
Part 7: TDL Time-Safety Checking

Claudiu Farcas

Credits: MoDECS Project Team, Giotto
Department of Computer Science

cs.uni-salzburg.at

Model Based Development of
Embedded Control Software

© 2005 C. Farcas2

Contents

Goals
Concepts
Optimal Schedulers
Notations and basic notions
- Constraints, attributes, wcet, task models,

Approaches to real-time scheduling
Deadline = Period
- Fixed Priority Scheduling – RM
- Dynamic Priority Scheduling - EDF

Deadline < Period
- Processor Demand for EDF
- Critical Instant and Response Time Analysis for RM

Single Processor, Single/Multiple TDL Modules
- Composability Analysis Tool

© 2005 C. Farcas3

Time-Safety Checking– The Goals!

© 2003, W. Pree, Salzburg

Applications
Hardware Platforms

Automatic
assignment

to processors

?

© 2005 C. Farcas4

Time-Safety Checking - Failure

© 2003, W. Pree, Salzburg

Applications
Hardware Platforms

© 2005 C. Farcas5

Time-Safety Checking - Success

© 2003, W. Pree, Salzburg

Applications
Hardware Platforms

© 2005 C. Farcas6

Concepts

Scheduler
- provides the order in which tasks will get access to

the processor
Schedule
- Is feasible if the execution of all tasks meets given

constraints
- set of tasks is feasible, i.e. schedulable if there is at

least one feasible schedule of those tasks

© 2005 C. Farcas7

Optimality for schedulers

A scheduling algorithm A is optimal among a category of
scheduling algorithms if:

Any systems that A cannot schedule cannot be scheduled
by any other scheduling algorithms in the same category

© 2005 C. Farcas8

Timing constraints of task instances

release time ri,j – the instant in time when a task instance
becomes available for execution (task i, instance j)
deadline di,j – the instant in time by which the execution
of the task instance is require to complete. It is an
absolute deadline.

Hard real-time constraint - failure to meet any deadline is
considered a fatal flaw

© 2005 C. Farcas9

Task attributes

Task τi
period Ti

worst-case execution time Ci - difficult to estimate
relative deadline Di - the maximum allowable response
time, di = ri + Di

phase φi – the release time ri,1 of first task instance τi,1
Ri – worst-case response time

processor utilization
i

i
i T

CU =

© 2005 C. Farcas10

Worst case execution time analysis

Measuring
- Ifs, calculating cycles (for), bounding loops (while),

hashes, ...
- Analysis tools – statical code analysis + profiling +

heuristics

Complications
- Caches, Memory latency, Interrupts, DMA, compiler

optimizations, function pointers, ...

© 2005 C. Farcas11

Complex Task Models

Dependencies among tasks
- Precedence graph

Resource requirements of tasks
- Blocking due to mutual exclusion

Aperiodic tasks
- Event driven

=> not used in the TDL model. We use the schedulability
analysis for periodic, independent, preemptable tasks.

© 2005 C. Farcas12

Approaches to Hard Real-Time
Scheduling

Clock-driven approach
- Decisions on what tasks execute are made at specific time

instants
- Static off-line scheduling

Weighted round-robin approach
- Time sharing
- Size of time slice given to task depends on its weight
- Appropriate for traffic scheduling

Priority-driven approach
- Task instances have fixed or dynamic priorities
- Scheduler assigns the processor to highest priority task instance
- On-line greedy scheduling

© 2005 C. Farcas13

Processor Utilization Metric

The processor utilization factor is the fraction of the processor time
spent in the execution of the task set:

Time safety check: for a given algorithm A, we can compute the least
upper bound Ulub (A)

If U > 1 no scheduling algorithms can guarantee the schedulability
If U ≤ Ulub(A) the tasks are schedulable by algorithm A

This condition is sufficient but not necessary.

If Ulub(A) <U ≤ 1, nothing can be said on the feasibility of the task
set.

∑
=

=
n

i i

i

T
CU

1

© 2005 C. Farcas14

Fixed-priority scheduling

Rate Monotonic Scheduling (RM)
Priority = rate = 1/period
Tasks with smaller periods have higher priorities
Optimal among all fixed-priority algorithms for task sets
with Di=Ti

© 2005 C. Farcas15

Processor Utilization Bound for RM

RM Utilization Bound for Di=Ti

for n tasks:
Ulub(2) = 0.828

Time Safety Check: U ≤ Ulub

Only sufficient test
How do we test schedulability for RM when Ulub<U ≤ 1?

)12()(/1
lub −= nnnU 693.02ln)(lim lub ==

∞→
nU

n

© 2005 C. Farcas16

Dynamic-priority Scheduling

Earliest Deadline First (EDF)
Priority = absolute deadline
Tasks with earlier deadlines have higher priorities
Optimal among all scheduling algorithms

EDF Utilization Bound for Di=Ti
Ulub=1
TSC: U ≤ 1
Necessary and sufficient test

© 2005 C. Farcas17

EDF vs. RM example

Two tasks τ1, τ2
- C1=2 , T1=D1=5
- C2=4 , T2=D2=7

1.1

2.1

τ1
τ2

0 2 4 6 8 10 12 14 16 18 20 22 t

1.2

2.2

1.3

2.3 2.3

1.4 1.5

EDF

1.1

2.1

τ1
τ2

1.2

2.2

1.3

2.3 2.3

1.4 1.5

2.1 2.2
0 2 4 6 8 10 12 14 16 18 20 22 t

miss

RM

© 2005 C. Farcas18

Next Steps – Deadlines less than periods

Important in distributed applications when task must
terminate before the period, to allow the communication
on the bus

EDF -> EDF with deadlines less than periods

RM -> Deadline Monotonic Scheduling (DMS)
priority = relative deadline
optimal fixed priority scheduling algorithm when Di ≤ Ti

© 2005 C. Farcas19

Fixed-priority scheduling - Critical Instant

Critical Instant = instant at which a request for that task
will have the maximum response time

Example of the increased response time due to task
interference (Cx=wcetx)

© 2005 C. Farcas20

Response Time Analysis for fixed-priority

Theorem : In a system with Di ≤ Ti, a critical instant for any task
occurs whenever the task is requested simultaneously with
requests of all higher priority tasks

A sufficient and necessary test for RM is:

Ii = Interferences from higher priority tasks

∑
∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

)(

1

ihpj
j

j

k
i

i
k
i C

T
RCR

nii ≤≤∀ 1: ii DR ≤

iii ICR +=

© 2005 C. Farcas21

Processor demand approach for EDF

New TSC based on the busy period:
Busy Period = the first time instant when all the

released tasks are completed

© 2005 C. Farcas22

Single Processor,
Single / Multiple TDL Modules

© 2005 C. Farcas23

Reuse of Processor Utilization formulas

Given a set of modules M1… Mi… Mn , each one having a
single start mode, and a number of modes #modes(Mi),
the time safety check:
The Processor Utilization test for all combination of
modes that could run in parallel:

Improved: we select from each application, the mode
that utilize the processor the most.
TSC for EDF and RM

∏
=

n

i 1
i)modes(M#

© 2005 C. Farcas24

Composability Analysis Tool

© 2005 C. Farcas25

Remaining issue?

How do we test schedulability for RM when Ulub<U ≤ 1?

we cannot select from each application, the mode that
utilize the processor the most
Response Time Analysis test run for all combinations of
nodes
Work in progress in implementation and proving that this
test is sufficient.

	Contents
	Time-Safety Checking– The Goals!
	Time-Safety Checking - Failure
	Time-Safety Checking - Success
	Concepts
	Optimality for schedulers
	Timing constraints of task instances
	Task attributes
	Worst case execution time analysis
	Complex Task Models
	Approaches to Hard Real-Time Scheduling
	Processor Utilization Metric
	Fixed-priority scheduling
	Processor Utilization Bound for RM
	Dynamic-priority Scheduling
	EDF vs. RM example
	Next Steps – Deadlines less than periods	
	Fixed-priority scheduling - Critical Instant
	Response Time Analysis for fixed-priority
	Processor demand approach for EDF
	
	Reuse of Processor Utilization formulas
	Composability Analysis Tool
	Remaining issue?

