
Part 4: Supported Target Platforms

Claudiu Farcas

Credits: MoDECS Project Team, Giotto
Department of Computer Science

cs.uni-salzburg.at

Model Based Development of
Embedded Control Software

© 2005 C. Farcas2

Current execution platforms for TDL

z Java
z OSEK/VDX
z InTime
z POSIX
z Native* (microkernel*)

© 2005 C. Farcas3

Java - Advantages

z General purpose OOP language
z Rapid prototyping
z Cross platform development – virtual machines
z Same development platform from GUI to embedded

device
z Automatic memory management - No pointers ☺
z Reasonable performance on modern hardware
z Easy integration with data storage solution
z …

© 2005 C. Farcas4

Java - Disadvantages

z Resource management (garbage collector)
z Not hard real-time
z Requires high run-time resources (memory, CPU) for

embedded devices
z Performance adequate for simulation level/proof of

concept
z Hard to interact with hardware for controlling applications

© 2005 C. Farcas5

JAVA - TDL Runtime - Details

z Dynamic module loading = Java Reflection
z TDL Tasks = Java Threads
z Timing -> Thread.sleep
z Scheduling multiple modules -> CPU partitioning
z Dispatch table of each mode computed at load-time
z Preemption -> thread.suspend, thread.resume

© 2005 C. Farcas6

Java - TDL Runtime – Usage
Scenario: application consisting of module: MyModule
z Implementing functionality code:

- MyModule.java contains the MyModule class
z Writing & compilation of the TDL application:

- TDL timing code compiles into MyModule.ecode
- Generated wrapper code for functionality:

MyModule$.java
z Java sources compilation: MyModule, MyModule$.class
z Execution of MyModule under Java E-Machine

© 2005 C. Farcas7

OSEK/VDX – What is it?
z German: “Offene Systeme und deren Schnittstellen für

die Elektronik im Kraftfahrzeug” (Open systems and the
corresponding interfaces for automotive electronics)

+
French “Vehicle Distributed Executive”

z Standard in Automotive Domain - 1993
z Registered trademark of Siemens AG

© 2005 C. Farcas8

OSEK/VDX – Why?

z Portability and reusability of software:
- Interfaces - abstract and application-independent as

possible
- User interface independent of hardware/network
- Verification of functionality and implementation of

prototypes
z Standardization
z Scalability

- Efficient design of architecture - Configurable and
scalable functionalities to enable optimal adjustment
of the architecture to the target application

© 2005 C. Farcas9

OSEK/VDX – Covered areas

z Communication
- Data exchange within and between ECUs

z Network Management
- Configuration determination and monitoring

z Operating System
- Real-time environment for ECU software
- Time Triggered Environment* (OSEKtime)

z System Configuration Overview - OIL

© 2005 C. Farcas10

OSEK/VDX – Development
Figure credits: © OSEK

© 2005 C. Farcas11

OSEK/VDX - Advantages

z Savings in costs and development time
z Software quality – best product/company wins
z Standardized interfacing features for control units with

different architectural designs.
z Reuse of resources (functionality code) – C language
z Absolute independence with regards to individual

implementation (it’s just a specification)

© 2005 C. Farcas12

OSEK/VDX – The big NO(s)

z No malloc() , free()
z No heaps
z No memory regions / partitions
z No dynamic memory allocation facilities whatsoever
z No specific device I/O support
z No file system support
z No on-the-fly

- creation of operating system objects (tasks, events, resources,
alarms,...)

- deletion of operating system objects
- programmed changes of task priority or preemptibility

z No round-robin time-slicing of tasks
z No application mode switch at run-time

© 2005 C. Farcas13

OSEK/VDX standard

z Functional entities
- Interrupts – two categories (with/without API calls)
- Tasks – groups of tasks, support for application modes

© 2005 C. Farcas14

OSEK – Runtime concepts
z Task conformance classes

- Basic
� terminate, preempt via task

priority or interrupt
� Sync points only at start/end

- Extended
� wait permitted
� higher run-time resources

requirement

z Recurring events
- Counters – ticks
- Alarms – trigger task or

alarm callback routine

© 2005 C. Farcas15

OSEK OIL Configuration File

z Sample
CPU MyCPU {
...

TASK TaskA {
PRIORITY = 2;
SCHEDULE = NON;
ACTIVATION = 1;
AUTOSTART = TRUE;
RESOURCE = resource1;
EVENT = event1;

};
COUNTER MyTimer {

MINCYCLE = 16;
MAXALLOWEDVALUE = 127;
TICKSPERBASE = 90;

};
ALARM WakeTaskA {

COUNTER = MyTimer;
ACTION = ACTIVATETASK {

TASK = TaskA;
};

...
};

z Automatically generated by TDL
compiler plugin for OSEK

© 2005 C. Farcas16

OSEK - TDL Runtime - Details

z Dynamic module loading = not supported
z TDL Tasks = OSEK Basic Tasks
z Timing -> Counter + Alarm + TDL Scheduler
z Scheduling multiple modules -> RM offline or EDF offline

+ runtime
z Preemption – ActivateTask, ChainTask + OSEK

scheduler
z Mode changes supported in TDL sense, not original

OSEK*
z Resource management – TDL internal
z Interrupts – ONLY when required via OSEK ISR

© 2005 C. Farcas17

OSEK - TDL Runtime - Usage

Scenario: application consisting of module: MyModule
z Implementing functionality code:

- MyModule.c contains the MyModule functionality
z Writing & compilation of the TDL application:

- Generated timing (E-code)+ wrapper code for
functionality: MyModule_TDL.c

- Generated OIL files: NodeName.oil, MyModule.oil
z OIL files + C sources compilation: MyModule,

MyModule_TDL.c + TDL Runtime libraries + *.oil =>
MyApplication.elf

z Transfer/flash MyApplication.elf onto embedded platform

© 2005 C. Farcas18

InTime – What is it?

z RTOS developed by TenAsys (iRMX succesor)

© 2005 C. Farcas19

InTime - Advantages

z Enhancement of Windows 2000/XP with RT capabilities
z Seamless integration with MS Visual Studio (C/C++)
z Same development platform from GUI to embedded

device – C/C++
z Rapid prototyping
z Cheap and fast hardware
z Memory protection for real-time processes from

Windows apps
z Debugging facilities for real-time processes from

Windows space
z Real-time TCP/IP networking* (limited HW devices)
z RT object browsing + performance analysis

© 2005 C. Farcas20

InTime - Disadvantages

z Only Intel Pentium/Pii/P3/P4/Xeon supported
z Constricted design because of PC architecture
z High cpu/memory/power requirements – industrial

design only
z Proprietary OS, API – vendor lock-in
z Slow time related primitives (mostly because of PC RTC)
z Single CPU support only* (multi-cpu in progress)
z Only 256 priority levels, some reserved for OS or HW

(RM becomes complicated on complex designs)

© 2005 C. Farcas21

InTime – TDL Runtime - Details

z Dynamic module loading = possible but not supported
yet in TDL tool-chain

z TDL Tasks = Pre-allocated InTime real-time threads
z Timing -> kernel level Alarm + TDL Scheduler
z Scheduling multiple modules -> Offline RM or Hybrid

EDF (offline+runtime)
z Preemption -> thread priorities manipulation/thread

suspend/resume
z Debugging – console
z Fast, up to 10KHz task freq (50KHz with APIC tweak)

© 2005 C. Farcas22

InTime - TDL Runtime - Usage

Scenario: application consisting of module: MyModule
z Implementing functionality code:

- MyModule.c contains the MyModule functionality
z Writing & compilation of the TDL application:

- Generated timing (E-code)+ wrapper code for
functionality: MyModule_TDL.c

z C sources compilation: MyModule, MyModule_TDL.c +
TDL Runtime libraries => MyApplication.rta

z Execution of MyApplication.rta under InTime RTOS

© 2005 C. Farcas23

POSIX - Advantages

z Big standard covering multiple areas
z Wide range of implementations available
z UNIX* derivatives available on most embedded

platforms (Linux, QNX, RTLinux, RTAI, RTEMS, …)
z C/C++ based
z Free tool-chains available for most platforms
z Flexible
z …

© 2005 C. Farcas24

POSIX - Disadvantages

z Ancient design
z Not all features actually used/required for embedded

platforms
z C usage may result in hard to maintain code
z No automatic memory management/garbage collection
z …

© 2005 C. Farcas25

POSIX – TDL Runtime - Details

z Dynamic module loading = possible
z TDL Tasks = Pre-allocated POSIX real-time threads, or

plain user-level threads for simulations
z Timing -> nanosleep + TDL Scheduler
z Scheduling multiple modules -> Offline RM or Hybrid

EDF (offline+runtime)
z Preemption -> thread priorities manipulation
z Debugging – console
z Fast and lightweight

© 2005 C. Farcas26

POSIX – TDL Runtime - Usage

Scenario: application consisting of module: MyModule
z Implementing functionality code:

- MyModule.c contains the MyModule functionality
z Writing & compilation of the TDL application:

- Generated timing (E-code)+ wrapper code for
functionality: MyModule_TDL.c

z C sources compilation: MyModule, MyModule_TDL.c +
TDL Runtime libraries => MyApplication (ELF –
simulation), alternate MyApplication kernel module

z Execution of MyApplication under POSIX compatible
RTOS

© 2005 C. Farcas27

OSEKtime – Brief overview

z Adjacent standard to OSEK
z Target: Distributed Embedded Control Units
z Design philosophy:

- Predictability
- Modularity
- Dependability
- OSEK compatible
- Minimal resource requirements

© 2005 C. Farcas28

OSEKtime - Architecture
Figure © OSEKtime

© 2005 C. Farcas29

OSEKtime - Advantages

z Static scheduling
z All basic RT services

- Clock synchronization
- Task management
- Interrupt handling
- Error detection
- Fault Tolerance – via

FTCom

z Preemptive multitasking + Time-triggered tasks may preempt
OSEK non-preemptive tasks
z Support for mode switches

© 2005 C. Farcas30

OSEKtime - Disadvantages

z Compared with OSEK, Tasks cannot wait for resources!
z Static dispatch table
z Difficult multi-application multi-mode support (because of

static dispatch table)

	Current execution platforms for TDL
	Java - Advantages
	Java - Disadvantages
	JAVA - TDL Runtime - Details
	Java - TDL Runtime – Usage
	OSEK/VDX – What is it?
	OSEK/VDX – Why?
	OSEK/VDX – Covered areas
	OSEK/VDX – Development
	OSEK/VDX - Advantages
	OSEK/VDX – The big NO(s)
	OSEK/VDX standard
	OSEK – Runtime concepts
	OSEK OIL Configuration File
	OSEK - TDL Runtime - Details
	OSEK - TDL Runtime - Usage
	InTime – What is it?
	InTime - Advantages
	InTime - Disadvantages
	InTime – TDL Runtime - Details
	InTime - TDL Runtime - Usage
	POSIX - Advantages
	POSIX - Disadvantages
	POSIX – TDL Runtime - Details
	POSIX – TDL Runtime - Usage
	OSEKtime – Brief overview
	OSEKtime - Architecture
	OSEKtime - Advantages
	OSEKtime - Disadvantages

