
The Timing Definition
Language (TDL)

Department of Computer Science
University of Salzburg

Josef Templ
updates by Claudiu Farcas

© 2004, J. Templ, C. Farcas 2

Overview

What is TDL?
TDL Component Model
Simple TDL Example
Tool Chain
Current State

© 2004, J. Templ, C. Farcas 3

What is TDL?

A high-level textual notation for defining the timing behavior of a
real-time application.

Conceptually based on Giotto (University of California, Berkeley).

TDL = Giotto + syntax + component architecture + cleanups.

Analogy: IDL (CORBA, MIDL) vs. TDL

IDL defines an interface for a distributed application

=> Separates interface from implementation

TDL defines the timing for a real-time application

=> Separates timing from implementation

© 2004, J. Templ, C. Farcas 4

Schematic overview of Giotto/TDL concepts

SampleModule

Sensor Actuator

InitMode

Task1 300Hz

Task2 100Hz

OperationMode

Task1 200Hz

Task3 600Hz

mode switch

Giotto programs are multi mode & multi rate systems
for long running tasks.

© 2004, J. Templ, C. Farcas 5

The Giotto/TDL Programming Model (LET)

ET <= WCET <= LET

results are available at 'terminate'

timetask invocation

Logical Execution Time (LET)

Logical

Physical

start stopsuspend resume

release terminate

© 2004, J. Templ, C. Farcas 6

Unit Delay

time

LET

task a

task b

1 2 3

1 2 3

o:1 o:2 o:3

© 2004, J. Templ, C. Farcas 7

Unit Delay

... but isn't it a waste of time?
=> determinism, composition, transparent distribution

time

LET

task a

task b

task c 1 2 3 4

1 2 3

1 2 3

o:1 o:2 o:3

© 2004, J. Templ, C. Farcas 8

Summary of Giotto Heritage

Sensor and actuator ports are used to interact with the environment.
A program is in one of potentially multiple modes.
Every mode consists of periodic activities:

task invocations
actuator updates
mode switches

A mode has a fixed period.
Activities are carried out conditionally.
Activities have their individual execution rate.
Timing and interaction of activities follows LET semantics.

© 2004, J. Templ, C. Farcas 9

TDL Component Model: Motivation

e.g. modern cars have up to 80 control units (ECUs)
ECU consolidation is a topic
run multiple programs on one ECU
leads to TDL component model

ECU1

Program1

ECU2

Program2

ECU3

Program3

© 2004, J. Templ, C. Farcas 10

TDL Component Model

ProgramX is called a module
modules may be independent
modules may also refer to each other (DAG)
modules can be used for multiple purposes

ECU

Program1
Program2
Program3

© 2004, J. Templ, C. Farcas 11

Usage of Modules

decomposition of large programs
grouping of unrelated modules
parallel automatons
ECU consolidation
client/service relationship

provide common definitions for constants, types, etc.
data flow from service to client module

distributed execution

© 2004, J. Templ, C. Farcas 12

TDL Syntax by Example
module M1 {

sensor boolean s1 uses getS1;
actuator int a1 uses setA1;

public task inc [wcet=4ms] {
output int o := 10;
uses incImpl(o);

}

start mode main [period=10ms] {
task
[freq=1] inc();

actuator
[freq=2] a1 := inc.o;

mode
[freq=1] if exitMain(s1) then freeze;

}

mode freeze [period=1000ms] {}
}

Legend:
External functionality

Types

TDL Keywords

Annotations

© 2004, J. Templ, C. Farcas 13

Module Import

module M2{

import M1;
…
task clientTask [wcet=10ms] {
input int i1;
…

}
mode main [period=100ms] {
task [freq=1] clientTask(M1.inc.o);
…

}
}

Import relationship forms a DAG.

TDL supports structured module names (e.g. com.avl.p1.M1)

import with rename: (e.g. import com.avl.p1.M1 as A1;)

group import: (e.g. import com.avl.p1 {M1, M2, M3};)

© 2004, J. Templ, C. Farcas 14

More Language Constructs

Constants
const c1 = 100;

const p = 100ms;

Types
Basic types: like Java
byte, short, int, ...

User defined opaque types: defined externally
type T;

© 2004, J. Templ, C. Farcas 15

Module Summary

provides a named program component
provides a name space
allows for exporting sensors, constants, types, task outputs
may be imported by other module(s)
acts as unit of composition
acts as the unit of loading
acts as the unit of execution
partitions the set of actuators
acts as the unit of distribution

TDL supports multi mode & multi rate & multi program systems.

© 2004, J. Templ, C. Farcas 16

Differences to Giotto

TDL provides a component model (module).

TDL defines a concrete syntax and .ecode file format.

TDL does not need explicit task invocation drivers, mode
switch drivers and actuator update drivers as Giotto
does.

Drivers are defined implicitly by the TDL syntax and
semantics.

The user needs to implement only guards, sensor
getters, actuator setters, port initializers, and, of course,
task functions.

© 2004, J. Templ, C. Farcas 17

Differences to Giotto

TDL defines program start as mode switch to start mode.

TDL disallows non-harmonic mode switches.

improved timeline logic -> determinism

easier compile time scheduling analysis

enables distributed mode-switches

Mode port assignments differ.

Higher resolution timing: us.

© 2004, J. Templ, C. Farcas 18

Tool Chain Overview

.tdl Compiler E-machine*.ecode

functionality
code

*Java, OSEK, InTIME, RTLinux, ...

© 2004, J. Templ, C. Farcas 19

Tool Chain Overview

.tdl Compiler

Platform
plugin*

platform
specific

AST

platform
specific

.ecode

*Java, OSEK, InTIME, RTLinux, ...

functionality
code

E-machine*

© 2004, J. Templ, C. Farcas 20

Tool Chain Overview

.tdl Compiler

Platform
plugin*

platform
specific

AST

platform
specific

.ecode

Decoder .txt
Visual
TDL

Editor

Matlab/Simulink

*Java, OSEK, InTIME, RTLinux, ...

functionality
code

E-machine*

Model

© 2004, J. Templ, C. Farcas 21

Source Code Organization

emcore (37.775 loc)
ast abstract syntax tree (1.180)
ecode ecode instructions and reader (613)
scheduler node schedulers (1.039)
tools (34.829)

decode .ecode decoder (222)
emachine E-machine (3.323)
tdlc TDL compiler (5.248)

platform standard platform plugins (2.261)
vtdl visual TDL editor (24.198)
busch bus scheduler (1.824)

util various utility classes (114)

© 2004, J. Templ, C. Farcas 22

TDL Compiler

implemented with compiler generator Coco/R for Java.
(Mössenböck, JKU Linz)
production quality recursive descent compiler in Java.
2 phases:

1. parse source text and build AST
2. generate .ecode file from AST

plugin interface defined by base class Platform
plugin life cycle: open {emitCode} close
additionally: setErrorHandler, setDestDir

© 2004, J. Templ, C. Farcas 23

Java-based E-machine

used as proof of concept
experimentation platform
not hard-real time
consists of

.ecode loader
task scheduler
E-code interpreter
dispatcher
bus controller (for distribution)

Interacts with functionality code via drivers

© 2004, J. Templ, C. Farcas 24

State (as of 2004)

Ready
TDL Compiler for complete TDL.
Decoder
Java-based E-machine for multiple modules.
Visual TDL Editor
InTIME, OSEK, TTA
TDK (from modecs.cc)

Work in Progress
ANSI C back ends for POSIX, RTLinux, OSEK, InTIME…
E-machines for distribution
Bus Scheduler

	Overview
	What is TDL?
	Schematic overview of Giotto/TDL concepts
	The Giotto/TDL Programming Model (LET)
	Unit Delay
	Unit Delay
	Summary of Giotto Heritage
	TDL Component Model: Motivation
	TDL Component Model
	Usage of Modules
	TDL Syntax by Example
	Module Import
	More Language Constructs
	Module Summary
	Differences to Giotto
	Differences to Giotto
	Tool Chain Overview
	Tool Chain Overview
	Tool Chain Overview
	Source Code Organization
	TDL Compiler
	Java-based E-machine
	State (as of 2004)

