Model Based Development of Embedded Control Software

Part 2: Real-Time Systems

Claudiu Farcas

Credits: MoDECS Project Team, Giotto Department of Computer Science cs.uni-salzburg.at

Contents

- Soft and Hard real-time systems
- Event and Time-based interaction model
- Environment vs Software time
- Real-Time Operating Systems

Target problem – Soft real-time

- Typical applications
 - VoIP
 - Video Streaming
 - Video/Computer Games
 - Communication devices (i.e., modem, ATM, GSM)
- No critical resources
- Generally sufficient CPU power
- Dynamic resource allocation (e.g., memory)
- Degraded Quality of Service (QoS) at peak load

Target problem – Hard real-time

- Typical applications
 - Mechanical/Mecatronic/Electronic controllers
 - Safety critical systems
- High temporal accuracy
- Minimal I/O jitter
- Limited resources: CPU, Memory, Battery
- Predictable peak-load performance

Interaction Model - Events

- Advantages
 - Pipeline design
 - Support for aperiodic systems
 - Low CPU utilization
- Disadvantages
 - Unpredictable concurrency
 - Response latency introduce additional jitter
 - Hardly scalable
 - No benefit for periodic events

Interaction Model – Time triggered

- Advantages
 - Support for periodic systems
 - Predictable concurrency
 - Deterministic behavior
 - Minimal jitter
 - Scalable
 - May be distributed
- Disadvantages
 - Emulation for aperiodic systems
 - Higher CPU utilization

Environment vs Software Time

Continuous vs Discrete time

7

Environment vs Software Time

Interaction between software and environment

8

Event triggered computation

• Response to an event from the environment

9

Time triggered computation

• Response to an event from the environment

Software to software communication

- May use the same event or time model
- Plenty of APIs available but not all adequate for RT systems
- Predictable behavior desired -> required
- Scheduling decisions become important
- Low level API timing not negligible

Software to software interaction

Real-time software environment

Real-Time OS Services

- Environment
 - Sensing / Actuating Drivers
 - Triggers Interrupt handlers
- Software
 - intercommunication Shared memory
 - Triggers signals (e.g., semaphores, mailboxes)
 - Scheduling RT Scheduler
 - Concurrency support CPU multiplexing, SMP, etc

LET, Giotto, ...

• Follow-up

 Credits: Prof. C. Kirsch slides ESE-RTOS04, pages 12-73

Memory Model

Definition: Task

- A task is a *function* from its input and state ports to its output and state ports
- A task *runs to completion* (cannot be killed)
- A task is *preemptable*
- A task does not use *signals* (except at completion)
- A task does not use *semaphores* (as a consequence)
- API (used by the RTOS):
 - initialize {task: state ports}
 - release {task}
 - dispatch {task: function}

So, what's the difference between a task and a function?

- A task has an operational semantics:
 - A task is implemented by a *subroutine* and a *trigger*
 - A task is either environment- or software-triggered
 - The completion of a task may trigger another task

Task t₂ Preempts Task t₁

Definition: Event and Signal

- An event is a *change of state* in some environment ports
- A signal is a *change of state* in some task ports
- A synchronous signal is a *change of state* in some driver ports

Definition: Trigger

- A trigger is a *predicate* on environment, task, driver ports
- A trigger *awaits* events and/or signals
- A trigger is *enabled* if its predicate evaluates to true
- Trigger evaluation is *atomic* (non-preemptable)
- A trigger can be *activated* by the RTOS
- A trigger can be *cancelled* by the RTOS
- A trigger can be *enabled* by an event or a signal
- API (used by the RTOS):
 - activate {trigger}
 - cancel {trigger}
 - evaluate {trigger: predicate}

My First RTOS

```
react() {
    ∀ tasks t: initialize(t);
    ∀ triggers g: activate(g);
    while (true) {
        if ∃ trigger g: evaluate(g) == true then
        released-tasks := ∀ to-be-released-tasks t: release(t);
        schedule();
    }
}
```

RTOS Model: Reaction vs. Scheduling

Reactor vs. Scheduler vs. Processor

(Kirsch in the Proceedings of EMSOFT 2002)

RTOS with Preemption

```
react() {
    ∀ tasks t: initialize(t);
    ∀ triggers g: activate(g);
    while (true) {
        if ∃ trigger g: evaluate(g) == true then
        released-tasks := ∀ to-be-released-tasks t: release(t);
        schedule_concurrently();
    }
}
```

```
schedule_concurrently() {
     ∀ released-tasks t: dispatch(t);
     released-tasks := {};
}
```

Corrected RTOS with Preemption

```
react() {
    ∀ tasks t: initialize(t);
    ∀ triggers g: activate(g);
    while (true) {
        if ∃ trigger g: evaluate(g) == true then
        released-tasks := released-tasks U
            ∀ to-be-released-tasks t: release(t);}}
```

```
schedule() {
  while (true) {
    t := select(released-tasks);
    dispatch(t);
    released-tasks := released-tasks \ { t }; }}
```

RTOS Model with Signals

© 2004 C. Kirsch -24-

Definition: Thread

- A thread is a *behavioral function* (with a trace semantics)
- A thread *may be killed*
- A thread is *preemptable*
- A thread may use *signals*
- A thread may use *semaphores*
- API (used by the RTOS or threads):
 - initialize {thread: ports}
 - release {thread}
 - dispatch {thread: function}
 - kill {thread}

So, what's the difference between a thread and a task?

- A thread is a *collection* of tasks:
 - A thread is implemented by a *coroutine*
 - A thread requires signals

Task t₂ Kills Task t₁

© 2004 C. Kirsch -27-

Signal API

- A signal can be *awaited* by a thread
- A signal can be *emitted* by a thread
- Signal emission is *atomic* (non-preemptable)
- API (used by threads):
 - wait {signal}
 - emit {signal}
- Literature:
 - emit: send(signal)

Definition: Semaphore

- A semaphore consists of a signal and a port
- A semaphore can be *locked* by a thread
- A semaphore can be *released* by a thread
- Semaphore access is *atomic* (non-preemptable)
- API (used by threads):
 - •lock {semaphore}
 - release {semaphore}
- Literature:
 - lock: P(semaphore)
 - release: V(semaphore)

Binary Semaphore (Signal)

```
lock(semaphore) {
    if (semaphore.lock == true) then
        wait(semaphore.signal);
    semaphore.lock := true;
}
```

```
release(semaphore) {
    semaphore.lock := false;
    emit(semaphore.signal);
}
```

Binary Semaphore (Busy Wait)

```
lock(semaphore) {
  while (semaphore.lock == true) do {} each round
  semaphore.lock := true;
}
```

```
release(semaphore) {
    semaphore.lock := false;
}
```

The Embedded Machine

Proposal Environment Human: Programming in terms of environment time Compiler: Implementation in terms of platform time

Software
Platform Time is Platform Memory

• Implementation checks whether there is enough of it

Portability

• Programming in terms of environment time yields <u>platform-independent</u> code

Predictability

• Programming in terms of environment time yields <u>deterministic</u> code

The Task Model

Preemptable...

© 2004 C. Kirsch -38-

...but Atomic

The Driver Model

Non-preemptable, Synchronous

© 2004 C. Kirsch -41-

Syntax

An Embedded Machine Program

© 2004 C. Kirsch -44-

Synchronous vs. Scheduled Computation

© 2004 C. Kirsch -45-

Synchronous vs. Scheduled Computation

- Synchronous computation
- Kernel context
- Trigger related interrupts disabled
- Scheduled computation
- User context

Environment-triggered Code

Software-triggered Code

© 2004 C. Kirsch -48-

Trigger g: Input-, Environment-Triggered

Time Safety

Input-determined If Time Safe

© 2004 C. Kirsch -51-

Environment-determined If Environment-triggered

© 2004 C. Kirsch -52-

The Zürich Helicopter

Helicopter Control Software

Giotto Syntax (Functionality)

sensor gps_type GPS uses c_gps_device ;

actuator servo_type Servo := c_servo_init uses c_servo_device ;

output

. . .

ctr_type CtrOutput := c_ctr_init ;

nav_type NavOutput := c_nav_init ;

driver sensing (GPS) output (gps_type gps)
{ c_gps_pre_processing (GPS, gps) }

task Navigation (gps_type gps) output (NavOutput)
{ c_matlab_navigation_code (gps, NavOutput) }

© 2004 C. Kirsch -55-

Giotto Syntax (Timing)


```
mode Flight ( ) period 10ms
```

• • •

{

}

...

```
actfreq 1 do Servo ( actuating );
```

```
taskfreq 1 do Control ( input ) ;
taskfreq 2 do Navigation ( sensing ) ;
```

© 2004 C. Kirsch -56-

Environment Timeline

E Code

Platform Timeline: EDF

Time Safety

Runtime Exceptions I

Runtime Exceptions II

Runtime Exceptions III

An Exception Handler e

© 2004 C. Kirsch -65-

How to Loose Determinism: Task Synchronization

How to Loose Determinism: Termination

Time Liveness: Infinite Traces

© 2004 C. Kirsch -68-

Dynamic Linking

© 2004 C. Kirsch -69-
The Berkeley Helicopter

Platform Timeline: Time-triggered Communication

© 2004 C. Kirsch -71-

Code Generation for HeliNav

Instructions

