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Motivation

MOST-Bus
Multimedia
subsystems

CAN-Bus
powertrain and body electronics
comfort / climatronic

Benefits from distribution:
Scalability (CPU, IO)
Low-cost components
Fault Tolerance
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The advantages of transparent distribution

the functional and temporal behavior of a 
system is the same no matter where a 
component is executed
developer’s perspective: 
NO difference between local and distributed 
execution of components
OEM-supplier perspective:
the components can be developed 
independently
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Transparent distribution in a nutshell 

computing platform, 
for example, MPC555+OSEK

software component 
(hard real-time control system)

plant
A S

M1
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Transparent distribution in a nutshell

M1
M2

component M2 added later,
if required even at run-time

exactly defined 
communication semantics
(TDL programming model)
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Transparent distribution in a nutshell

deterministic timing and communication behavior
independent of the computing and communication 
platform 
=> portability through automatic code generation

and run-time environment

M1 M2

FlexRay
TTCAN, 
EtherCAT, etc.
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What do we need to achieve transparent 
distribution?

abstractions for embedded software that 
ignore the platform details, but 
capture the essence of embedded hard-real-
time systems

=> Timing Definition Language (TDL)
run-time environment that 

efficiently executes programs
is flexible enough to allow dynamic changes 
(adding/replacing/moving of components)

=> TDL run-time environment



© 2005  C. Farcas, E. Farcas, W. Pree and J. Templ9

The Giotto/TDL core abstraction: LET

LET means that the observable temporal 
behavior of a task is independent from its 
physical execution.

we gain crucial software properties: 
determinism, portability, composability

timetask invocation

Logical Execution Time (LET)

Logical

Physical

start stopsuspend resume

release terminate

Time for communication
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Sample distribution of TDL components
M1, M2, M3, M4

Unit of distribution: TDL module
Behavior: as if executed locally
Communication: via broadcast (bus)
Medium access control: TDMA (time-slotting)
Cooperation model: Producer-Consumer (Push)

bus

M2
M3

M1

M4

node 1

node 2 node 3



© 2005  C. Farcas, E. Farcas, W. Pree and J. Templ11

Sample distribution of TDL components
M1, M2, M3, M4

bus

M2
M3

M1

M4

node 1

node 2 node 3

task1

M1 M2

task2
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The purpose of the TDL-Comm layer 

M1

comm1

comm2

time
LET1

bus

LET2

node1 

node2 
M2

messages are sent according to a bus schedule (TDMA)
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Optimization I

if consumer runs slower e.g. by a factor of 2
redundant message are avoided
saves bandwidth

M1

M2

comm1

comm2

time
LET1

bus

LET2

node1 

node2 
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Optimization II

if the consumer needs variable later than the producer’s LET 
can lead to better bus utilization

M1

M2

comm1

comm2

time
LET1

bus

LET2

node1 

node2 
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Optimization III

the release of the receiver can be delayed until the message with 
the input variable is received

M1

M2

comm1

comm2

time
LET1

bus

LET2

node1 

node2 
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Bus Schedule 
Generation Tool
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Tool chain – Single Node setup

.tdl Compiler E-machine

AST

.ecode

functionality 
code

Platform
plugin

platform
specific

platform
specific
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Tool chain – Distributed system

.tdl Compiler E-machine

Bus Scheduler
plugin

AST

.ecode

functionality 
code

Platform
plugin

platform
specific

AST

platform
specific

platform busch
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What Does the Tool Do?

It generates a global bus schedule file, which contains the 
following information:

Which node has to send a packet and when.

Which nodes have to receive a packet and when.

The content for bus packets (a corresponding 
datagram, which has one or more items/variables).
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What Does the Tool Need?

TDL modules
Platform description file

module to node assignment
physical bus properties (e.g., bus frequency, 
protocol overhead, inter frame gaps, min/max 
payload)

The tool automatically detects:
Who has to communicate with whom.
Which messages are needed in a communication cycle 
(bus period).



© 2005  C. Farcas, E. Farcas, W. Pree and J. Templ21

Who has to Communicate with Whom

Results a set of messages.

A message has: a Sender port, one or more Receiver 
ports, size.

A Sender or Receiver port has: unique qualified 
identifier, period, and WCET.

Senders: sensors, task output ports.

Receivers: actuators, task input ports, guard arguments. 
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Messages Needed in a Bus Period

Results a set of message instances, with individual timing constraints:
Release Offset
Deadline

Basic Producer-Consumer:
Send messages with the frequency of the Sender:
Message deadline = sender deadline.
BusPeriod = LCM(Sender.period)

Optimized Producer-Consumer:
Send messages only when they are needed by the Receivers.
Message deadline depends on the optimization (e.g., = receiver 
release time).
BusPeriod = LCM(Sender.period, Receiver.period)
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Message Deadline in Optimization II

M1

M2

comm1

comm2

time
LET1

bus

LET2

node1 

node2 

Sender 
Deadline

Message 
Deadline
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Message Scheduling

Current approach: 
2 Steps scheduling: 

schedule first the messages. 
schedule then the tasks with deadlines constraints from 
messages.

Optimizations:
We build bus schedulers which allow more flexibility for the task 
scheduler.
We try several bus schedulers and get feedback from the TSC 
for tasks.
Schedule individual messages or merge messages sent from the 
same node
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Scheduling Algorithms

Heuristic schedule - Latest Deadline Last (variant of 
Reversed EDF)

Schedule messages as late as possible
May fail even when a schedule exists

Optimal schedule 
Branch and bound search 
Exponential complexity in the worst case.
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Latest Deadline Last - Example

m3

m1

m2

Released messages {m1, m2, m3}

time m3

m1

m2

LDL scheduling {m2, m1, m3}

time
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Latest Deadline Last

Sorts the list of messages by:
Key1 = message deadline
Key2 = message release time
Key3 = sender deadline

Bus Scheduler is non-preemptive and just schedules the 
messages in the resulted order.

Starts from the end of the Bus Period
Merges messages if they have to be sent by the same 
node, and are adjacent.
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Search Scheduler - Example

m1

m2

LDL scheduling failure {m2, m1}

time m1

m2

Search scheduler {m1, m2}

time



© 2005  C. Farcas, E. Farcas, W. Pree and J. Templ29

Bus Properties as Constraints

Relevant for:
Merging messages (min/max payload)
WCCT (Bps, protocol overhead) 
Time alignment (inter frame gaps, clock resolution)
Control packets (time synchronization)

Clock Resolution:
TDL time unit is microsecond (us).
Different platforms have a given clock resolution (e.g., 
1ms or 100us).
Bus communication is computed in microseconds or 
even nanoseconds.
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Merging Messages and Clock Resolution

m1

m1

m2

m2

Scheduled m1

Scheduled m2

Aligned m1

Aligned m2

m1m2

m1m2

Merged m1+m2

Aligned m1+m2

time
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Measurements

Metrics relevant for efficient bus utilization:
Throughput 
Bus utilization
Average data efficiency
Maximum and average sending rates
Maximum and average receiving rates

Metrics relevant for flexibility in task scheduling:
Minimum and average release-send intervals
Minimum and average relative release-send intervals
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Module stubs and the
TDL E-Machine
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TDL run-time system: E-Machine

runs on each computing node
executes E-code instructions at logical time instances
implementation is platform dependent (OSEK, InTime, 
RTLinux, Java)
it is fast and lightweight (e.g. 13 KB for the OSEK E-
machine).

supports three kinds of module executions: 
local, 
push, and 
stub.
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Module import relationships

bus

M2
M3

M1

M4node 2

node 1

node 3

M2 imports M1

M4 imports M1, M3
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E-Machine actions

M1

comm1

comm2

time
LET1

bus

LET2

node1 

node2 

M2

stop 
driver

release 
driver

M1 stub

terminate 
driver
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Module execution attributes

bus

M2
M3
M1 stub

M1 node 1

node 2

M2 imports M1

M4 imports M1, M3

node 3M4

M1 stub
M3 stub

push

push
local local
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