
An Introduction to Simulink –

How Does It Work?

Gerald Stieglbauer
CS, University of Salzburg, Austria



2

Resources

● Actor-oriented design
http://ptolemy.eecs.berkeley.edu/presentations/main.htm

● Using Simulink
http://www.mathworks.de/access/helpdesk/help/toolbox/simulink/

(also available as PDF)

● Matlab/Simulink R13 installed at
/usr/common/matlab-13

http://ptolemy.eecs.berkeley.edu/presentations/main.htm
http://www.mathworks.de/access/helpdesk/help/toolbox/simulink/


3

What is Simulink?

● An actor oriented, model-based, graphical modeling tool

● A software package for modeling, simulating and 
analyzing dynamic systems

● It is one of the most used modeling tool in the industry

● It is an add-on of Matlab, a matrix computation program 
with its own language

● Supports code generation by add-ons like the Real-Time 
Workshop Embedded Coder



4

Blocks and Signals

● In Simulink an actor is 
called block

● A block consists of some 
functionality and an 
arbitrary number of ports

● Lines called Signals
connected to the block‘s 
ports passes data 
between blocks



5

How to choose the needed functionality

● Using pre-defined blocks of the Simulink library
● Create your own functionality by using 

● S-Function blocks (writing your own function in C, Fortran, etc.)
● Subsystem blocks



6

Subsystem block

● Every ‘container’ that holds blocks and signals is called a 
system

● Subsystem blocks structure Simulink models
● Communication to parent system by using Port blocks

Simulink 
system



7

Sample time

● The functionality of a block is used to calculate the 
values of the output ports of a block based on the values 
of the input ports and the internal states of a block.

● Every block has a sample time.

● The sample time determines how often and when the 
functionality of a block is evaluated.



8

Continuous vs. Discrete blocks

● Continuous blocks have an infinitesimal sample time
● e.g. Integrator block, Derivative block

● Discrete block must have a sample time greater zero
● Blocks can be configured by a sample time parameter
● If sample time is -1, it is inherited either from the block 

connected to its input (inheritance) of its output (back 
inheritance).



9

Block updates

● A block update includes:
1. Compute the block‘s outputs (for all blocks within a 

system)
2. Compute the block‘s states (for all blocks within a 

system)
3. Computes the time for the next time step (for all 

blocks within a system)

● If the functionality of an S-Function block has to be 
defined, all these steps have to be implemented



10

Atomic vs. Virtual Subsystem block

● The content of a Atomic Subsystem block is computed at 
once

● The content of a Virtual Subsystem block is flattened to 
to level of the parent system.

Virtual Subsystems have no sample time



11

Direct Feedthrough vs. Non-Direct-Feedthrough

● Direct Feedthrough
● The calculation of the output values of a block 

depends on the input values of the current sample 
time

● e.g. Sum block, ZOH block

● Non-Direct-Feedthrough
● The calculation of the output values of a block 

depends on the input values of a previous sample 
time and/or on the block‘s states.

● e.g. Unit-Delay block, Constant block



12

Implementing the LET in Simulink

● One possible implementation of the LET:

● Zero-Order Hold block: Samples and hold the input value for the 
given sample time.

● Unit Delay block: Delays its input by the specified sample period. 



13

Determing Block Update Order

● Each block must be updated before any of the blocks 
whose direct-feed-through ports it drives. 

● Blocks that do not have direct-feed-through inputs can 
be updated in any order as long as they are updated 
before any blocks whose direct-feed-through inputs they 
drive.

● Attention: Block Update Order can be changed for some 
blocks if switching from Atomic to Virtual Subsystem 
blocks and vice versa!



14

Algebraic loops

● The output of direct feedthrough blocks cannot be 
computed without knowing the input values.

● An algebraic loop generally occurs when an input port 
with direct-feed-through is driven by the output of the 
same block, either directly, or by a feedback path 
through other blocks with direct-feed-through. 



15

Example of an algebraic loop

● x = y – x
● 2x = y
● x = y/2 

● BUT:
● x = y + x
● y = 0
● x = ???
● algebraic loop not 

solvable!



16

Conditionally Executed Subsystems

● A conditionally executed subsystem is a subsystem 
whose execution depends on the value of an input 
signal.

● Different types:
● Enabled Subsystem

- Executed if the control signal has a positive value

● Triggered Subsystem
- see next slide

● Control Flow Subsystem
- Executed if the control flow condition (if, while, for conditon) 

evaluated to true



17

Triggered Subsystems

● Different types of trigger events:
● The control signal has an rising edge

● The control signal has an falling 
edge

● The control signal has an rising or an 
falling edge

● The control signal is a function-call 
signal



18

Function-call signal

● A function-call signal can either stem from a

● Function-call generator block

● S-Function block
can be used to override Simulink‘s block update order!
Using a S-Function to implement a E machine

● Stateflow block
Stateflow blocks are used to define Statecharts. E.g. 
Switching from one state to another can cause a function call.



19

Implementing a E machine for Simulink

● Using function call mechanism


	Resources
	What is Simulink?
	Blocks and Signals
	How to choose the needed functionality
	Subsystem block
	Sample time
	Continuous vs. Discrete blocks
	Block updates
	Atomic vs. Virtual Subsystem block
	Direct Feedthrough vs. Non-Direct-Feedthrough
	Implementing the LET in Simulink
	Determing Block Update Order
	Algebraic loops
	Example of an algebraic loop
	Conditionally Executed Subsystems
	Triggered Subsystems
	Function-call signal
	Implementing a E machine for Simulink

