Dipl.-Ing. Michael Holzmann
Software Research Lab

www. SoftwareResearch.net

A\ B
RESEARCH

e Atomic actions (transactions) in distributed systems
e Make transactions resilient: data replication
e Introduction replica management
e Replica management strategies:
Version vectors

Primary site

State machine (active replication)
Voting

| majority

| hierarchical
e Degree of replication

SOFTWARE u
© 2004, M. Holzmann VO Distributed Systems — Data Replication and Resiliency RESEARCH

e Atomic action: A couple of identified operations appear

as atomic.
e E.g.: Money transfer

begin T1
read account A
read account B
add €500 to B
sub €500 from A
update A
update B
end T1

begin T2
read account A
read account B
add €200 to B
sub €200 from A

update A

update B

end T2

o SOFTWARE u
© 2004, M. Holzmann VO Distributed Systems — Data Replication and Resiliency RESEARCH

e Either completes successfully or it appears as if the
action has not executed at all.

e How is this done?

e \What can prevent atomic actions from successful
completion (violation of atomicity)?

e Data access: uniprocess environment vs distributed
system

e What happens in a distributed system where multiple
copies of data exist in the case of failures?

SOFTWARE u
© 2004, M. Holzmann VO Distributed Systems — Data Replication and Resiliency RESEARCH

e Applications where rollback makes no sense?

e If we are interested rather in successful completion than
In roll-back:

- How can this be achieved? / Problems to be dealt
with?

e Access Control: no concurrent data access

e How can we complete actions even in the case of
failures?

e Replicate data items needed during the transaction

SOFTWARE u
© 2004, M. Holzmann VO Distributed Systems — Data Replication and Resiliency RESEARCH

6

e Purpose of replication: support fault tolerance ->
replication should not be visible.

e Operations on logical data items are mapped to
operations on the multiple copies of the data items.

e One-copy serializability criterion
- Has to be guaranteed by replica control algorithms

e Which types of failures have to be handled by replica
control algorithms in a distributed system?

- Node failures
- Communication failures

SOFTWARE u
© 2004, M. Holzmann VO Distributed Systems — Data Replication and Resiliency RESEARCH |

e How do node failures affect the system behavior?

- As long as one copy of the data item Is accessible the
operation can be finished.

e What can happen in the case of communication failures?

- Network partitioning: Nodes in the different partitiones
are unable to communicate with each other.

- Whitin a group the consistency of the replicas can be
preserved, but

- Global mutual consistency of the replicas may be
violated.

SOFTWARE u
© 2004, M. Holzmann VO Distributed Systems — Data Replication and Resiliency RESEARCH |

e To0 avolid inconsistencies In the case of network

partitioning processing in the different partitions has to
be restricted!

e Two different approaches:

- Optimistic: no restrictions, solve inconsistencies after

rejoin (hopefully).
- Pessimistic: restrictions on processing.

© 2004, M. Holzmann

VO Distributed Systems — Data Replication and Resiliency

OZEWAB |
RESEARCH

e Operations are performed independently in each group.

e Serilizability in each group can be preserved, but global
Inconsistencies may arise: solve them after rejoin.

e Version Vectors:

- Each replica has a version vector V[n] which reflects
the number of updates of the copy by the different
nodes.

- Relationship between two vectors:

| Dominate: V[i] > V]i]' foralli=1..n
| Conflict: neither vector dominates the other

- If two copies conflict, it is up to the system manager
manually do what ever necessary. |

SOFTWARE u
© 2004, M. Holzmann VO Distributed Systems — Data Replication and Resiliency RESEARCH

{A, B, C} <0,0,0>

/\

<2,0,0> {A, B} {C} <0,0,0>

T

<3,0,0> {A} {B, C}<2,0,1>

—

{A, B, C} <conflict!!>

e Only detection of inconsistencies due to update
e No detection of read-write conflicts

SOFTWARE u
10 © 2004, M. Holzmann VO Distributed Systems — Data Replication and Resiliency RESEARCH Salzbur

11

e Pessimistic Approach
e Handles node failures.

e The system must be able to distinguish node and
communication failures in order to handle partitioning.

e To support k-resilient data, the data is repicated on k+1
nodes

e Most straightforward approach: designated node is
primary‘, it coordinates update of the ,nackup‘ nodes.

SOFTWARE Un
© 2004, M. Holzmann VO Distributed Systems — Data Replication and Resiliency RESEARCH |

e What happens in the case of failures:

- Backup node:
| service is not disrupted

- Primary node:

| new primary has to be elected. Continue user requests after
finishing actual request / continue from checkpoint.

- Network partitioning:

| The partition with the primary node continues servicing
requests. The others can not continue.

e Advantage of primary site approach regarding update
policy of the backup nodes:
| Any centralized concurrency control protocol can be used.

SOFTWARE u
12 © 2004, M. Holzmann VO Distributed Systems — Data Replication and Resiliency RESEARCH

13

e All replicas are simultaneously active.

e Can handle only node failures, but is able to handle even
Byzantine fallures.

e Main idea: ensure that all replicas get the same
sequence of requests. Prerequisites:

- Agreement: all replicas receive every request

- Order: all replicas process requests in the same order
e How to achive these requirements?

- Byzantine agreement protocol / reliable broadcast

- Assigning unigue IDs: logical clock algorithm.

- Satisfies both requirements: Atomic Broadcast.

SOFTWARE u
© 2004, M. Holzmann VO Distributed Systems — Data Replication and Resiliency RESEARCH

e Example: Implementing Resilient Objects

e Problem: A requested operation on O1 may request an
operation on another object O2. What will happen?

| All nodes performing operation on O1 will also request the
operation on O2 -> images. Consistency?

e Each independent operation is assigned a unique 1D
e All images of an independent request have the same 1D

e Realization:

| Each node has a counter that is incremented whenever
message Is received or broadcasted.

| Top-level: OpID = node# + counter
| Nested-level: OpIDn = OpID + sequence#

SOFTWARE u
14 © 2004, M. Holzmann VO Distributed Systems — Data Replication and Resiliency RESEARCH

15

e Each operation is performed once at each replica:
e Each node maintains a request and a result queue.

- Requests / Results are only broadcasted if there is no
copy of this request / result in the queue.

e After a request has been serviced, what happens to its
copy In the request queue?

It has to be kept until no other copy of the request can arrive.

Purged after ,sufficient’ time has elapsed (commu. delays)

If a request is served, the copy in the queue is marked.

- ,Marking‘ means, that the operation has been
performed on the local replica.

SOFTWARE u
© 2004, M. Holzmann VO Distributed Systems — Data Replication and Resiliency RESEARCH

16

e So far we have focussed on single operations.

e How to preserve One-copy serializability?

- Requirement: all replicas use the same concurrency
control method.

| Atomic broadcast ensures that all replicas receive the
requests in the same order and thus execute the same steps.

e Example: 2-phase locking protocol
e Reintegration of failed nodes:
- State transition from other nodes

SOFTWARE u
© 2004, M. Holzmann VO Distributed Systems — Data Replication and Resiliency RESEARCH

17

e Performing actions on replicas is decided collectively by
voting: conflicting operations not performed concurrently.

e Advantage: masks both, node and communication
failures

e Voting Methods:
- Static: Assignment of votes is predefined statically

- Dynamic: Assingment of votes may change to adapt
to changings of the system state.

SOFTWARE Un
VO Distributed Systems — Data Replication and Resiliency RESEARCH I

© 2004, M. Holzmann

18

e Each node is assigned some number of votes

e Any node that wants to read / write data has to aquire at
least r / w votes from the system before it may proceed.
| r+w>v,Vv..sum of all votes.
| w>v/2

e What do these conditions guarantee?

Every read and write quorum intersect

Every read quorum contains one replica with the latest update
Two write quorums intersect

In the case of partitioning write is allowed to be performed in
at most one group

SOFTWARE u
© 2004, M. Holzmann VO Distributed Systems — Data Replication and Resiliency RESEARCH

Read quorum

————————————————————

(A_B icC (A B C D)
‘e F & E (G H|
1 J K 1 4 K L

o e e et o s i o e i e i L e D L T

e EXxtremes:
| r=1, w=v (ROWA). No updates possible if single node fails

| r=w =V/2+1. If partitioning occurs only majority group
functions

SOFTWARE
19 © 2004, M. Holzmann VO Distributed Systems — Data Replication and Resiliency RESEARCH

Universitiit
Salzburg

20

e Each node broadcasts a request for votes.

e All nodes reply with the number of votes they posses
and their version number of the replica.

e If the requesting node has aquired sufficient votes
(>=quorum) it starts to perform the operation.
- Read operation: check the received version numbers,
at least one replica has the latest update.
- Write operation: the requester makes sure that all
nodes in the quorum are written using the latest
value.

SOFTWARE u
© 2004, M. Holzmann VO Distributed Systems — Data Replication and Resiliency RESEARCH

e Problem with majority voting:

- # of nodes required in a quorum increases linearly
with # of replicas.

e Hierarchical approach: reduce number of nodes that
must be in a quorum by introducing a multi-level
structure (tree): each level corresponds a quorum.

e Aquiring a quorum at level i implies quorum collection
right down to the leaf level.

e Conditions for the quorum at each level i:
- ri+wi>li(li .. # of childreen at level 1)
- 2wi > i

SOFTWARE u
21 © 2004, M. Holzmann VO Distributed Systems — Data Replication and Resiliency RESEARCH

22

AN SN TN
VAL L

What is the condition for the quorums in this case?

i+ wi>3, wi>=2

r/w quorums which result in fewest nodes / quorum?

ri=2 and wi=2, i=1..3 -> only 8 nodes are in the quorums!

SOFTWARE
© 2004, M. Holzmann VO Distributed Systems — Data Replication and Resiliency RESEARCH

23

e Increasing degree of replication:
- Increased reliability -> increases availability
- Increased overhead -> decreases availability
e What is the optimum degree of replication?
e Example: Primary Site Approach

- The state of the primary is periodically checkpointed
on all backups at a certain frequency f.

- If the primary falls, all operations from the checkpoint
are redone by the new primary (recovery).

- Falled sites are repaired and rejoin after repair.

SOFTWARE u
© 2004, M. Holzmann VO Distributed Systems — Data Replication and Resiliency RESEARCH

24

e Availablility A is the fraction of time the system is
availiable for user requests:

- A=1-0J/L ;L .. period of observation.

e Overhead O occurs because of checkpointing, recovery
and repair:

-A=QA-THA-Tr) (A -Tc)
- Increasing N reduces Ti
- Butincreasing N increases Tc at constant f.

e Practical examples have shown that availabilities with
N=2 or N=3 are only 1% less optimal availability.

SOFTWARE u
© 2004, M. Holzmann VO Distributed Systems — Data Replication and Resiliency RESEARCH |

Universit[t
Salzburg

Thank you for your attention!

OEEAB
RESEARCH

