
Dipl.-Ing. Michael Holzmann
Software Research Lab

www.SoftwareResearch.net

VO Distributed Systems
Data Replication & Resilience

Universit�t
Salzburg



© 2004, M. Holzmann2
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

Overview

� Atomic actions (transactions) in distributed systems
� Make transactions resilient: data replication
� Introduction replica management
� Replica management strategies:

- Version vectors
- Primary site
- State machine (active replication)
- Voting

| majority

| hierarchical

� Degree of replication



© 2004, M. Holzmann3
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

Atomic Actions

� Atomic action: A couple of identified operations appear 
as atomic.

� E.g.: Money transfer
begin T1 begin T2

read account A read account A

read account B read account B

add €500 to B add €200 to B

sub €500 from A sub €200 from A

update A update A

update B update B

end T1 end T2



© 2004, M. Holzmann4
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

Atomic actions in distributed systems

� Either completes successfully or it appears as if the 
action has not executed at all.

� How is this done?
� What can prevent atomic actions from successful 

completion (violation of atomicity)?
� Data access: uniprocess environment vs distributed 

system
� What happens in a distributed system where multiple 

copies of data exist in the case of failures?



© 2004, M. Holzmann5
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

Transactions: completion vs rollback

� Applications where rollback makes no sense?
� If we are interested rather in successful completion than 

in roll-back:
- How can this be achieved? / Problems to be dealt 

with?

� Access Control: no concurrent data access
� How can we complete actions even in the case of 

failures?
� Replicate data items needed during the transaction



© 2004, M. Holzmann6
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

Data replication

� Purpose of replication: support fault tolerance -> 
replication should not be visible.

� Operations on logical data items are mapped to 
operations on the multiple copies of the data items.

� One-copy serializability criterion
- Has to be guaranteed by replica control algorithms

� Which types of failures have to be handled by replica 
control algorithms in a distributed system?
- Node failures
- Communication failures



© 2004, M. Holzmann7
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

Dealing with communication failures

� How do node failures affect the system behavior?
- As long as one copy of the data item is accessible the 

operation can be finished.
� What can happen in the case of communication failures?

- Network partitioning: Nodes in the different partitiones 
are unable to communicate with each other.

- Whitin a group the consistency of the replicas can be 
preserved, but

- Global mutual consistency of the replicas may be 
violated.



© 2004, M. Holzmann8
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

Replica control methods

� To avoid inconsistencies in the case of network 
partitioning processing in the different partitions has to 
be restricted!

� Two different approaches:
- Optimistic: no restrictions, solve inconsistencies after 

rejoin (hopefully).
- Pessimistic: restrictions on processing.



© 2004, M. Holzmann9
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

Optimistic approaches

� Operations are performed independently in each group.
� Serilizability in each group can be preserved, but global 

inconsistencies may arise: solve them after rejoin.
� Version Vectors:

- Each replica has a version vector V[n] which reflects 
the number of updates of the copy by the different 
nodes.

- Relationship between two vectors:
| Dominate: V[i] > V[i]‘ for all i = 1..n
| Conflict: neither vector dominates the other

- If two copies conflict, it is up to the system manager to 
manually do what ever necessary.



© 2004, M. Holzmann10
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

Version Vectors Example

{A, B, C} <0,0,0>

<2,0,0> {A, B} {C} <0,0,0>

<3,0,0> {A} {B, C} <2,0,1>

{A, B, C} <conflict!!>

� Only detection of inconsistencies due to update
� No detection of read-write conflicts



© 2004, M. Holzmann11
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

Primary Site Approach

� Pessimistic Approach
� Handles node failures.
� The system must be able to distinguish node and 

communication failures in order to handle partitioning.
� To support k-resilient data, the data is repicated on k+1 

nodes
� Most straightforward approach: designated node is 

‚primary‘, it coordinates update of the ‚backup‘ nodes.



© 2004, M. Holzmann12
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

Primary Site Approach – handling failures

� What happens in the case of failures:
- Backup node:

| service is not disrupted

- Primary node:
| new primary has to be elected. Continue user requests after 

finishing actual request / continue from checkpoint.

- Network partitioning:
| The partition with the primary node continues servicing 

requests. The others can not continue.

� Advantage of primary site approach regarding update 
policy of the backup nodes:

| Any centralized concurrency control protocol can be used.



© 2004, M. Holzmann13
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

State Machine Approach

� All replicas are simultaneously active.
� Can handle only node failures, but is able to handle even 

Byzantine failures.
� Main idea: ensure that all replicas get the same 

sequence of requests. Prerequisites:
- Agreement: all replicas receive every request
- Order: all replicas process requests in the same order

� How to achive these requirements?
- Byzantine agreement protocol / reliable broadcast
- Assigning unique IDs: logical clock algorithm.
- Satisfies both requirements: Atomic Broadcast.



© 2004, M. Holzmann14
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

State Machine using Atomic Broadcast

� Example: Implementing Resilient Objects
� Problem: A requested operation on O1 may request an 

operation on another object O2. What will happen?
| All nodes performing operation on O1 will also request the 

operation on O2 -> images. Consistency?

� Each independent operation is assigned a unique ID
� All images of an independent request have the same ID
� Realization:

| Each node has a counter that is incremented whenever 
message is received or broadcasted.

| Top-level: OpID = node# + counter

| Nested-level: OpIDn = OpID + sequence#



© 2004, M. Holzmann15
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

State Machine using Atomic Broadcast

� Each operation is performed once at each replica:
� Each node maintains a request and a result queue.

- Requests / Results are only broadcasted if there is no 
copy of this request / result in the queue.

� After a request has been serviced, what happens to its 
copy in the request queue?

| It has to be kept until no other copy of the request can arrive.
| Purged after ‚sufficient‘ time has elapsed (commu. delays)

| If a request is served, the copy in the queue is marked.

- ‚Marking‘ means, that the operation has been 
performed on the local replica.



© 2004, M. Holzmann16
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

State Machine – atomic actions

� So far we have focussed on single operations.
� How to preserve One-copy serializability?

- Requirement: all replicas use the same concurrency 
control method.
| Atomic broadcast ensures that all replicas receive the 

requests in the same order and thus execute the same steps.

� Example: 2-phase locking protocol
� Reintegration of failed nodes:

- State transition from other nodes



© 2004, M. Holzmann17
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

Voting

� Performing actions on replicas is decided collectively by 
voting: conflicting operations not performed concurrently.

� Advantage: masks both, node and communication 
failures

� Voting Methods:
- Static: Assignment of votes is predefined statically
- Dynamic: Assingment of votes may change to adapt 

to changings of the system state.



© 2004, M. Holzmann18
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

Weighted Voting

� Each node is assigned some number of votes
� Any node that wants to read / write data has to aquire at 

least r / w votes from the system before it may proceed.
| r + w > v , v ... sum of all votes.

| w > v / 2

� What do these conditions guarantee?
| Every read and write quorum intersect
| Every read quorum contains one replica with the latest update

| Two write quorums intersect

| In the case of partitioning write is allowed to be performed in 
at most one group



© 2004, M. Holzmann19
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

Weighted Voting: Quorums

� Extremes:
| r=1, w=v (ROWA). No updates possible if single node fails

| r = w = v/2+1. If partitioning occurs only majority group 
functions



© 2004, M. Holzmann20
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

Weighted Voting - operations

� Each node broadcasts a request for votes.
� All nodes reply with the number of votes they posses 

and their version number of the replica.
� If the requesting node has aquired sufficient votes 

(>=quorum) it starts to perform the operation.
- Read operation: check the received version numbers, 

at least one replica has the latest update.
- Write operation: the requester makes sure that all 

nodes in the quorum are written using the latest 
value.



© 2004, M. Holzmann21
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

Hierarchical Voting

� Problem with majority voting:
- # of nodes required in a quorum increases linearly 

with # of replicas.
� Hierarchical approach: reduce number of nodes that 

must be in a quorum by introducing a multi-level 
structure (tree): each level corresponds a quorum.

� Aquiring a quorum at level i implies quorum collection 
right down to the leaf level.

� Conditions for the quorum at each level i:
- ri + wi > li (li .. # of childreen at level i)
- 2wi > li



© 2004, M. Holzmann22
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

Hierarchical voting - quorums

| What is the condition for the quorums in this case?

| ri + wi > 3, wi >= 2

| r/w quorums which result in fewest nodes / quorum?

| ri=2 and wi=2, i=1..3 -> only 8 nodes are in the quorums!



© 2004, M. Holzmann23
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

Degree of Replication

� Increasing degree of replication:
- Increased reliability -> increases availability
- Increased overhead -> decreases availability

� What is the optimum degree of replication?
� Example: Primary Site Approach

- The state of the primary is periodically checkpointed 
on all backups at a certain frequency f.

- If the primary fails, all operations from the checkpoint 
are redone by the new primary (recovery).

- Failed sites are repaired and rejoin after repair.



© 2004, M. Holzmann24
Universit�t

SalzburgVO Distributed Systems – Data Replication and Resiliency

Optimal Degree of Replication

� Availability A is the fraction of time the system is 
availiable for user requests:
- A = 1 – O/L ; L .. period of observation.

� Overhead O occurs because of checkpointing, recovery 
and repair:
- A = (1 – Ti)(1 – Tr)(1 – Tc)
- Increasing N reduces Ti
- But increasing N increases Tc at constant f.

� Practical examples have shown that availabilities with 
N=2 or N=3 are only 1% less optimal availability.



Thank you for your attention!

VO Verteilte Systeme

Universit�t
Salzburg


