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Resources

● Actor-oriented design
http://ptolemy.eecs.berkeley.edu/presentations/main.htm

● Using Simulink
http://www.mathworks.de/access/helpdesk/help/toolbox/simulink/

(also available as PDF)

● Matlab/Simulink R13 installed at
/usr/common/matlab-13

http://ptolemy.eecs.berkeley.edu/presentations/main.htm
http://www.mathworks.de/access/helpdesk/help/toolbox/simulink/
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What is Simulink?

● An actor oriented, model-based, graphical modeling tool

● A software package for modeling, simulating and 
analyzing dynamic systems

● It is one of the most used modeling tool in the industry

● It is an add-on of Matlab, a matrix computation program 
with its own language

● Supports code generation by add-ons like the Real-Time 
Workshop Embedded Coder
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Blocks and Signals

● In Simulink an actor is 
called block

● A block consists of some 
functionality and an 
arbitrary number of ports

● Lines called Signals
connected to the block‘s 
ports passes data 
between blocks
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How to choose the needed functionality

● Using pre-defined blocks of the Simulink library
● Create your own functionality by using 

● S-Function blocks (writing your own function in C, Fortran, etc.)
● Subsystem blocks
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Subsystem block

● Every ‘container’ that holds blocks and signals is called a 
system

● Subsystem blocks structure Simulink models
● Communication to parent system by using Port blocks

Simulink 
system
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Sample time

● The functionality of a block is used to calculate the 
values of the output ports of a block based on the values 
of the input ports and the internal states of a block.

● Every block has a sample time.

● The sample time determines how often and when the 
functionality of a block is evaluated.



8

Continuous vs. Discrete blocks

● Continuous blocks have an infinitesimal sample time
● e.g. Integrator block, Derivative block

● Discrete block must have a sample time greater zero
● Blocks can be configured by a sample time parameter
● If sample time is -1, it is inherited either from the block 

connected to its input (inheritance) of its output (back 
inheritance).
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Block updates

● A block update includes:
1. Compute the block‘s outputs (for all blocks within a 

system)
2. Compute the block‘s states (for all blocks within a 

system)
3. Computes the time for the next time step (for all 

blocks within a system)

● If the functionality of an S-Function block has to be 
defined, all these steps have to be implemented
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Atomic vs. Virtual Subsystem block

● The content of a Atomic Subsystem block is computed at 
once

● The content of a Virtual Subsystem block is flattened to 
to level of the parent system.

Virtual Subsystems have no sample time
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Direct Feedthrough vs. Non-Direct-Feedthrough

● Direct Feedthrough
● The calculation of the output values of a block 

depends on the input values of the current sample 
time

● e.g. Sum block, ZOH block

● Non-Direct-Feedthrough
● The calculation of the output values of a block 

depends on the input values of a previous sample 
time and/or on the block‘s states.

● e.g. Unit-Delay block, Constant block



12

Implementing the LET in Simulink

● One possible implementation of the LET:

● Zero-Order Hold block: Samples and hold the input value for the 
given sample time.

● Unit Delay block: Delays its input by the specified sample period. 
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Determing Block Update Order

● Each block must be updated before any of the blocks 
whose direct-feed-through ports it drives. 

● Blocks that do not have direct-feed-through inputs can 
be updated in any order as long as they are updated 
before any blocks whose direct-feed-through inputs they 
drive.

● Attention: Block Update Order can be changed for some 
blocks if switching from Atomic to Virtual Subsystem 
blocks and vice versa!
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Algebraic loops

● The output of direct feedthrough blocks cannot be 
computed without knowing the input values.

● An algebraic loop generally occurs when an input port 
with direct-feed-through is driven by the output of the 
same block, either directly, or by a feedback path 
through other blocks with direct-feed-through. 
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Example of an algebraic loop

● x = y – x
● 2x = y
● x = y/2 

● BUT:
● x = y + x
● y = 0
● x = ???
● algebraic loop not 

solvable!
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Conditionally Executed Subsystems

● A conditionally executed subsystem is a subsystem 
whose execution depends on the value of an input 
signal.

● Different types:
● Enabled Subsystem

- Executed if the control signal has a positive value

● Triggered Subsystem
- see next slide

● Control Flow Subsystem
- Executed if the control flow condition (if, while, for conditon) 

evaluated to true
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Triggered Subsystems

● Different types of trigger events:
● The control signal has an rising edge

● The control signal has an falling 
edge

● The control signal has an rising or an 
falling edge

● The control signal is a function-call 
signal
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Function-call signal

● A function-call signal can either stem from a

● Function-call generator block

● S-Function block
can be used to override Simulink‘s block update order!
Using a S-Function to implement a E machine

● Stateflow block
Stateflow blocks are used to define Statecharts. E.g. 
Switching from one state to another can cause a function call.
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Implementing a E machine for Simulink

● Using function call mechanism
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