
Part 8: Transparent Distribution

Claudiu Farcas

Credits: MoDECS Project Team, Giotto
Department of Computer Science

cs.uni-salzburg.at

Model Based Development of
Embedded Control Software

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ2

Overview

Motivation
Transparent Distribution
Bus Schedule Generation Tool
Module stubs and TDL Run-time Environment

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ3

Motivation

MOST-Bus
Multimedia
subsystems

CAN-Bus
powertrain and body electronics
comfort / climatronic

Benefits from distribution:
Scalability (CPU, IO)
Low-cost components
Fault Tolerance

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ4

The advantages of transparent distribution

the functional and temporal behavior of a
system is the same no matter where a
component is executed
developer’s perspective:
NO difference between local and distributed
execution of components
OEM-supplier perspective:
the components can be developed
independently

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ5

Transparent distribution in a nutshell

computing platform,
for example, MPC555+OSEK

software component
(hard real-time control system)

plant
A S

M1

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ6

Transparent distribution in a nutshell

M1
M2

component M2 added later,
if required even at run-time

exactly defined
communication semantics
(TDL programming model)

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ7

Transparent distribution in a nutshell

deterministic timing and communication behavior
independent of the computing and communication
platform
=> portability through automatic code generation

and run-time environment

M1 M2

FlexRay
TTCAN,
EtherCAT, etc.

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ8

What do we need to achieve transparent
distribution?

abstractions for embedded software that
ignore the platform details, but
capture the essence of embedded hard-real-
time systems

=> Timing Definition Language (TDL)
run-time environment that

efficiently executes programs
is flexible enough to allow dynamic changes
(adding/replacing/moving of components)

=> TDL run-time environment

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ9

The Giotto/TDL core abstraction: LET

LET means that the observable temporal
behavior of a task is independent from its
physical execution.

we gain crucial software properties:
determinism, portability, composability

timetask invocation

Logical Execution Time (LET)

Logical

Physical

start stopsuspend resume

release terminate

Time for communication

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ10

Sample distribution of TDL components
M1, M2, M3, M4

Unit of distribution: TDL module
Behavior: as if executed locally
Communication: via broadcast (bus)
Medium access control: TDMA (time-slotting)
Cooperation model: Producer-Consumer (Push)

bus

M2
M3

M1

M4

node 1

node 2 node 3

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ11

Sample distribution of TDL components
M1, M2, M3, M4

bus

M2
M3

M1

M4

node 1

node 2 node 3

task1

M1 M2

task2

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ12

The purpose of the TDL-Comm layer

M1

comm1

comm2

time
LET1

bus

LET2

node1

node2
M2

messages are sent according to a bus schedule (TDMA)

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ13

Optimization I

if consumer runs slower e.g. by a factor of 2
redundant message are avoided
saves bandwidth

M1

M2

comm1

comm2

time
LET1

bus

LET2

node1

node2

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ14

Optimization II

if the consumer needs variable later than the producer’s LET
can lead to better bus utilization

M1

M2

comm1

comm2

time
LET1

bus

LET2

node1

node2

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ15

Optimization III

the release of the receiver can be delayed until the message with
the input variable is received

M1

M2

comm1

comm2

time
LET1

bus

LET2

node1

node2

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ16

Bus Schedule
Generation Tool

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ17

Tool chain – Single Node setup

.tdl Compiler E-machine

AST

.ecode

functionality
code

Platform
plugin

platform
specific

platform
specific

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ18

Tool chain – Distributed system

.tdl Compiler E-machine

Bus Scheduler
plugin

AST

.ecode

functionality
code

Platform
plugin

platform
specific

AST

platform
specific

platform busch

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ19

What Does the Tool Do?

It generates a global bus schedule file, which contains the
following information:

Which node has to send a packet and when.

Which nodes have to receive a packet and when.

The content for bus packets (a corresponding
datagram, which has one or more items/variables).

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ20

What Does the Tool Need?

TDL modules
Platform description file

module to node assignment
physical bus properties (e.g., bus frequency,
protocol overhead, inter frame gaps, min/max
payload)

The tool automatically detects:
Who has to communicate with whom.
Which messages are needed in a communication cycle
(bus period).

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ21

Who has to Communicate with Whom

Results a set of messages.

A message has: a Sender port, one or more Receiver
ports, size.

A Sender or Receiver port has: unique qualified
identifier, period, and WCET.

Senders: sensors, task output ports.

Receivers: actuators, task input ports, guard arguments.

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ22

Messages Needed in a Bus Period

Results a set of message instances, with individual timing constraints:
Release Offset
Deadline

Basic Producer-Consumer:
Send messages with the frequency of the Sender:
Message deadline = sender deadline.
BusPeriod = LCM(Sender.period)

Optimized Producer-Consumer:
Send messages only when they are needed by the Receivers.
Message deadline depends on the optimization (e.g., = receiver
release time).
BusPeriod = LCM(Sender.period, Receiver.period)

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ23

Message Deadline in Optimization II

M1

M2

comm1

comm2

time
LET1

bus

LET2

node1

node2

Sender
Deadline

Message
Deadline

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ24

Message Scheduling

Current approach:
2 Steps scheduling:

schedule first the messages.
schedule then the tasks with deadlines constraints from
messages.

Optimizations:
We build bus schedulers which allow more flexibility for the task
scheduler.
We try several bus schedulers and get feedback from the TSC
for tasks.
Schedule individual messages or merge messages sent from the
same node

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ25

Scheduling Algorithms

Heuristic schedule - Latest Deadline Last (variant of
Reversed EDF)

Schedule messages as late as possible
May fail even when a schedule exists

Optimal schedule
Branch and bound search
Exponential complexity in the worst case.

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ26

Latest Deadline Last - Example

m3

m1

m2

Released messages {m1, m2, m3}

time m3

m1

m2

LDL scheduling {m2, m1, m3}

time

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ27

Latest Deadline Last

Sorts the list of messages by:
Key1 = message deadline
Key2 = message release time
Key3 = sender deadline

Bus Scheduler is non-preemptive and just schedules the
messages in the resulted order.

Starts from the end of the Bus Period
Merges messages if they have to be sent by the same
node, and are adjacent.

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ28

Search Scheduler - Example

m1

m2

LDL scheduling failure {m2, m1}

time m1

m2

Search scheduler {m1, m2}

time

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ29

Bus Properties as Constraints

Relevant for:
Merging messages (min/max payload)
WCCT (Bps, protocol overhead)
Time alignment (inter frame gaps, clock resolution)
Control packets (time synchronization)

Clock Resolution:
TDL time unit is microsecond (us).
Different platforms have a given clock resolution (e.g.,
1ms or 100us).
Bus communication is computed in microseconds or
even nanoseconds.

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ30

Merging Messages and Clock Resolution

m1

m1

m2

m2

Scheduled m1

Scheduled m2

Aligned m1

Aligned m2

m1m2

m1m2

Merged m1+m2

Aligned m1+m2

time

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ31

Measurements

Metrics relevant for efficient bus utilization:
Throughput
Bus utilization
Average data efficiency
Maximum and average sending rates
Maximum and average receiving rates

Metrics relevant for flexibility in task scheduling:
Minimum and average release-send intervals
Minimum and average relative release-send intervals

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ32

Module stubs and the
TDL E-Machine

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ33

TDL run-time system: E-Machine

runs on each computing node
executes E-code instructions at logical time instances
implementation is platform dependent (OSEK, InTime,
RTLinux, Java)
it is fast and lightweight (e.g. 13 KB for the OSEK E-
machine).

supports three kinds of module executions:
local,
push, and
stub.

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ34

Module import relationships

bus

M2
M3

M1

M4node 2

node 1

node 3

M2 imports M1

M4 imports M1, M3

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ35

E-Machine actions

M1

comm1

comm2

time
LET1

bus

LET2

node1

node2

M2

stop
driver

release
driver

M1 stub

terminate
driver

© 2005 C. Farcas, E. Farcas, W. Pree and J. Templ36

Module execution attributes

bus

M2
M3
M1 stub

M1 node 1

node 2

M2 imports M1

M4 imports M1, M3

node 3M4

M1 stub
M3 stub

push

push
local local

	Overview
	Motivation
	The advantages of transparent distribution
	Transparent distribution in a nutshell
	Transparent distribution in a nutshell
	Transparent distribution in a nutshell
	What do we need to achieve transparent distribution?
	The Giotto/TDL core abstraction: LET
	Sample distribution of TDL components�M1, M2, M3, M4
	Sample distribution of TDL components�M1, M2, M3, M4
	The purpose of the TDL-Comm layer
	Optimization I
	Optimization II
	Optimization III
	
	Tool chain – Single Node setup
	Tool chain – Distributed system
	What Does the Tool Do?
	What Does the Tool Need?
	Who has to Communicate with Whom
	Messages Needed in a Bus Period
	Message Deadline in Optimization II
	Message Scheduling	
	Scheduling Algorithms
	Latest Deadline Last - Example
	Latest Deadline Last
	Search Scheduler - Example
	Bus Properties as Constraints
	Merging Messages and Clock Resolution
	Measurements
	
	TDL run-time system: E-Machine
	Module import relationships
	E-Machine actions
	Module execution attributes

