
Part 1: Introduction

Claudiu Farcas

Credits: MoDECS Project Team, Giotto
Department of Computer Science

cs.uni-salzburg.at

Model Based Development of
Embedded Control Software

© 2005 C. Farcas2

Contents

Motivation
What is an Embedded Control System?
Traditional programming for control
systems
Model based development

© 2005 C. Farcas3

Motivation - Cost

Development
Testing
Integration
Testing
Validation
Certification

© 2005 C. Farcas4

Motivation – Risk analysis

Mean time between
failures
Failure cost in human
lives/money
Warranty/Insurance
Fixing/Repairing
possibility and costs

© 2005 C. Farcas5

Embedded Control System

Based on software that runs on computers (low
powered)
Interacts with physical world
Software
- derived from mathematical functions
- execution takes non negligible time
- Increasing complexity

Consumes power that may be insufficient
Reliability standards are very high

© 2005 C. Farcas6

Embedded Software

Timeliness
- Requirements for real-time operations
- Faster hardware does not solve all problems

Concurrency
- Software must react to multiple external stimuli
- Threads/processes, semaphores, monitors, etc
- Synchronous reactive languages (Esterel, Lustre)

© 2005 C. Farcas7

Embedded Software

Liveness
- Software must not lock/crash/terminate
- Predictable response

Component technology
- Interfaces/APIs
- Libraries
- OOP
- Processes/Threads

© 2005 C. Farcas8

Embedded Software

Heterogeneity
- Mix of hardware and software designs
- Handling of irregular or periodic events
- Generalization and particularization of software,

implementation language, programming techniques
Reactivity
- Respond to the environment at the speed of the

environment
- Real-time constraints, generally safety-critical
- Adaptation to new requirements – robustness
- Concurrency analysis and smart compilers

© 2005 C. Farcas9

Traditional programming

Manual coding for more than 90% of application code
Highly platform dependent (HW + OS)
Functionality code mixed with timing code
Hardly reusable code
High testing and integration costs
Loss of “overall picture” after several development cycles

© 2005 C. Farcas10

Model Based Development

Application development aided by visual tools (e.g.,
Matlab)
Behavior specified via a model (i.e, pure mathematical,
descriptive, etc)
Simulation possible prior to full implementation (e.g.,
Simulink, Stateflow, etc)
Shift of development resources from hard-core
implementation to better design

© 2005 C. Farcas11

Model Based Development

© 2005 C. Farcas12

Model Based Development

Modular/component oriented design – component
frameworks, libraries
Higher reusability factor
Automatic code generation (e.g., Real-Time Workshop)
Increased portability
Shift from platform oriented to platform independent
design

© 2005 C. Farcas13

Model Based Development

	Contents
	Motivation - Cost
	Motivation – Risk analysis
	Embedded Control System
	Embedded Software
	Embedded Software
	Embedded Software
	Traditional programming
	Model Based Development
	Model Based Development
	Model Based Development
	Model Based Development

