
Part 4: Supported Target Platforms

Claudiu Farcas

Credits: MoDECS Project Team, Giotto
Department of Computer Science

cs.uni-salzburg.at

Model Based Development of
Embedded Control Software

© 2005 C. Farcas2

Current execution platforms for TDL

Java
OSEK/VDX
InTime
POSIX
Native* (microkernel*)

© 2005 C. Farcas3

Java - Advantages

General purpose OOP language
Rapid prototyping
Cross platform development – virtual machines
Same development platform from GUI to embedded
device
Automatic memory management - No pointers ☺
Reasonable performance on modern hardware
Easy integration with data storage solution
…

© 2005 C. Farcas4

Java - Disadvantages

Resource management (garbage collector)
Not hard real-time
Requires high run-time resources (memory, CPU) for
embedded devices
Performance adequate for simulation level/proof of
concept
Hard to interact with hardware for controlling applications

© 2005 C. Farcas5

JAVA - TDL Runtime - Details

Dynamic module loading = Java Reflection
TDL Tasks = Java Threads
Timing -> Thread.sleep
Scheduling multiple modules -> CPU partitioning
Dispatch table of each mode computed at load-time
Preemption -> thread.suspend, thread.resume

© 2005 C. Farcas6

Java - TDL Runtime – Usage
Scenario: application consisting of module: MyModule

Implementing functionality code:
- MyModule.java contains the MyModule class

Writing & compilation of the TDL application:
- TDL timing code compiles into MyModule.ecode
- Generated wrapper code for functionality:

MyModule$.java
Java sources compilation: MyModule, MyModule$.class
Execution of MyModule under Java E-Machine

© 2005 C. Farcas7

OSEK/VDX – What is it?
German: “Offene Systeme und deren Schnittstellen für
die Elektronik im Kraftfahrzeug” (Open systems and the
corresponding interfaces for automotive electronics)

+
French “Vehicle Distributed Executive”

Standard in Automotive Domain - 1993
Registered trademark of Siemens AG

© 2005 C. Farcas8

OSEK/VDX – Why?

Portability and reusability of software:
- Interfaces - abstract and application-independent as

possible
- User interface independent of hardware/network
- Verification of functionality and implementation of

prototypes
Standardization
Scalability
- Efficient design of architecture - Configurable and

scalable functionalities to enable optimal adjustment
of the architecture to the target application

© 2005 C. Farcas9

OSEK/VDX – Covered areas

Communication
- Data exchange within and between ECUs

Network Management
- Configuration determination and monitoring

Operating System
- Real-time environment for ECU software
- Time Triggered Environment* (OSEKtime)

System Configuration Overview - OIL

© 2005 C. Farcas10

OSEK/VDX – Development
Figure credits: © OSEK

© 2005 C. Farcas11

OSEK/VDX - Advantages

Savings in costs and development time
Software quality – best product/company wins
Standardized interfacing features for control units with
different architectural designs.
Reuse of resources (functionality code) – C language
Absolute independence with regards to individual
implementation (it’s just a specification)

© 2005 C. Farcas12

OSEK/VDX – The big NO(s)

No malloc() , free()
No heaps
No memory regions / partitions
No dynamic memory allocation facilities whatsoever
No specific device I/O support
No file system support
No on-the-fly
- creation of operating system objects (tasks, events, resources,

alarms,...)
- deletion of operating system objects
- programmed changes of task priority or preemptibility

No round-robin time-slicing of tasks
No application mode switch at run-time

© 2005 C. Farcas13

OSEK/VDX standard

Functional entities
- Interrupts – two categories (with/without API calls)
- Tasks – groups of tasks, support for application modes

© 2005 C. Farcas14

OSEK – Runtime concepts
Task conformance classes
- Basic

terminate, preempt via task
priority or interrupt
Sync points only at start/end

- Extended
wait permitted
higher run-time resources
requirement

Recurring events
- Counters – ticks
- Alarms – trigger task or

alarm callback routine

© 2005 C. Farcas15

OSEK OIL Configuration File

Sample
CPU MyCPU {
...

TASK TaskA {
PRIORITY = 2;
SCHEDULE = NON;
ACTIVATION = 1;
AUTOSTART = TRUE;
RESOURCE = resource1;
EVENT = event1;

};
COUNTER MyTimer {

MINCYCLE = 16;
MAXALLOWEDVALUE = 127;
TICKSPERBASE = 90;

};
ALARM WakeTaskA {

COUNTER = MyTimer;
ACTION = ACTIVATETASK {

TASK = TaskA;
};

...
};

Automatically generated by TDL
compiler plugin for OSEK

© 2005 C. Farcas16

OSEK - TDL Runtime - Details

Dynamic module loading = not supported
TDL Tasks = OSEK Basic Tasks
Timing -> Counter + Alarm + TDL Scheduler
Scheduling multiple modules -> RM offline or EDF offline
+ runtime
Preemption – ActivateTask, ChainTask + OSEK
scheduler
Mode changes supported in TDL sense, not original
OSEK*
Resource management – TDL internal
Interrupts – ONLY when required via OSEK ISR

© 2005 C. Farcas17

OSEK - TDL Runtime - Usage

Scenario: application consisting of module: MyModule
Implementing functionality code:
- MyModule.c contains the MyModule functionality

Writing & compilation of the TDL application:
- Generated timing (E-code)+ wrapper code for

functionality: MyModule_TDL.c
- Generated OIL files: NodeName.oil, MyModule.oil

OIL files + C sources compilation: MyModule,
MyModule_TDL.c + TDL Runtime libraries + *.oil =>
MyApplication.elf
Transfer/flash MyApplication.elf onto embedded platform

© 2005 C. Farcas18

InTime – What is it?

RTOS developed by TenAsys (iRMX succesor)

© 2005 C. Farcas19

InTime - Advantages

Enhancement of Windows 2000/XP with RT capabilities
Seamless integration with MS Visual Studio (C/C++)
Same development platform from GUI to embedded
device – C/C++
Rapid prototyping
Cheap and fast hardware
Memory protection for real-time processes from
Windows apps
Debugging facilities for real-time processes from
Windows space
Real-time TCP/IP networking* (limited HW devices)
RT object browsing + performance analysis

© 2005 C. Farcas20

InTime - Disadvantages

Only Intel Pentium/Pii/P3/P4/Xeon supported
Constricted design because of PC architecture
High cpu/memory/power requirements – industrial
design only
Proprietary OS, API – vendor lock-in
Slow time related primitives (mostly because of PC RTC)
Single CPU support only* (multi-cpu in progress)
Only 256 priority levels, some reserved for OS or HW
(RM becomes complicated on complex designs)

© 2005 C. Farcas21

InTime – TDL Runtime - Details

Dynamic module loading = possible but not supported
yet in TDL tool-chain
TDL Tasks = Pre-allocated InTime real-time threads
Timing -> kernel level Alarm + TDL Scheduler
Scheduling multiple modules -> Offline RM or Hybrid
EDF (offline+runtime)
Preemption -> thread priorities manipulation/thread
suspend/resume
Debugging – console
Fast, up to 10KHz task freq (50KHz with APIC tweak)

© 2005 C. Farcas22

InTime - TDL Runtime - Usage

Scenario: application consisting of module: MyModule
Implementing functionality code:
- MyModule.c contains the MyModule functionality

Writing & compilation of the TDL application:
- Generated timing (E-code)+ wrapper code for

functionality: MyModule_TDL.c
C sources compilation: MyModule, MyModule_TDL.c +
TDL Runtime libraries => MyApplication.rta
Execution of MyApplication.rta under InTime RTOS

© 2005 C. Farcas23

POSIX - Advantages

Big standard covering multiple areas
Wide range of implementations available
UNIX* derivatives available on most embedded
platforms (Linux, QNX, RTLinux, RTAI, RTEMS, …)
C/C++ based
Free tool-chains available for most platforms
Flexible
…

© 2005 C. Farcas24

POSIX - Disadvantages

Ancient design
Not all features actually used/required for embedded
platforms
C usage may result in hard to maintain code
No automatic memory management/garbage collection
…

© 2005 C. Farcas25

POSIX – TDL Runtime - Details

Dynamic module loading = possible
TDL Tasks = Pre-allocated POSIX real-time threads, or
plain user-level threads for simulations
Timing -> nanosleep + TDL Scheduler
Scheduling multiple modules -> Offline RM or Hybrid
EDF (offline+runtime)
Preemption -> thread priorities manipulation
Debugging – console
Fast and lightweight

© 2005 C. Farcas26

POSIX – TDL Runtime - Usage

Scenario: application consisting of module: MyModule
Implementing functionality code:
- MyModule.c contains the MyModule functionality

Writing & compilation of the TDL application:
- Generated timing (E-code)+ wrapper code for

functionality: MyModule_TDL.c
C sources compilation: MyModule, MyModule_TDL.c +
TDL Runtime libraries => MyApplication (ELF –
simulation), alternate MyApplication kernel module
Execution of MyApplication under POSIX compatible
RTOS

© 2005 C. Farcas27

OSEKtime – Brief overview

Adjacent standard to OSEK
Target: Distributed Embedded Control Units
Design philosophy:
- Predictability
- Modularity
- Dependability
- OSEK compatible
- Minimal resource requirements

© 2005 C. Farcas28

OSEKtime - Architecture
Figure © OSEKtime

© 2005 C. Farcas29

OSEKtime - Advantages

Static scheduling
All basic RT services
- Clock synchronization
- Task management
- Interrupt handling
- Error detection
- Fault Tolerance – via

FTCom

Preemptive multitasking + Time-triggered tasks may preempt
OSEK non-preemptive tasks

Support for mode switches

© 2005 C. Farcas30

OSEKtime - Disadvantages

Compared with OSEK, Tasks cannot wait for resources!
Static dispatch table
Difficult multi-application multi-mode support (because of
static dispatch table)

	Current execution platforms for TDL
	Java - Advantages
	Java - Disadvantages
	JAVA - TDL Runtime - Details
	Java - TDL Runtime – Usage
	OSEK/VDX – What is it?
	OSEK/VDX – Why?
	OSEK/VDX – Covered areas
	OSEK/VDX – Development
	OSEK/VDX - Advantages
	OSEK/VDX – The big NO(s)
	OSEK/VDX standard
	OSEK – Runtime concepts
	OSEK OIL Configuration File
	OSEK - TDL Runtime - Details
	OSEK - TDL Runtime - Usage
	InTime – What is it?
	InTime - Advantages
	InTime - Disadvantages
	InTime – TDL Runtime - Details
	InTime - TDL Runtime - Usage
	POSIX - Advantages
	POSIX - Disadvantages
	POSIX – TDL Runtime - Details
	POSIX – TDL Runtime - Usage
	OSEKtime – Brief overview
	OSEKtime - Architecture
	OSEKtime - Advantages
	OSEKtime - Disadvantages

