inherits from T() T() = H()

8

Adaptability

Construction Principles

Hook Method Hook Object Composite Decorator COR

N
um

be
r o

f
in

vo
lv

ed
 o

bj
ec

ts
Ad

ap
ta

bi
lit

y

1

1(T) + 1(H)

or

1(T) + N(H)

N objects which are used in the same
way as a single object

By inheritance
and

instantiation of
the

corresponding
class

By composition

(at runtime, if necessary)

9

Construction
Principles and

Design Patterns

10

14 out of the 23 Design Patterns from Gamma
et al. Refer to OO Product Families

Konstruktionsprinzipien für OO Produktfamilien

Entwurfsmuster für OO Produktfamilien

basiert auf

Factory Method

Template Method Bridge

State
Strategy

Observer
Command

Builder Abstract Factory

Prototype

Interpreter

Hook-Method Hook-Object
Composite

Chain-Of-Responsibility

Decorator

11

Template and Hook Methods in the Factory
Method Design Pattern

12

Factory Method Example

Transportation

getNewVehicle():Vehicle
getPrice(Job):float
checkAvailable(Job):bool
TranspRequest(Job):bool

Vehicle

Move()
SetJob(Job)
StartJob(Job)

*

RoadTransportation

getNewVehicle():Vehicle
getPrice(Job):float

Truck

Move()

13

Semantics of the Hook method/class is the
basis for the naming in Design Patterns

The name and the functionality of the Hook method
and/or the Hook class express which aspect is kept
flexible in a design pattern.
In the Factory Method the object production is kept
flexible.
The same applies to the design patterns Abstract
Factory, State, Strategy, Builder, Observer, Command,
Prototype and Interpreter.
This kind of the naming is meaningful and therefore it is
recommended in the development of new design
patterns. We postulate the following rule: Hook
semantics determines the name of the design pattern.
This enables a systematical designation of DPs.

14

Flexible Object Production Based on Meta-
Information (e.g. in Java and C#)

+ No subclassing necessary
- Static type checking is bypassed

15

Abstract Factory Example

RobotFactory

CreateTranspRobot()
CreatePaintRobot()
CreateCleanRobot()

IRobotFactory

CreateTranspRobot()
CreatePaintRobot()
CreateCleanRobot()

RoboSoftFactory

CreateTranspRobot()
CreatePaintRobot()
CreateCleanRobot()

SimulatorEngine

processUserCommand()

1 refRobotFactory

// if user command is „TransportItem“
refRobotFactory.CreateTranspRobot()

return new IRobotTransport(); return new RobSoftTransport();

16

Factory Method (Hook Method) →
Abstract Factory (Hook Object)

The Hook method FactoryMethod () is simply shifted in a
separate class or interface

