
1

Testing Software Systems

2

Overview

Testing OO Software Systems
– Introduction to Software Testing

References
– B. Hailpern, P. Santhanam, Software debugging, testing, and verification, IBM 

Systems Journal, Vol. 40, No1. 2002, 
http://www.research.ibm.com/journal/sj/411/hailpern.html

– Skipt zur Vorlesung Softwaretechnik II, FB Informatik, Universitaet Oldenburg, 
WS 2000/2001

– Steve McConnell, Software Quality at Top Speed, Software Development, 
August 1996, http://www.construx.com/stevemcc/articles/

– Bernd Kahlbrandt, Skript Sofwtare Enginering II, http://www.informatik.fh-
hamburg.de/~khb/st4se2/st4se2.html

– Robert v. Binder, Testing OO Systems, Addison Wesley, 2000 



2

3

Evolution of Programming 
Systems
• There is a big difference 

between an isolated 
program created by a lone 
programmer and a 
programming systems 
product. 
– A programming systems

product “can be run, tested, 
repaired, and extended by 
anybody …in many 
operating environments, for 
many sets of data” and 
forms a part of “a collection 
of interacting programs, 
coordinated in function and 
disciplined in format, so that 
the assemblage constitutes 
an entire facility for large 
tasks.” (Frederic Brooks)

4

Testing is essential
• Objective: 

– Develop quality software at low costs to maximize margin.

• Strategy
– Minimize costs by reducing testing effort.
– However, consequences can be severe.

• Result:
– Software for power plants (Tschernobyl?),
– Software for military (747 shoot down),
– Software for aviation (Airbus crash),
– Software for production control (Seveso),
– 2000-Problem (Y2K)



3

5

Software Systems

• Software quality has improved, however software 
systems grew at faster speed
– 1977: 7 - 20 defects per 1000 LOC
– 1994: 0.2 - 0.05 defects per 1000 LOC

• SAP R/3
– 7.000.000 LOC, 100.000 function calls, 20.000 functions, 

17.000 menus, 21.000 reports
• Space Shuttle

– 48.000.000 LOC
• Windows 2000

– Ca. 50.000.000 LOC
– Estimated no. of defects: 60.000 1,2 defects per 1000 

LOC

6

Software Quality at Top Speed
• Software quality

– Some project managers try to 
shorten their schedules by 
reducing the time spent on 
quality-assurance practices 
such as design and code 
reviews. 

– Some shortchange the 
upstream activities of 
requirements analysis and 
design. 

– Others--running late--try to 
make up time by compressing 
the testing schedule, which is 
vulnerable to reduction since 
it’s the critical-path item at the 
end of the schedule. 

• In software, higher quality (in 
the form of lower defect rates) 
and reduced development 
time go hand in hand.

Source:http://www.construx.com/stevemcc/articles/art04.htm



4

7

Quality Assurance and 
Development Speed
Studies have found 
that reworking 
defective 
requirements, 
design, and code 
typically consumes 
40 to 50 percent of 
the total cost of 
software 
development.

Source:http://www.construx.com/stevemcc/articles/art04.htm

8

Validation Strategies

Source: Bernd Kahlbrandt, Skript zu Software Engineering



5

9

Activities in a Typical Software 
Development Process

10

Typical Stages of Testing

• Testing is a necessary area for software validation.
– External Function Tests based on external specification
– System Tests: recovery, stress, performance, hw + sw configuration 
– Integration / Production Tests based on customer acceptance criteria



6

11

Testing I
„Program testing can be used to show the presence of 

bugs, but never to show their absence” Dijkstra

• From his point of view, any amount of testing 
represents only a small sampling of all possible 
computations and is therefore never adequate to 
assure the expected behavior of the program under all 
possible conditions. 

12

Testing II
• Test Metric

– Testing is a sampling of the program execution space. 
Consequently, the natural question arises: when do we stop 
testing? 

• defect discovery rate over time 
• test progress over time (planned, attempted, actual)
• percentage of test cases attempted, etc...

• Static Testing
– can be done before an executable version of the program 

exists
– Typical analyses performed will involve a compiler or parser, 

tied to the language of the program, that builds a 
representation, such as 

• a call graph, 
• a control graph, or 
• a data flow graph, of the program. 



7

13

Testing III

• Test Automation
– There are four major parts to any testing effort: 

• test case design, 
• test case creation, 
• test case execution, and 
• debugging

– Automation of test execution
– Automation of test case design (and hence test case 

creation)
• Need of formal description of the specifications of the 

software behavior, resulting in a model of the software 
behavior.

• Regression Testing
– Regression testing not only checks that earlier 

specifications are still valid, but also catches backward-
compatibility problems.

14

Defintions V
• Test Point

– A test point is a specific value for test case input and state variable
• Test Case

– A test case specifies the pretest state of the Implementation Under 
Test (IUT) and its environment, the test inputs or conditions and the 
expected results.

• Test Suite
– A test suite is a collection of test cases, typically related by a testing 

goal or implementation dependency.
• Test driver

– A test driver is a class or utility program that applies test cases to an 
IUT.

• Test Run
– A test run is the execution (with results) of a test suite.

• Test harness
– A test harness is a system of test drivers and other tools to support 

test execution.



8

15

Faults, Omissions, and 
Surprises

Implementation

Specification

Omissions

Faults

Surprise

Correct Code

16

Modelling – Testing - Validation

Component
Representation

Component
Implementation

Meta-Model

Observed
Behavior

Required
Behavior

Validation

Implementation-based Testing
White-Box-Testing

Responsibility-based Testing
Black-Box-Testing

Completeness Checking

Consistency Checking



9

17

Black-Box Testing I

• Black–Box Testing
– Also known as functional testing. A software testing technique 

whereby the internal workings of the item being tested are not 
known by the tester. 

– For example, in a black box test on a software design the tester
only knows the inputs and what the expected outcomes should be 
and not how the program arrives at those outputs. 

– The tester does not ever examine the programming code and 
does not need any further knowledge of the program other than its 
specifications. 

Black
Box

Testing

18

Black-Box Testing II
– When you perform black box testing you should 

execute your procedure with test cases from each of 
the following categories: 

• Expected inputs 
These include the values that you expect your procedure 
to receive most of the time. 

• Boundary values 
If your procedure expects an input value from 1 to 999, 
use 1 and 999 as test cases to make sure that your 
procedure returns the expected results for the boundary 
cases. 

• Illegal values 
Using the boundary values example, what happens if 
your procedure receives as input a value that is less 
than 1 or greater than 999? 

– Does the user receive a useful error message?
– Does the procedure simply stop, or does it attempt 

to use values outside its limitations and simply 
return an incorrect answer? 

It is essential that you run the procedure using illegal 
input values to determine the answers to these 
questions. 

Black
Box

Testing

Black
Box

Testing

Expected
Inputs

Expected
Inputs

Boundary
Values

Boundary
Values

Illegal
Values
Illegal
Values



10

19

Black-Box Testing
• The advantages of this type of testing include: 

– The test is unbiased because the designer and the 
tester are independent of each other. 

– The tester does not need knowledge of any specific 
programming languages. 

– The test is done from the point of view of the user, not 
the designer. 

– Test cases can be designed as soon as the 
specifications are complete. 

• The disadvantages of this type of testing include: 
– The test can be redundant if the software designer has 

already run a test case. 
– The test cases are difficult to design. 
– Testing every possible input stream is unrealistic 

because it would take a inordinate amount of time; 
therefore, many program paths will go untested. 

20

White-Box Testing I
• White-Box Testing

– A software testing technique whereby explicit 
knowledge of the internal workings of the item being 
tested are used to select the test data. 

– Unlike black box testing, white box testing uses specific 
knowledge of programming code to examine outputs. 
The test is accurate only if the tester knows what the 
program is supposed to do. He or she can then see if 
the program diverges from its intended goal. 

– White box testing does not account for errors caused 
by omission, and all visible code must also be 
readable. 

White
Box

Testing



11

21

White-Box Testing II
• To perform white box testing, do the following: 

– Test each statement. 
• You provide sets of test values to ensure that every statement 

in the procedure is executed at least once. This includes all 
statements --- even those executed only when optional 
arguments, user-supplied arguments, subroutines, user-action 
routines, or specific error codes are present.

– Test each decision.
• You provide test cases to ensure that each branch of a 

decision is executed at least once. In the case of a standard 
Boolean decision, this typically requires providing two values; 
however, this number may be much greater in the case of 
compound or nested decisions. 

– Test each condition. 
• Condition testing requires writing test cases that ensure each 

condition in a decision takes all possible outcomes at least 
once, and each point of entry to the program or subroutine is 
invoked at least once. You must supply multiple test values in 
cases of compound and nested loops. In testing the entry 
points, remember to invoke any optional routines (either 
internal or external), as well as error handlers. If your 
procedure contains a JSB entry point, that entry point should 
also be tested. 

White
Box

Testing

White
Box

Testing

Statement
Testing

Statement
Testing

Decision
Testing

Decision
Testing

Condition
Testing

Condition
Testing

22

Result-Oriented Testing

• Hybrid approach to testing:
– Result Oriented Testing orchestrates test techniques 

for effectiveness. Instead of being cast as compatible 
opposites or narrow technical specialties, scope-
specific test design and execution techniques are 
organized into a coherent whole.

Binder

„It doesn‘t matter whether a cat is black or 
white so long as it catches mice.“

Deng Xiaoping


