
Software Engineering I
Fall semester 2006/2007

Department of Computer Sciences
cs.uni-salzburg.at

Motivation and Contents Overview

Dr. Stefan Resmerita

2

Outline of the material for
the courses Software
Engineering I and II

3

Goals

Learning the mostly used approaches to software
development (in the small and in the large)
Developing an understanding of what is good and what
is bad software (-construction)
Knowing and understanding concepts and terms
Developing a first understanding of the „Software
development in the large“

4

Example isn‘t another
way to teach, it is the

only way to teach

Albert Einstein

5

SE I (1)

Concepts and constructs for
flexible software

Frameworks and Design Patterns
Software parameterization
(configuration files, resources,
script languages)
Heuristics for adequate flexibility
Model-driven architecture (MDA)
of OMG

6

SE I (2)

Concepts and constructs in Component-Based
Design

The Module concept
Overview of standards for components
(WebServices, JavaBeans, OSGi)
Heuristics for adequate modularization (Balance
between Coupling and Cohesion in a Discrete
Event Simulation example)
Methods for analysis of software architectures
Aspect Oriented Programming(AOP)

7

SE II (1)

Transformational software
development

Concepts for design
systematization and for
automatization of the
implementation:

Formal Languages
Attribute Grammars

8

SE II (2)

Process model
Software quality management
Legacy systems, re-engineering
Software metrics
Testing and verification
Software development
Modelling methods and tools
Configuration management

Software Engineering I
Fall semester 2006/2007

Department of Computer Sciences
cs.uni-salzburg.at

Software Technology:
State of the Art and Challenges

Dr. Stefan Resmerita

10

Context

The phenomenon Software

How can Software be engineered?

Software techniques – Quo vadis?

11

The Phenomenon
Software

12

The Computer as universal machine
makes Software pervasive

ca. 70 Processors
in a car

Airplane/Rocket control

13

What is so special
about Software?

14

The problems with software production is the
complexity of the achieved product

Requirements specification
Complexity control
Re-use/Plug-in, expandability and
changeability
Automation in the production
process
Portability
Documentation
Product ergonomics (Human-
Computer Interface)
Project organization and control
Quality assurance and evaluation
Cost estimation

Prototyping
Programming models

Design Patterns
Frameworks

Psychology (e.g. Piaget)

15

Quality problems

Software bugs: deficiencies with drastic
effects

Incorrect bank transactions
Y2K
Ariane
Mars adventures

PathFinder
Spirit

16

Human interaction problems

Human-Computer Interaction

Human-Machine Interaction
Interaction with automated systems
Example: Korean Air Lines Flight 007

Computer pervasiveness makes the human interaction
issue very important

17

KAL007

18

Example:
Specification

problems

19

An exact specification is often impracticable

given.: n ≥ 3,
L: Nn → N

find.: A Program P that computes
a: N3 → Nn , such that

L(ai) ≥ L(aJ)
1 ≤ i ≤ 3 j ∈ Nn \ U { ak }

1 ≤ k ≤ j

inj

20

...while a verbal specification is often inaccurate

Given a list with at least three positive
numbers

Find a program P that gives the indices of the
three largest elements of the list.

21

Mastering
Complexity

22

In classical engineering disciplines

Bad quality can hardly be hidden
Door cannot close well
Unnecessary artifacts

• „Fifth wheel to the car“
Resources are limited

Engineering approaches mean
optimization under the given basic
conditions

23

Bad quality is not so visible in software

Bad structuring
„Spaghetti“ program code:

Wheel change -> the motor works no
more

Replicated program code

Hardly re-usable code
The wheel is always re-invented

24

Engineering procedures do not seem to pay off

Hardware resources evolve according to
Moore‘s Law; thoughtless handling of this issue
leads to:

Unnecessary complexity
No longer understandable artifacts

Windows XP (2002):
40.000.000 (!!) lines
of program code

27
,5

 m
OberonOS (ETH ZH)
30.000 lines of
program code

4,
1

cm

25

How can Software
be engineered?

26

What does Software?

Input Output

Function

Main memory

fast accessible
data + programs

Processor (CPU)

Control signals

Data

Keyboard
Mouse
CD
Digital camera
...

Monitor
Printer
Disk
Loudspeaker
...

27

Interaction with the environment

Interactive systems: the computer is the leader of the
interaction

Examples: Operating systems, Database systems
Main issues: Deadlock, Fairness

Reactive systems: the environment is the leader of the
interaction

Examples: Industrial process control, airplane control
Main issues: Safety, Timeliness

28

Processing of photos from digital camera

90 °

Colors
off

29

More examples

ABS in automotive
Input: Rotational speeds of the wheels and user
braking
Function: Checking whether the speeds are zero
when the user brakes
Output: Appropriate controlling of the braking force

Bank transfers
Input: Transfer data (payee, payer, amount)
Function: Validation of the transaction
Output: New transaction lines in the accounts

