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Outline of the material for 
the courses Software 
Engineering I and II
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Goals

Learning the mostly used approaches to software 
development (in the small and in the large)
Developing an understanding of what is good and what 
is bad software (-construction)
Knowing and understanding concepts and terms
Developing a first understanding of the „Software 
development in the large“
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Example isn‘t another 
way to teach, it is the 

only way to teach

Albert Einstein
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SE I (1)

Concepts and constructs for 
flexible software

Frameworks and Design Patterns
Software parameterization 
(configuration files, resources, 
script languages)
Heuristics for adequate flexibility
Model-driven architecture (MDA) 
of OMG
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SE I (2)

Concepts and constructs in Component-Based 
Design

The Module concept
Overview of standards for components 
(WebServices, JavaBeans, OSGi)
Heuristics for adequate modularization (Balance 
between Coupling and Cohesion in a Discrete 
Event Simulation example)
Methods for analysis of software architectures
Aspect Oriented Programming(AOP)
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SE II (1)

Transformational software 
development

Concepts for design 
systematization and for 
automatization of the 
implementation:

Formal Languages
Attribute Grammars
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SE II (2)

Process model
Software quality management
Legacy systems, re-engineering
Software metrics
Testing and verification 
Software development 
Modelling methods and tools
Configuration management
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Context

The phenomenon Software

How can Software be engineered?

Software techniques – Quo vadis?
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The Phenomenon 
Software
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The Computer as universal machine 
makes Software pervasive

ca. 70 Processors 
in a car

Airplane/Rocket control
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What is so special 
about Software?
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The problems with software production is the 
complexity of the achieved product

Requirements specification
Complexity control
Re-use/Plug-in, expandability and 
changeability
Automation in the production 
process
Portability
Documentation
Product ergonomics (Human-
Computer Interface)
Project organization and control
Quality assurance and evaluation
Cost estimation

Prototyping
Programming models

Design Patterns
Frameworks

Psychology (e.g. Piaget)
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Quality problems

Software bugs: deficiencies with drastic 
effects

Incorrect bank transactions
Y2K
Ariane 
Mars adventures

PathFinder
Spirit
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Human interaction problems

Human-Computer Interaction

Human-Machine Interaction
Interaction with automated systems
Example: Korean Air Lines Flight 007

Computer pervasiveness makes the human interaction 
issue very important
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KAL007
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Example: 
Specification 

problems
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An exact specification is often impracticable

given.: n ≥ 3,
L: Nn → N

find.:  A Program P that computes
a: N3 → Nn , such that

L(ai) ≥ L(aJ)
1 ≤ i ≤ 3       j ∈ Nn \ U { ak }

1 ≤ k ≤ j

inj
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...while a verbal specification is often inaccurate

Given a list with at least three positive 
numbers

Find a program P that gives the indices of the 
three largest elements of the list.
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Mastering 
Complexity
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In classical engineering disciplines

Bad quality can hardly be hidden
Door cannot close well
Unnecessary artifacts

• „Fifth wheel to the car“
Resources are limited

Engineering approaches mean 
optimization under the given basic 
conditions
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Bad quality is not so visible in software

Bad structuring
„Spaghetti“ program code:

Wheel change -> the motor works no 
more

Replicated program code

Hardly re-usable code
The wheel is always re-invented
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Engineering procedures do not seem to pay off

Hardware resources evolve according to 
Moore‘s Law; thoughtless handling of this issue 
leads to:

Unnecessary complexity
No longer understandable artifacts

Windows XP (2002):
40.000.000 (!!) lines 
of program code

27
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How can Software 
be engineered?
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What does Software?

Input Output

Function

Main memory

fast accessible 
data + programs

Processor (CPU)

Control signals

Data

Keyboard
Mouse
CD
Digital camera
...

Monitor
Printer
Disk
Loudspeaker
...
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Interaction with the environment

Interactive systems: the computer is the leader of the 
interaction

Examples: Operating systems, Database systems
Main issues: Deadlock, Fairness

Reactive systems: the environment is the leader of the 
interaction

Examples: Industrial process control, airplane control
Main issues: Safety, Timeliness
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Processing of photos from digital camera

90 °

Colors 
off
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More examples

ABS in automotive
Input: Rotational speeds of the wheels and user 
braking
Function: Checking whether the speeds are zero 
when the user brakes
Output: Appropriate controlling of the braking force

Bank transfers
Input: Transfer data (payee, payer, amount)
Function: Validation of the transaction
Output: New transaction lines in the accounts


