Part 8: Transparent Distribution

Claudiu Farcas

Credits: MODECS Project Team, Giotto
Department of Computer Science
cs.uni-salzburg.at

UNIVERSITAT
SALZBURG

e Motivation

e Transparent Distribution
e Bus Schedule Generation Tool
e Module stubs and TDL Run-time Environment

UNIVERSITAT

2 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ SALZBURG

== MOST-Bus

Multimedia
: C subsystems
Benefits from distribution: CAN-Bus
e Scalability (CPU, 10) mm Powertrain and body electronics
B comfort / climatronic
e Low-cost components
e Fault Tolerance
UNIVERSITAT
SALZBURG

3 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ

e the functional and temporal behavior of a
system iIs the same no matter where a
component is executed

e developer’s perspective:
NO difference between local and distributed
execution of components

e OEM-supplier perspective:

the components can be developed
Independently

UNIVERSITAT
4 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ SALZBURG

5

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ

plant

software component

(hard real-time control system)
computing platform,
for example, MPC555+0OSEK

UNIVERSITAT
SALZBURG

component M2 added later,
If required even at run-time

exactly defined
communication semantics

l (TDL programming model)

UNIVERSITAT

6 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ SALZBURG

e deterministic timing and communication behavior

e Independent of the computing and communication
platform
=> portability through automatic code generation
and run-time environment

o
>
-
<

FlexRay
TTCAN,
EtherCAT, etc. UNIVERSITAT

7 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ SALZBURG

e abstractions for embedded software that
= ignore the platform details, but

= capture the essence of embedded hard-real-
time systems

=> Timing Definition Language (TDL)
e run-time environment that
= efficiently executes programs

= |s flexible enough to allow dynamic changes
(adding/replacing/moving of components)

=> TDL run-time environment

8 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ

UNIVERSITAT
SALZBURG

Logical Execution Time (LET)

—

Logical <

4 task invocation >time

B>
Physical Time for communication

start suspend resume stop

- LET means that the observable temporal
behavior of a task is independent from its
physical execution.

» We gain crucial software properties:

determinism, portability, composability

UNIVERSITAT

9 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ SALZBURG

M1 | node 1

bus

M2 | node 2
M3

Unit of distribution:
Behavior:
Communication:

Medium access control:

Cooperation model:

10 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ

TDL module

as if executed locally

via broadcast (bus)

TDMA (time-slotting)
Producer-Consumer (Push)

UNIVERSITAT
SALZBURG

M1 | node 1

bus

M2
M3

node 2 node 3

M1

taskl}

M2
task?

A 4

UNIVERSITAT
SALZBURG

11 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ

~ i LET1

time
nodel< .
bUS —- - e R e - -
4 i >
R N I
node2< i " il y R
M2 | |
LET2
-
e messages are sent according to a bus schedule (TDMA)
UNIVERSITAT
SALZBURG

12 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ

gime

nodel<

v

bus —-——-—-— -

r >
comm2 | l

node2-< M2] N

LET2

e if consumer runs slower e.g. by a factor of 2
e redundant message are avoided
e saves bandwidth

UNIVERSITAT

13 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ SALZBURG

nodel<
comml ‘
L >
bUS ———— - ——-»
4 i >
comm2 | l
node2-< M2] N
L 5 LET2

e if the consumer needs variable later than the producer’'s LET
e can lead to better bus utilization

UNIVERSITAT

14 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ SALZBURG

~ i LET1

time
nodel~]
bus ---------- e L ——-»
4 i >
comm2 | l l
odez] o\ I - =
I LET2
-
e the release of the receiver can be delayed until the message with
the input variable is received
UNIVERSITAT
SALZBURG

15 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ

Bus Schedule
Generation Tool

UNIVERSITAT

16 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ SALZBURG

functionality
code

—’ Compiler —’II E-machine

Platform
plugin

UNIVERSITAT

17 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ anleBlkS

functionality
code

g L
—’ Compiler _'_’II E-machine

: : N
: : >
i AST
. | Bus Scheduler |
e] Sy
| plugin :
| l AST
platform II — Platform : —
specific ! plugin
UNIVERSITAT
SALZBURG

18 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ

It generates a global bus schedule file, which contains the
following information:

= Which node has to send a packet and when.
= Which nodes have to receive a packet and when.

= The content for bus packets (a corresponding
datagram, which has one or more items/variables).

UNIVERSITAT
19 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ SALZBURG

e TDL modules

e Platform description file
= module to node assignment

= physical bus properties (e.g., bus frequency,
protocol overhead, inter frame gaps, min/max
payload)

The tool automatically detects:

e Who has to communicate with whom.

e Which messages are needed in a communication cycle
(bus period).

UNIVERSITAT

20 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ SALZBURG

21

Results a set of messages.

e A message has: a Sender port, one or more Receiver
ports, size.

e A Sender or Receiver port has: unique qualified
identifier, period, and WCET.

e Senders: sensors, task output ports.

e Receivers: actuators, task input ports, guard arguments.

UNIVERSITAT
© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ SALZBURG

Results a set of message instances, with individual timing constraints:
= Release Offset
= Deadline

e Basic Producer-Consumer:
= Send messages with the frequency of the Sender:
= Message deadline = sender deadline.
= BusPeriod = LCM(Sender.period)

e Optimized Producer-Consumer:
= Send messages only when they are needed by the Receivers.

= Message deadline depends on the optimization (e.g., = receiver
release time).

= BusPeriod = LCM(Sender.period, Receiver.period)

UNIVERSITAT
22 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ SALZBURG

Sender:

Deadline!
- , LET1 = _
M1 time
nodel< i "
comml R
bus -+ - >
comm2 li
n0d62< M2 E - : >
- HETe Messagei
Deadline:

23 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ

UNIVERSITAT
SALZBURG

Current approach:
e 2 Steps scheduling:
= schedule first the messages.

= schedule then the tasks with deadlines constraints from
messages.

e Optimizations:
= We build bus schedulers which allow more flexibility for the task
scheduler.

= We try several bus schedulers and get feedback from the TSC
for tasks.

= Schedule individual messages or merge messages sent from the
same node

UNIVERSITAT

24 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ SALZBURG

e Heuristic schedule - Latest Deadline Last (variant of
Reversed EDF)

= Schedule messages as late as possible
= May fail even when a schedule exists

e Optimal schedule
= Branch and bound search
= Exponential complexity in the worst case.

UNIVERSITAT

25 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ SALZBURG

m3

<

time
A

ml

v

A

m2

!

v

Released messages {m1, m2, m3}

26 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ

m3

i time

I 1

v

|

h 4

v

LDL scheduling {m2, m1, m3}

UNIVERSITAT
SALZBURG

e Sorts the list of messages by:
= Keyl = message deadline
= Key2 = message release time
= Key3 = sender deadline

e Bus Scheduler is non-preemptive and just schedules the
messages In the resulted order.

= Starts from the end of the Bus Period

= Merges messages if they have to be sent by the same
node, and are adjacent.

UNIVERSITAT

27 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ SALZBURG

! Ay e

w1t

R
LDL scheduling failure {m2, m1}

28 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ

I

!

v

Search scheduler {m1, m2}

UNIVERSITAT
SALZBURG

e Relevant for:
= Merging messages (min/max payload)
= WCCT (Bps, protocol overhead)
= Time alignment (inter frame gaps, clock resolution)
= Control packets (time synchronization)

e Clock Resolution:
= TDL time unit is microsecond (us).

= Different platforms have a given clock resolution (e.g.,
1ms or 100us).

= Bus communication is computed in microseconds or
even nanoseconds.

UNIVERSITAT

29 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ SALZBURG

| [=l time
Scheduled m1 >

ml

v

Aligned m1

Scheduled m2 m2

v

m2

v

Aligned m2

m2 ml

Merged m1+m2

v

m2 ml

v

Aligned m1+m2

UNIVERSITAT

30 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ SALZBURG

Metrics relevant for efficient bus utilization:
e Throughput

e Bus utilization

e Average data efficiency

e Maximum and average sending rates

e Maximum and average receiving rates

Metrics relevant for flexibility in task scheduling:
e Minimum and average release-send intervals
e Minimum and average relative release-send intervals

UNIVERSITAT

31 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ SALZBURG

Module stubs and the
TDL E-Machine

UNIVERSITAT

32 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ SALZBURG

e runs on each computing node
e executes E-code instructions at logical time instances

e Implementation is platform dependent (OSEK, InTime,
RTLinux, Java)

e itis fast and lightweight (e.g. 13 KB for the OSEK E-
machine).

e supports three kinds of module executions:
= local,
= push, and
= stub.

UNIVERSITAT

33 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ SALZBURG

M2 imports M1
M4 imports M1, M3

UNIVERSITAT

34 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ SALZBURG

nodel<

stop
driver

terminate
river

node2<

release
driver

1

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ

v

v

v

v

UNIVERSITAT
SALZBURG

M2 imports M1
M4 imports M1, M3

M1 Ppush | hode 1

M2 Tocal |node?2 M4 local | node 3
M3~push M1 stub
M1 stub M3 stub

UNIVERSITAT

36 © 2005 C. Farcas, E. Farcas, W. Pree and J. Templ aalZBURG

	Overview
	Motivation
	The advantages of transparent distribution
	Transparent distribution in a nutshell
	Transparent distribution in a nutshell
	Transparent distribution in a nutshell
	What do we need to achieve transparent distribution?
	The Giotto/TDL core abstraction: LET
	Sample distribution of TDL components�M1, M2, M3, M4
	Sample distribution of TDL components�M1, M2, M3, M4
	The purpose of the TDL-Comm layer
	Optimization I
	Optimization II
	Optimization III
	
	Tool chain – Single Node setup
	Tool chain – Distributed system
	What Does the Tool Do?
	What Does the Tool Need?
	Who has to Communicate with Whom
	Messages Needed in a Bus Period
	Message Deadline in Optimization II
	Message Scheduling	
	Scheduling Algorithms
	Latest Deadline Last - Example
	Latest Deadline Last
	Search Scheduler - Example
	Bus Properties as Constraints
	Merging Messages and Clock Resolution
	Measurements
	
	TDL run-time system: E-Machine
	Module import relationships
	E-Machine actions
	Module execution attributes

