
Delegates and Events
12/01/2003

Delegates and Events

2

Objectives

• Introduce delegates and events
– defining delegate types
– invoking through delegates
– registering multiple targets

• Discuss design benefits of using delegates

Delegates and Events
12/01/2003

3

State

• Objects typically maintain state
– state changes over time

class Student
{

string name;
double gpa;
int units;

public void RecordClass(int grade)
{

gpa = (gpa * units + grade) / (units + 1);

units++;
}
...

}

store state

change state

4

Notification

• May want to notify interested parties of state change
– notification widely used throughout .NET framework
– user interface event handling most common example

StudentRecordClass
Parent

Registrar

new grade causes
gpa to change

notify

Delegates and Events
12/01/2003

5

Pattern

• Notification typically involves registration and callback
– target registers with caller
– caller calls back target when state changes
– pattern also called publish/subscribe

callback

register Parent
(target)

Student
(caller)

6

target
object

Delegates

• .NET Framework uses delegates to implement callbacks
– intermediary between caller and target
– declaration defines callback method signature
– instance stores object reference and method token

callback target
method

callback
caller

delegate

Delegates and Events
12/01/2003

7

Parent
object

Information flow

• Caller and target need to agree on information flow
– data passed through delegate

double Parent
method

double
Student

delegate
void void

8

Delegate definition

• Define delegate with delegate keyword
– syntax similar to method declaration without body
– delegate name placed where method name usually goes

delegate void StudentCallback(double gpa);

delegate keyword

target method
return type

name of delegate

target method
parameter

Delegates and Events
12/01/2003

9

Delegate as type

• Delegate name is type name
– can declare references
– can create objects

StudentCallback a = new StudentCallback(...);

define delegate delegate void StudentCallback(double gpa);

reference object

10

Target use of delegate

• Target defines method with signature specified by delegate
– parameters and return type must match
– method name not constrained

class Parent
{

public void Report(double gpa)
{
...

}
}

target

delegate defines
required signature delegate void StudentCallback(double gpa);

method signature
matches delegate

Delegates and Events
12/01/2003

11

Caller use of delegate

• Caller typically defines delegate reference

class Student
{

public StudentCallback GpaChanged;
...

}

caller

delegate reference

12

Registration

• Create delegate object and store in caller to register
– pass target object and method to delegate constructor

void Run()
{

Student ann = new Student("Ann");

Parent mom = new Parent();

StudentCallback a = new StudentCallback(mom.Report);

ann.GpaChanged = a;
...

}

caller

target

create

store

target
object

target
method

Delegates and Events
12/01/2003

13

Invocation

• Caller invokes callback indirectly through delegate
– uses method call syntax on delegate
– delegate calls target method on target object

class Student
{

public StudentCallback GpaChanged;

public void RecordClass(int grade)
{
// update gpa
...
GpaChanged(gpa);

}
}

invoke callback
through delegate

callback takes
double argument

14

Summary of delegate use
delegate void StudentCallback(double gpa);

class Parent
{
public void Report(double gpa) { ... }

}

class Student
{
public StudentCallback GpaChanged;

public void RecordClass(int grade)
{
// update gpa
...
GpaChanged(gpa);

}
}

Student ann = new Student("Ann");
Parent mom = new Parent();

ann.GpaChanged = new StudentCallback(mom.Report);
ann.RecordClass(4); // 4 == 'A'

define delegate

caller stores delegate

caller invokes delegate

target method

create and install delegate

Delegates and Events
12/01/2003

15

Null reference

• Delegate is reference type
– defaults to null when used as field
– typical to guard invocation

class Student
{

public StudentCallback GpaChanged;

public void RecordClass(int grade)
{
// update gpa
...
if (GpaChanged != null)
GpaChanged(gpa);

}

test before call

16

class Registrar
{

public static void Log(double gpa)
{

...
}

}

void Run()
{

Student ann = new Student("Ann");

ann.GpaChanged = new StudentCallback(Registrar.Log);
...

}

Static methods

• Static method may be target of delegate
– use class name and method name when creating delegate
– no object specified since no this object associated with call

static method

register

Delegates and Events
12/01/2003

17

Multiple targets

• Can combine delegates using operator+= or operator+
– creates invocation list of delegates
– all targets called when delegate invoked
– targets called in order added
– use of += ok even when left-hand-side is null

Parent mom = new Parent();
Parent dad = new Parent();

Student ann = new Student("Ann");

ann.GpaChanged += new StudentCallback(mom.Report);
ann.GpaChanged += new StudentCallback(dad.Report);
...

targets

first
second

18

Remove delegate

• Can remove delegate from invocation list
– use operator-= or operator-
– identity of target object/method determines which is removed

Parent mom = new Parent();
Parent dad = new Parent();

Student ann = new Student("Ann");

ann.GpaChanged += new StudentCallback(mom.Report);
ann.GpaChanged += new StudentCallback(dad.Report);
...
ann.GpaChanged -= new StudentCallback(dad.Report);
...

remove

add

Delegates and Events
12/01/2003

19

Public delegate

• Not common to have public delegate field
– allows assignment: could overwrite existing registrants
– allows external invocation: decision should be made internally

Parent mom = new Parent();
Parent dad = new Parent();
Student ann = new Student("Ann");
...
ann.GpaChanged = new StudentCallback(mom.Report);
ann.GpaChanged = new StudentCallback(dad.Report);
...
ann.GpaChanged(4.0);
...

overwrite mom handler

invoke

class Student
{

public StudentCallback GpaChanged;
...

}

public delegate

20

Parent mom = new Parent();
Student ann = new Student("Ann");

ann.GpaChanged += new StudentCallback(mom.Report);

ann.GpaChanged = new StudentCallback(mom.Report);
ann.GpaChanged(4.0);
...

Events

• Events give private data/public accessor pattern for delegates
– created by applying event keyword to delegate
– external code can uses += and -=
– no external assignment or invocation

class Student
{

public event StudentCallback GpaChanged;
...

}

ok to use +=

error to use =
error to invoke

event

Delegates and Events
12/01/2003

21

Design

• Delegates provide clean way to code publish/subscribe
– publisher independent of type of subscriber
– publisher independent of target method name
– subscriber constrained only by callback method signature
– promotes loosely coupled designs

Subscriber

publish target
method

publish
Publisher

delegate

22

Summary

• Delegates are objects that invoke methods on other objects
– useful to implement callbacks

• Events add semantic/syntactic layer to delegates
– enforce clean and safe registration/deregistration protocols

