
Emilia Coste
Josef Templ

Department of Computer Science
cs.uni-salzburg.at
www.MoDECS.cc

Distributed, Time-Safe TDL Execution —
 Concepts, Tools and Run-time

Infrastructure

© 2004 E. Coste, J. Templ 2

Overview

 Motivation
 Transparent Distribution
 Bus Schedule Generation Tool
 TDL Run-time Environment
 Tool Chain

© 2004 E. Coste, J. Templ 3

Motivation

MOST-Bus

CAN-Bus

Some benefits of distribution:
 Fault tolerance
 Scalability
 Less wiring

© 2004 E. Coste, J. Templ 4

Introduction to Distributed TDL

Unit of distribution: TDL module
Behavior: as if executed locally
Communication: via broadcast (bus)
Medium access control: TDMA (time-slotting)
Cooperation model: Producer-Consumer (Push)

bus

M2

M3

M1

M4

node 1

node 2 node 3

© 2004 E. Coste, J. Templ 5

Example of Distributed TDL

bus

M2

M3

M1

M4

node 1

node 2 node 3

task1

M1 M2

task2

© 2004 E. Coste, J. Templ 6

Transparent Distribution

M1

comm1

comm2

time
LET1

bus

LET2

node1

node2
M2

 message sent according to bus schedule (TDMA)

© 2004 E. Coste, J. Templ 7

Optimization I

 if the consumer runs slower e.g. by a factor of 2
 redundant message are avoided
 saves bandwidth

M1

comm1

comm2

time
LET1

bus

LET2

node1

node2
M2

© 2004 E. Coste, J. Templ 8

Optimization II

 if the consumer needs a variable later than the producer’s FLET

M1

comm1

time
LET1

bus

LET2

node1

node2
M2

comm2

© 2004 E. Coste, J. Templ 9

Optimization III

 the release of the consumer can be delayed until the message with
the input variable is received

M1

M2

comm1

comm2

time
LET1

bus

LET2

node1

node2

© 2004 E. Coste, J. Templ 10

Bus Schedule
Generation Tool

© 2004 E. Coste, J. Templ 11

What Does the Tool Do?

It generates a global bus schedule file, which contains the
following information:

 Which node has to send a packet and when.

 Which nodes have to receive a packet and when.

 The content for bus packets (a corresponding
datagram, which has one or more items).

© 2004 E. Coste, J. Templ 12

What Does the Tool Need as Input?

 TDL modules
 Platform description file

 module to node assignment
 physical bus properties (e.g., bus frequency,

protocol overhead, inter frame gaps, min/max
payload)

The tool automatically detects:
 Who has to communicate with whom.
 Which messages are needed in a communication cycle

(bus period).

© 2004 E. Coste, J. Templ 13

Who Has to Communicate with Whom

Result: a set of messages.

 A message has:
 a Producer
 one or more Consumers
 size.

 Producers: sensors, task output ports.

 Consumers: actuators, task input ports, guard
arguments.

© 2004 E. Coste, J. Templ 14

Messages Needed in a Bus Period

Result: a set of message instances, with individual timing constraints:
 Release Offset
 Deadline

 Basic Producer-Consumer:
 Send messages with the frequency of the Producer.
 Message deadline = Producer LET.
 BusPeriod = LCM(Producer.period)

 Optimized Producer-Consumer:
 Send messages only when they are needed by the Consumers.
 Message deadline depends on the optimization (e.g.,=

consumer LET).
 BusPeriod = LCM(Producer.period, Consumer.period)

© 2004 E. Coste, J. Templ 15

Message Deadline in Optimization II

M1

M2

comm1

comm2

time
LET1

bus

LET2

node1

node2

Producer
Deadline

Message
Deadline

© 2004 E. Coste, J. Templ 16

Message Scheduling

Current approach:
 Scheduling in 2 steps:

 Schedule first the messages.
 Schedule then the tasks with deadlines constraints from

messages.

 Optimizations:
 Build bus schedulers which allow more flexibility for the task

scheduler.
 Try several bus schedulers and get feedback from the Time-

Safety-Check (TSC) for tasks.
 Schedule individual messages or merge messages sent from

the same node.

© 2004 E. Coste, J. Templ 17

Scheduling Algorithms

 Heuristic algorithm - “Latest Deadline Last” - LDL
 Adapted from Reversed EDF (Latest Release Time - LRT) -

treats deadlines as release times and vice versa
 Schedule messages as late as possible

 Optimal algorithm
Branch and bound search
Exponential complexity in the worst case

Heuristic Algorithm

Schedule

Success Failure

 Not enough SW/HW performance

 There is a schedule but the algorithm fails to find it.

© 2004 E. Coste, J. Templ 18

Latest Deadline Last - Example

m3

m1

m2

Released messages {m1, m2, m3}

time m3

m1

m2

LDL scheduling {m2, m1, m3}

time

© 2004 E. Coste, J. Templ 19

Latest Deadline Last

 Sorts the list of messages by:
 Key1 = message deadline
 Key2 = message release time
 Key3 = producer deadline.

 Bus Scheduler is non-preemptive and just schedules the
messages in the resulted order.
 Starts from the end of the Bus Period and goes

backwards.
 Merges messages if they have to be sent by the

same node, and are adjacent.

© 2004 E. Coste, J. Templ 20

Search Scheduler - Example

m1

m2

LDL scheduling failure {m2, m1}

time m1

m2

Search scheduler {m1, m2}

time

© 2004 E. Coste, J. Templ 21

Bus Properties as Constraints

 Relevant for:
 Merging messages (min/max payload)
 WCCT (Bps, protocol overhead)
 Time alignment (inter frame gaps, clock resolution)
 Control packets (time synchronization)

 Clock Resolution:
 TDL time unit is microsecond (us).
 Different platforms have a given clock resolution

(e.g., 1ms or 100us).
 Bus communication is computed in microseconds or

even nanoseconds.

© 2004 E. Coste, J. Templ 22

Merging Messages and Clock Resolution

m1

m1

m2

m2

Scheduled m1

Scheduled m2

Aligned m1

Aligned m2

m1m2

m1m2

Merged m1+m2

Aligned m1+m2

time

© 2004 E. Coste, J. Templ 23

We do Various Measurements as Basis
for Optimizations

Metrics relevant for efficient bus utilization:
 Throughput
 Bus utilization
 Average data efficiency
 Maximum and average sending rates
 Maximum and average receiving rates

Metrics relevant for flexibility in task scheduling:
 Minimum and average release-send intervals
 Minimum and average relative release-send intervals

© 2004 E. Coste, J. Templ 24

TDL Run-time Environment

© 2004 E. Coste, J. Templ 25

TDL Run-time Environment

E-machine
TDL Scheduler

(S-machine)
TDL Comm

Tasks
releases

dispatche
s

Ports

Drivers

calls

Environment

Platform

r/w r/w

Message
Buffers

r/w

r/w

calls

Sensors/Actuators

© 2004 E. Coste, J. Templ 26

E-Machine Operation

 Executes E-code instructions at logical time instances
 Implementation is platform dependent (OSEK, InTime,

RTLinux, Java)
 It is fast and lightweight (e.g. 8KB for OSEK E-machine).

 Supports three kinds of module execution: local, push,
and stub.

© 2004 E. Coste, J. Templ 27

E-Machine

bus

M2

M3

M1

M4

node 1

node 2 node 3

M2 imports M1

M4 imports M1, M3

© 2004 E. Coste, J. Templ 28

E-Machine

bus

M2

M3

M1 stub

M1 node 1

node 2 node 3

M2 imports M1

M4 imports M1, M3

M4

M1 stub
M3 stub

push

push
local local

© 2004 E. Coste, J. Templ 29

LOCAL

 release driver - copies input arguments
 terminate driver - copies output arguments
 start driver - calls task impl. function
 stop driver - noop

E-machine time
release
driver

terminate
driver

start
driver

stop
driver

S-machine

LET

© 2004 E. Coste, J. Templ 30

PUSH

 release driver - same as LOCAL
 terminate driver - same as LOCAL
 start driver - same as LOCAL
 stop driver - copy results to TDLcomm

E-machine time
release
driver

terminate
driver

start
driver

stop
driver

S-machine

LET

© 2004 E. Coste, J. Templ 31

STUB

 terminate driver - copies from TDLcomm to output
 uses special E-code that contains only terminate driver

calls at appropriate time instances => stub mode

E-machine time
terminate
driver

LET

© 2004 E. Coste, J. Templ 32

Transparent Distribution

M1

comm1

comm2

time
LET1

bus

LET2

node1

node2

M2

stop
driver

release
driver

M1 stub

terminate
driver

© 2004 E. Coste, J. Templ 33

Tool Chain

.tdl Compiler E-machine

AST

.ecode

functionality
code

Platform
plugin

platform
specific

platform
specific

© 2004 E. Coste, J. Templ 34

Tool Chain

.tdl Compiler E-machine

Bus Scheduler
plugin

AST

.ecode

functionality
code

Platform
plugin

platform
specific

AST

platform
specific

platform busch

© 2004 E. Coste, J. Templ 35

Thank you for your attention!

