
Emilia Coste
Josef Templ

Department of Computer Science
cs.uni-salzburg.at
www.MoDECS.cc

Distributed, Time-Safe TDL Execution —
 Concepts, Tools and Run-time

Infrastructure

© 2004 E. Coste, J. Templ 2

Overview

 Motivation
 Transparent Distribution
 Bus Schedule Generation Tool
 TDL Run-time Environment
 Tool Chain

© 2004 E. Coste, J. Templ 3

Motivation

MOST-Bus

CAN-Bus

Some benefits of distribution:
 Fault tolerance
 Scalability
 Less wiring

© 2004 E. Coste, J. Templ 4

Introduction to Distributed TDL

Unit of distribution: TDL module
Behavior: as if executed locally
Communication: via broadcast (bus)
Medium access control: TDMA (time-slotting)
Cooperation model: Producer-Consumer (Push)

bus

M2

M3

M1

M4

node 1

node 2 node 3

© 2004 E. Coste, J. Templ 5

Example of Distributed TDL

bus

M2

M3

M1

M4

node 1

node 2 node 3

task1

M1 M2

task2

© 2004 E. Coste, J. Templ 6

Transparent Distribution

M1

comm1

comm2

time
LET1

bus

LET2

node1

node2
M2

 message sent according to bus schedule (TDMA)

© 2004 E. Coste, J. Templ 7

Optimization I

 if the consumer runs slower e.g. by a factor of 2
 redundant message are avoided
 saves bandwidth

M1

comm1

comm2

time
LET1

bus

LET2

node1

node2
M2

© 2004 E. Coste, J. Templ 8

Optimization II

 if the consumer needs a variable later than the producer’s FLET

M1

comm1

time
LET1

bus

LET2

node1

node2
M2

comm2

© 2004 E. Coste, J. Templ 9

Optimization III

 the release of the consumer can be delayed until the message with
the input variable is received

M1

M2

comm1

comm2

time
LET1

bus

LET2

node1

node2

© 2004 E. Coste, J. Templ 10

Bus Schedule
Generation Tool

© 2004 E. Coste, J. Templ 11

What Does the Tool Do?

It generates a global bus schedule file, which contains the
following information:

 Which node has to send a packet and when.

 Which nodes have to receive a packet and when.

 The content for bus packets (a corresponding
datagram, which has one or more items).

© 2004 E. Coste, J. Templ 12

What Does the Tool Need as Input?

 TDL modules
 Platform description file

 module to node assignment
 physical bus properties (e.g., bus frequency,

protocol overhead, inter frame gaps, min/max
payload)

The tool automatically detects:
 Who has to communicate with whom.
 Which messages are needed in a communication cycle

(bus period).

© 2004 E. Coste, J. Templ 13

Who Has to Communicate with Whom

Result: a set of messages.

 A message has:
 a Producer
 one or more Consumers
 size.

 Producers: sensors, task output ports.

 Consumers: actuators, task input ports, guard
arguments.

© 2004 E. Coste, J. Templ 14

Messages Needed in a Bus Period

Result: a set of message instances, with individual timing constraints:
 Release Offset
 Deadline

 Basic Producer-Consumer:
 Send messages with the frequency of the Producer.
 Message deadline = Producer LET.
 BusPeriod = LCM(Producer.period)

 Optimized Producer-Consumer:
 Send messages only when they are needed by the Consumers.
 Message deadline depends on the optimization (e.g.,=

consumer LET).
 BusPeriod = LCM(Producer.period, Consumer.period)

© 2004 E. Coste, J. Templ 15

Message Deadline in Optimization II

M1

M2

comm1

comm2

time
LET1

bus

LET2

node1

node2

Producer
Deadline

Message
Deadline

© 2004 E. Coste, J. Templ 16

Message Scheduling

Current approach:
 Scheduling in 2 steps:

 Schedule first the messages.
 Schedule then the tasks with deadlines constraints from

messages.

 Optimizations:
 Build bus schedulers which allow more flexibility for the task

scheduler.
 Try several bus schedulers and get feedback from the Time-

Safety-Check (TSC) for tasks.
 Schedule individual messages or merge messages sent from

the same node.

© 2004 E. Coste, J. Templ 17

Scheduling Algorithms

 Heuristic algorithm - “Latest Deadline Last” - LDL
 Adapted from Reversed EDF (Latest Release Time - LRT) -

treats deadlines as release times and vice versa
 Schedule messages as late as possible

 Optimal algorithm
Branch and bound search
Exponential complexity in the worst case

Heuristic Algorithm

Schedule

Success Failure

 Not enough SW/HW performance

 There is a schedule but the algorithm fails to find it.

© 2004 E. Coste, J. Templ 18

Latest Deadline Last - Example

m3

m1

m2

Released messages {m1, m2, m3}

time m3

m1

m2

LDL scheduling {m2, m1, m3}

time

© 2004 E. Coste, J. Templ 19

Latest Deadline Last

 Sorts the list of messages by:
 Key1 = message deadline
 Key2 = message release time
 Key3 = producer deadline.

 Bus Scheduler is non-preemptive and just schedules the
messages in the resulted order.
 Starts from the end of the Bus Period and goes

backwards.
 Merges messages if they have to be sent by the

same node, and are adjacent.

© 2004 E. Coste, J. Templ 20

Search Scheduler - Example

m1

m2

LDL scheduling failure {m2, m1}

time m1

m2

Search scheduler {m1, m2}

time

© 2004 E. Coste, J. Templ 21

Bus Properties as Constraints

 Relevant for:
 Merging messages (min/max payload)
 WCCT (Bps, protocol overhead)
 Time alignment (inter frame gaps, clock resolution)
 Control packets (time synchronization)

 Clock Resolution:
 TDL time unit is microsecond (us).
 Different platforms have a given clock resolution

(e.g., 1ms or 100us).
 Bus communication is computed in microseconds or

even nanoseconds.

© 2004 E. Coste, J. Templ 22

Merging Messages and Clock Resolution

m1

m1

m2

m2

Scheduled m1

Scheduled m2

Aligned m1

Aligned m2

m1m2

m1m2

Merged m1+m2

Aligned m1+m2

time

© 2004 E. Coste, J. Templ 23

We do Various Measurements as Basis
for Optimizations

Metrics relevant for efficient bus utilization:
 Throughput
 Bus utilization
 Average data efficiency
 Maximum and average sending rates
 Maximum and average receiving rates

Metrics relevant for flexibility in task scheduling:
 Minimum and average release-send intervals
 Minimum and average relative release-send intervals

© 2004 E. Coste, J. Templ 24

TDL Run-time Environment

© 2004 E. Coste, J. Templ 25

TDL Run-time Environment

E-machine
TDL Scheduler

(S-machine)
TDL Comm

Tasks
releases

dispatche
s

Ports

Drivers

calls

Environment

Platform

r/w r/w

Message
Buffers

r/w

r/w

calls

Sensors/Actuators

© 2004 E. Coste, J. Templ 26

E-Machine Operation

 Executes E-code instructions at logical time instances
 Implementation is platform dependent (OSEK, InTime,

RTLinux, Java)
 It is fast and lightweight (e.g. 8KB for OSEK E-machine).

 Supports three kinds of module execution: local, push,
and stub.

© 2004 E. Coste, J. Templ 27

E-Machine

bus

M2

M3

M1

M4

node 1

node 2 node 3

M2 imports M1

M4 imports M1, M3

© 2004 E. Coste, J. Templ 28

E-Machine

bus

M2

M3

M1 stub

M1 node 1

node 2 node 3

M2 imports M1

M4 imports M1, M3

M4

M1 stub
M3 stub

push

push
local local

© 2004 E. Coste, J. Templ 29

LOCAL

 release driver - copies input arguments
 terminate driver - copies output arguments
 start driver - calls task impl. function
 stop driver - noop

E-machine time
release
driver

terminate
driver

start
driver

stop
driver

S-machine

LET

© 2004 E. Coste, J. Templ 30

PUSH

 release driver - same as LOCAL
 terminate driver - same as LOCAL
 start driver - same as LOCAL
 stop driver - copy results to TDLcomm

E-machine time
release
driver

terminate
driver

start
driver

stop
driver

S-machine

LET

© 2004 E. Coste, J. Templ 31

STUB

 terminate driver - copies from TDLcomm to output
 uses special E-code that contains only terminate driver

calls at appropriate time instances => stub mode

E-machine time
terminate
driver

LET

© 2004 E. Coste, J. Templ 32

Transparent Distribution

M1

comm1

comm2

time
LET1

bus

LET2

node1

node2

M2

stop
driver

release
driver

M1 stub

terminate
driver

© 2004 E. Coste, J. Templ 33

Tool Chain

.tdl Compiler E-machine

AST

.ecode

functionality
code

Platform
plugin

platform
specific

platform
specific

© 2004 E. Coste, J. Templ 34

Tool Chain

.tdl Compiler E-machine

Bus Scheduler
plugin

AST

.ecode

functionality
code

Platform
plugin

platform
specific

AST

platform
specific

platform busch

© 2004 E. Coste, J. Templ 35

Thank you for your attention!

