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Motivation

MOST-Bus

CAN-Bus

Some benefits of distribution:
 Fault tolerance
 Scalability
 Less wiring
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Introduction to Distributed TDL

Unit of distribution: TDL module
Behavior: as if executed locally
Communication: via broadcast (bus)
Medium access control: TDMA (time-slotting)
Cooperation model: Producer-Consumer (Push)
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Example of Distributed TDL
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Transparent Distribution
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 message sent according to bus schedule (TDMA)
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Optimization I

 if the consumer runs slower e.g. by a factor of 2
 redundant message are avoided
 saves bandwidth
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Optimization II

 if the consumer needs a variable later than the producer’s FLET
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Optimization III

 the release of the consumer can be delayed until the message with
the input variable is received
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Bus Schedule
Generation Tool
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What Does the Tool Do?

It generates a global bus schedule file, which contains the
following information:

 Which node has to send a packet and when.

 Which nodes have to receive a packet and when.

 The content for bus packets (a corresponding
datagram, which has one or more items).
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What Does the Tool Need as Input?

 TDL modules
 Platform description file

 module to node assignment
 physical bus properties (e.g., bus frequency,

protocol overhead, inter frame gaps, min/max
payload)

The tool automatically detects:
 Who has to communicate with whom.
 Which messages are needed in a communication cycle

(bus period).
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Who Has to Communicate with Whom

Result: a set of messages.

 A message has:
 a Producer
 one or more Consumers
 size.

 Producers: sensors, task output ports.

 Consumers: actuators, task input ports, guard
arguments.
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Messages Needed in a Bus Period

Result: a set of message instances, with individual timing constraints:
 Release Offset
 Deadline

 Basic Producer-Consumer:
 Send messages with the frequency of the Producer.
 Message deadline = Producer LET.
 BusPeriod = LCM(Producer.period)

 Optimized Producer-Consumer:
 Send messages only when they are needed by the Consumers.
 Message deadline depends on the optimization (e.g.,=

consumer LET).
 BusPeriod = LCM(Producer.period, Consumer.period)
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Message Deadline in Optimization II
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Message Scheduling

Current approach:
 Scheduling in 2 steps:

 Schedule first the messages.
 Schedule then the tasks with deadlines constraints from

messages.

 Optimizations:
 Build bus schedulers which allow more flexibility for the task

scheduler.
 Try several bus schedulers and get feedback from the Time-

Safety-Check (TSC) for tasks.
 Schedule individual messages or merge messages sent from

the same node.
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Scheduling Algorithms

 Heuristic algorithm - “Latest Deadline Last” - LDL
 Adapted from Reversed EDF (Latest Release Time - LRT) -

treats deadlines as release times and vice versa
 Schedule messages as late as possible

 Optimal algorithm 
Branch and bound search 
Exponential complexity in the worst case

Heuristic Algorithm

Schedule

Success Failure

 Not enough SW/HW performance

 There is a schedule but the algorithm fails to find it.
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Latest Deadline Last - Example
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Latest Deadline Last

 Sorts the list of messages by:
 Key1 = message deadline
 Key2 = message release time
 Key3 = producer deadline.

 Bus Scheduler is non-preemptive and just schedules the
messages in the resulted order.
 Starts from the end of the Bus Period and goes

backwards.
 Merges messages if they have to be sent by the

same node, and are adjacent.
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Search Scheduler - Example
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Bus Properties as Constraints

 Relevant for:
 Merging messages (min/max payload)
 WCCT (Bps, protocol overhead)
 Time alignment (inter frame gaps, clock resolution)
 Control packets (time synchronization)

 Clock Resolution:
 TDL time unit is microsecond (us).
 Different platforms have a given clock resolution

(e.g., 1ms or 100us).
 Bus communication is computed in microseconds or

even nanoseconds.



© 2004  E. Coste, J. Templ 22

Merging Messages and Clock Resolution
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We do Various Measurements as Basis
for Optimizations

Metrics relevant for efficient bus utilization:
 Throughput
 Bus utilization
 Average data efficiency
 Maximum and average sending rates
 Maximum and average receiving rates

Metrics relevant for flexibility in task scheduling:
 Minimum and average release-send intervals
 Minimum and average relative release-send intervals
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TDL Run-time Environment
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TDL Run-time Environment
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E-Machine Operation

 Executes E-code instructions at logical time instances
 Implementation is platform dependent (OSEK, InTime,

RTLinux, Java)
 It is fast and lightweight (e.g. 8KB for OSEK E-machine).

 Supports three kinds of module execution: local, push,
and stub.
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E-Machine
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E-Machine
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LOCAL

 release driver - copies input arguments
 terminate driver - copies output arguments
 start driver - calls task impl. function
 stop driver - noop

E-machine time
release 
driver

terminate 
driver

start 
driver

stop 
driver

S-machine

LET
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PUSH

 release driver - same as LOCAL
 terminate driver - same as LOCAL
 start driver - same as LOCAL
 stop driver - copy results to TDLcomm

E-machine time
release 
driver

terminate 
driver

start 
driver

stop 
driver

S-machine

LET
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STUB

 terminate driver - copies from TDLcomm to output
 uses special E-code that contains only terminate driver

calls at appropriate time instances => stub mode

E-machine time
terminate 
driver

LET
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Transparent Distribution
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Tool Chain

.tdl Compiler E-machine

AST
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specific

platform
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Tool Chain
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Thank you for your attention!


