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Time-Safety Checking– The Goals!
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Time-Safety Checking - Failure
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Time-Safety Checking - Success
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Concepts

Scheduler 
- provides the order in which tasks will get access to 

the processor
Schedule
- Is feasible if the execution of all tasks meets given 

constraints
- set of tasks is feasible, i.e. schedulable if there is at 

least one feasible schedule of those tasks
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Optimality for schedulers

A scheduling algorithm A is optimal among a category of 
scheduling algorithms if:

Any systems that A cannot schedule cannot be scheduled 
by any other scheduling algorithms in the same category



© 2005 C. Farcas8

Timing constraints of task instances

release time ri,j – the instant in time when a task instance 
becomes available for execution (task i, instance j)
deadline di,j – the instant in time by which the execution 
of the task instance is require to complete. It is an 
absolute deadline.

Hard real-time constraint - failure to meet any deadline is 
considered a fatal flaw
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Task attributes 

Task τi
period Ti

worst-case execution time Ci - difficult to estimate
relative deadline Di - the maximum allowable response 
time, di = ri + Di

phase φi – the release time ri,1 of first task instance τi,1
Ri – worst-case response time

processor utilization 
i

i
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Worst case execution time analysis

Measuring
- Ifs, calculating cycles (for), bounding loops (while), 

hashes, ...
- Analysis tools – statical code analysis + profiling + 

heuristics

Complications
- Caches, Memory latency, Interrupts, DMA, compiler 

optimizations, function pointers, ...
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Complex Task Models

Dependencies among tasks 
- Precedence graph

Resource requirements of tasks 
- Blocking due to mutual exclusion

Aperiodic tasks
- Event driven

=> not used in the TDL model. We use the schedulability
analysis for periodic, independent, preemptable tasks.
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Approaches to Hard Real-Time 
Scheduling

Clock-driven approach
- Decisions on what tasks execute are made at specific time 

instants
- Static off-line scheduling

Weighted round-robin approach
- Time sharing
- Size of time slice given to task depends on its weight
- Appropriate for traffic scheduling

Priority-driven approach
- Task instances have fixed or dynamic priorities
- Scheduler assigns the processor to highest priority task instance
- On-line greedy scheduling
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Processor Utilization Metric

The processor utilization factor is the fraction of the processor time 
spent in the execution of the task set:

Time safety check: for a given algorithm A, we can compute the least 
upper bound Ulub (A)

If U > 1 no scheduling algorithms can guarantee the schedulability 
If U ≤ Ulub(A) the tasks are schedulable by algorithm A

This condition is sufficient but not necessary.

If Ulub(A) <U ≤ 1, nothing can be said on the feasibility of the task 
set. 
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Fixed-priority scheduling

Rate Monotonic Scheduling (RM)
Priority = rate = 1/period
Tasks with smaller periods have higher priorities
Optimal among all fixed-priority algorithms for task sets 
with Di=Ti
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Processor Utilization Bound for RM

RM Utilization Bound for Di=Ti

for n tasks:
Ulub(2) = 0.828

Time Safety Check: U ≤ Ulub

Only sufficient test
How do we test schedulability for RM when Ulub<U ≤ 1?
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Dynamic-priority Scheduling

Earliest Deadline First (EDF)
Priority = absolute deadline
Tasks with earlier deadlines have higher priorities
Optimal among all scheduling algorithms

EDF Utilization Bound for Di=Ti
Ulub=1
TSC: U ≤ 1
Necessary and sufficient test
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EDF vs. RM example

Two tasks τ1, τ2
- C1=2 , T1=D1=5
- C2=4 , T2=D2=7

1.1

2.1

τ1
τ2

0 2 4 6 8 10 12 14 16 18 20 22   t

1.2

2.2

1.3

2.3 2.3

1.4 1.5

EDF

1.1

2.1

τ1
τ2

1.2

2.2

1.3

2.3 2.3

1.4 1.5

2.1 2.2
0 2 4 6 8 10 12 14 16 18 20 22   t

miss

RM



© 2005 C. Farcas18

Next Steps – Deadlines less than periods

Important in distributed applications when task must 
terminate before the period, to allow the communication 
on the bus

EDF -> EDF with deadlines less than periods

RM -> Deadline Monotonic Scheduling (DMS)
priority = relative deadline
optimal fixed priority scheduling algorithm when Di ≤ Ti
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Fixed-priority scheduling - Critical Instant

Critical Instant = instant at which a request for that task 
will have the maximum response time

Example of the increased response time due to task 
interference (Cx=wcetx)
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Response Time Analysis for fixed-priority

Theorem : In a system with Di ≤ Ti, a critical instant for any task 
occurs whenever the task is requested simultaneously with 
requests of all higher priority tasks

A sufficient and necessary test for RM is:

Ii = Interferences from higher priority tasks
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Processor demand approach for EDF

New TSC based on the busy period:
Busy Period = the first time instant when all the 

released tasks are completed
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Single Processor, 
Single / Multiple TDL Modules
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Reuse of Processor Utilization formulas

Given a set of modules M1… Mi… Mn , each one having a 
single start mode, and a number of modes #modes(Mi), 
the time safety check:
The Processor Utilization test for all combination of 
modes that could run in parallel:

Improved: we select from each application, the mode 
that utilize the processor the most.
TSC for EDF and RM

∏
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Composability Analysis Tool
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Remaining issue?

How do we test schedulability for RM when Ulub<U ≤ 1?

we cannot select from each application, the mode that 
utilize the processor the most
Response Time Analysis test run for all combinations of 
nodes
Work in progress in implementation and proving that this 
test is sufficient.
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