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Motivation

MOST-Bus

CAN-Bus

Some benefits of distribution:
 Fault tolerance
 Scalability
 Less wiring
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Introduction to Distributed TDL

Unit of distribution: TDL module
Behavior: as if executed locally
Communication: via broadcast (bus)
Medium access control: TDMA (time-slotting)
Cooperation model: Producer-Consumer (Push)
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Example of Distributed TDL
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Transparent Distribution
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Optimization I

 if the consumer runs slower e.g. by a factor of 2
 redundant message are avoided
 saves bandwidth
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Optimization II

 if the consumer needs a variable later than the producer’s FLET
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Optimization III

 the release of the consumer can be delayed until the message with
the input variable is received
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Bus Schedule
Generation Tool
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What Does the Tool Do?

It generates a global bus schedule file, which contains the
following information:

 Which node has to send a packet and when.

 Which nodes have to receive a packet and when.

 The content for bus packets (a corresponding
datagram, which has one or more items).
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What Does the Tool Need as Input?

 TDL modules
 Platform description file

 module to node assignment
 physical bus properties (e.g., bus frequency,

protocol overhead, inter frame gaps, min/max
payload)

The tool automatically detects:
 Who has to communicate with whom.
 Which messages are needed in a communication cycle

(bus period).
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Who Has to Communicate with Whom

Result: a set of messages.

 A message has:
 a Producer
 one or more Consumers
 size.

 Producers: sensors, task output ports.

 Consumers: actuators, task input ports, guard
arguments.
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Messages Needed in a Bus Period

Result: a set of message instances, with individual timing constraints:
 Release Offset
 Deadline

 Basic Producer-Consumer:
 Send messages with the frequency of the Producer.
 Message deadline = Producer LET.
 BusPeriod = LCM(Producer.period)

 Optimized Producer-Consumer:
 Send messages only when they are needed by the Consumers.
 Message deadline depends on the optimization (e.g.,=

consumer LET).
 BusPeriod = LCM(Producer.period, Consumer.period)
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Message Deadline in Optimization II
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Message Scheduling

Current approach:
 Scheduling in 2 steps:

 Schedule first the messages.
 Schedule then the tasks with deadlines constraints from

messages.

 Optimizations:
 Build bus schedulers which allow more flexibility for the task

scheduler.
 Try several bus schedulers and get feedback from the Time-

Safety-Check (TSC) for tasks.
 Schedule individual messages or merge messages sent from

the same node.
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Scheduling Algorithms

 Heuristic algorithm - “Latest Deadline Last” - LDL
 Adapted from Reversed EDF (Latest Release Time - LRT) -

treats deadlines as release times and vice versa
 Schedule messages as late as possible

 Optimal algorithm 
Branch and bound search 
Exponential complexity in the worst case

Heuristic Algorithm

Schedule

Success Failure

 Not enough SW/HW performance

 There is a schedule but the algorithm fails to find it.
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Latest Deadline Last - Example
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Latest Deadline Last

 Sorts the list of messages by:
 Key1 = message deadline
 Key2 = message release time
 Key3 = producer deadline.

 Bus Scheduler is non-preemptive and just schedules the
messages in the resulted order.
 Starts from the end of the Bus Period and goes

backwards.
 Merges messages if they have to be sent by the

same node, and are adjacent.
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Search Scheduler - Example
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Bus Properties as Constraints

 Relevant for:
 Merging messages (min/max payload)
 WCCT (Bps, protocol overhead)
 Time alignment (inter frame gaps, clock resolution)
 Control packets (time synchronization)

 Clock Resolution:
 TDL time unit is microsecond (us).
 Different platforms have a given clock resolution

(e.g., 1ms or 100us).
 Bus communication is computed in microseconds or

even nanoseconds.
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Merging Messages and Clock Resolution
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We do Various Measurements as Basis
for Optimizations

Metrics relevant for efficient bus utilization:
 Throughput
 Bus utilization
 Average data efficiency
 Maximum and average sending rates
 Maximum and average receiving rates

Metrics relevant for flexibility in task scheduling:
 Minimum and average release-send intervals
 Minimum and average relative release-send intervals
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TDL Run-time Environment
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TDL Run-time Environment
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E-Machine Operation

 Executes E-code instructions at logical time instances
 Implementation is platform dependent (OSEK, InTime,

RTLinux, Java)
 It is fast and lightweight (e.g. 8KB for OSEK E-machine).

 Supports three kinds of module execution: local, push,
and stub.
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E-Machine
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E-Machine
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LOCAL

 release driver - copies input arguments
 terminate driver - copies output arguments
 start driver - calls task impl. function
 stop driver - noop

E-machine time
release 
driver

terminate 
driver

start 
driver

stop 
driver

S-machine

LET
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PUSH

 release driver - same as LOCAL
 terminate driver - same as LOCAL
 start driver - same as LOCAL
 stop driver - copy results to TDLcomm

E-machine time
release 
driver

terminate 
driver

start 
driver

stop 
driver

S-machine

LET
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STUB

 terminate driver - copies from TDLcomm to output
 uses special E-code that contains only terminate driver

calls at appropriate time instances => stub mode

E-machine time
terminate 
driver

LET
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Transparent Distribution
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Tool Chain

.tdl Compiler E-machine

AST
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code
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plugin

platform
specific

platform
specific
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Tool Chain
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Thank you for your attention!


