O.Univ.-Prof. DI Dr. Wolfgang Pree
Universitat Salzburg
www.SoftwareResearch.net

e\ B
RESEARCH

Introduction

OB
2 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Convince you about the following:

d Yes, Virginia, there are object-oriented legacy systems too!

1 Reverse engineering and reengineering are essential activities in the lifecycle
of any successful software system. (And especially OO ones!)

d There is a large set of lightweight tools and techniques to help you with
reengineering.

OB
3 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

A classic study by Lehman and Belady [Lehm85a] identified several “laws™ of system
change.

Continuing change

d A program that is used in a real-world environment must change, or become
progressively less useful in that environment.

Increasing complexity

d As aprogram evolves, it becomes more complex, and extra resources are
needed to preserve and simplify its structure.

=B
4 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

A legacy system is a piece of software that:
4 you have inherited, and
d is valuable to you.

Typical problems with legacy systems are:
d original developers no longer available
d outdated development methods used
d extensive patches and modifications have been made
d missing or outdated documentation
so, further evolution and development may be prohibitively expensive

=B
S) slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Software Maintenance is the "modification of a software product after delivery to correct

faults, to improve performance or other attributes, or to adapt the product to a changed
environment” [ANSI/IEEE Std. 729-1983]

Corrective maintenance (17%)
fixing reported errors in the sof

Adaptive maintenance
adapting the software to 4 new
environment (e.g., platforfg or O/S) Perfective maijitenance (65%)

implementing fiew functional or non-
functional refuirements

Various studies show 50% to 75% of available effort is spent on maintenance.

=B
slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Any successful software system will suffer from the symptoms of legacy systems.

Object-oriented legacy systems are successful OO systems whose architecture and
design no longer responds to changing requirements.

1 The symptoms and the source of the problems are the same.
d The technical details and solutions may differ.

Although OO techniques promise better flexibility, reusability, maintainability etc. etc.,
they do not come for free

The claim:

A culture of continuous reengineering is a prerequisite for flexible and maintainable
object-oriented systems.

=B
7 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

“Forward Engineering is the traditional process of moving from high-level abstractions

and logical, implementation-independent designs to the physical implementation of a
system.”

"“Reverse Engineering is the process of analyzing a subject system to
d identify the system’s components and their interrelationships and

1 create representations of the system in another form or at a higher level of
abstraction.”

“Reengineering ... is the examination and alteration of a subject system to reconstitute it
in a new form and the subsequent implementation of the new form.”

— [Chik90a] & [Chik90b]

=B
8 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Requirements

New requirements

bBurisauibua piemio4
Reverse engineering (-

i

-t
P

System (software)

=B
9 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Cope with complexity

d need techniques to understand large, complex systems
Generate alternative views

d automatically generate different ways to view systems
Recover lost information

d extract what changes have been made and why
Detect side effects

4 help understand ramifications of changes
Synthesize higher abstractions

4 identify latent abstractions in software
Facilitate reuse

d detect candidate reusable artifacts and components

=B
slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

"Redocumentation is the creation or revision of a semantically equivalent representation

within the same relative abstraction level.”
d pretty printers
d diagram generators
d cross-reference listing generators

“Design recovery recreates design abstractions from a combination of code, existing

documentation (if available), personal experience, and general knowledge about
problem and application domains.” [Bigg89c] & [Bigg89d]

software metrics

browsers, visualization tools
static analyzers

dynamic (trace) analyzers

U0U0UU

=B
1 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Unbundling

4 split a monolithic system into parts that can be separately marketed
Performance

d “first do it, then do it right, then do it fast”
Port to other Platform

d the architecture must distinguish the platform dependent modules
Design extraction

d to improve maintainability, portability, etc.
Exploitation of New Technology

d i.e., new language features, standards, libraries, etc.

=B
12 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

“Restructuring is the transformation from one representation form to another at the same

relative abstraction level, while preserving the system’s external behaviour.”

1 automatic conversion from unstructured (“spaghetti”) code to structured (“goto-
less”) code

(1 source code translation

‘Data reengineering is the process of analyzing and reorganizing the data structures (and
sometimes the data values) in a system to make it more understandable.”

d integrating and centralizing multiple databases
d unifying multiple, inconsistent representations
d upgrading data models

Refactoring is restructuring within an object-oriented context
1 renaming/moving methods/classes etc.

=B
13 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Insufficient documentation
d most legacy systems suffer from inexistent or inconsistent documentation

Duplicated functionality
d “cut, paste and edit” is quick and easy, but leads to maintenance nightmares

Lack of modularity
1 strong coupling between modules hampers evolution

Improper layering
A missing or improper layering hampers portability and adaptability

=B
14 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Misuse of inheritance
1 for composition, code reuse rather than polymorphism

Missing inheritance
1 duplicated code, and case statements to select behaviour

Misplaced operations
d unexploited cohesion — operations outside instead of inside classes

Violation of encapsulation
d explicit type-casting, C++ “friends” ...

Class misuse
1 lack of cohesion — classes as namespaces

=B
15 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Tool integration

OB
16 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Why Integrate Tools?

Which Tools to Integrate?

Tool Integration Issues

The "Help yourself” approach

- How to Obtain Data?

- APl Examples (Java, SNiFF+, Rational/Rose)
Exchange Standards

- CDIF & MOF

- UML shortcomings

4
4
4
4

L

=B
17 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Tool Adage
Tools are necessary to improve productivity.

Tool Principle

Give Software Tools to Good Engineers. You want bad engineers to
produce less, not more, poor-quality software [Davi95a].

Towards CARE

d CAD/CAM Computer Aided Design / Manufacturing - Late 70’s
Create and validate design diagrams & steer manufacturing processes
d CASE Computer Aided Software Engineering - Late 80's
Support (parts of) the Software Engineering Process
d CARE Computer Aided Reengineering - Mid 90’s
Support Software Reengineering Activities
= Y2K tools

== Round-trip engineering

=B
18 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

[%
S A
CASE-tools

visualization

s

refactoring tools

testing tools d

requirement & configuration &
bug tracking version management

y

metric tools

editors/browsers

=B
19 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Reengineering vs. forward engineering
1 Forward engineering tools are chosen deliberately.
1 Reengineering tools must integrate with what's already in place.

== Tool integration in reengineering is harder
... but we can rely on forward engineering experience

1= “Help yourself” approach

Tools must work together

1 share data => repository
1 synchronize activities => API
1 different vendors => interoperability standards

=B
20 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

“Most tools for reverse engineering, restructuring and reengineering use the same basic

architecture.” [Chik90a], [Chik90b]

Parser, View
Semantic composer(s)

/ analyzer
Software New view(s)
work product of product

Information
base

=B
21 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

22

e build your own parser

e translate between file formats
e communicate via APls

e collect execution traces

slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz)

e\ B
RESEARCH

Il) STREAMS

&

Standardization Efforts

1 CDIF (CASE data interchange format) - see http://www.eigroup.org/
Mature standard (being approved by ISO)
Little commitment from tool vendors

d MOF (Meta-Object Facility) from OMG - see http://www.omg.org/
Currently immature (approved by OMG late 1997)
Major commitment from tool vendors to be expected
Builds on UML and CORBA/IDL

=B
23 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

d Issue

How can tools exchange information without being
aware of each other?

d Answer
Tools agree on a single reference format
d Analogy

How can French, German and Italian persons exchange
documents? They agree to write their documents in
Esperanto.

d Advantage
Only need for one translation dictionary
d Disadvantage
Centralised reference models do not work in practice
- Need for specialised constructs (i.e. jargon)
- Cannot predict future needs

24 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz)

SOFTWARE
RESEARCH

AB

Specialised Constructs
J

d

How can tools extend the reference model with
specialised constructs?

Answer

Each tool wraps the information with a glossary,
explaining the specialised constructs in terms of a core
reference model. => meta model

Multiple Standards

d

u

Issue
How can tools deal with future extensions?

Answer

Define a small and generic core format. All glossaries
(=meta models) define bidirectional mapping with the
core model. => meta-meta model

25 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz)

Glossary

3
S

O
RESEARCH

AB

26

Exchange standards community cultivated specialised terminology
== the Four Layer Metamodeling Architecture

Layer Description Example
Meta Meta | Defines the core ingredients (CDIF) MetaEntity, MetaAttribute
Model sufficient for defining languages | (MOF) Class, MofAttribute

for specifying meta-models
Meta Defines a language for (UML) Class, Attribute, Association
Model specifying Models (Database) Table, Column, Row
Model Defines a language to describe | Student, Course, enrolled_in

an information domain.
Us_er De_scribes a specific situatiun in | Student#3, Course#b,
Objects an information domain. Student#3.enrolled_in.Course#5

slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz)

[[peabaid O =
RESEARCH

Current standardization efforts are geared towards UML.
vv not enough for reengineering
e need “Invocation” & “Access”

UML REENGINEERING
Attribute

Class Invocation

Aggregation

Generalization
= Inheritance

Composition Method + Operation =
Method

J use extension mechanisms on the meta-model
=> how standard is standard?

J define a special reengineering standard (i.e., own meta-model)

=B
27 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

28

d Reengineering requires Tools
- Much in common with forward engineering
- Must integrate with what's already in place
d “Help yourself’ approach
Build your own parser
Translate between file-formats
Communicate via API's
Collect Execution Traces
1 Standardization Efforts
- CDIF is mature / MOF is safest bet for future
- Extensibility via Meta models (4 layer architecture)
- UML has shortcomings

slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz)

SOFTWARE
RESEARCH

AB

Design extraction

OB
29 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

“Company X is in trouble.
Their product is successful (they have 60% of the world market).
But:

- all the original developers left,

- there is no documentation at all,

- there is no comment in the code,

- the few comments are obsolete,

- there is no architectural description,...
And they must change the product to take into account new client requirements.
They asked a student to reconstruct the design.”

=B
30 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

31

d Design is not code displayed with boxes and arrows

d Design extraction is not trivial

- scalability

- not fully automatized -> needs human intervention to filter out
Give a critic view on hype: “we read your code and produce design”
Show that UML is not that simple and clear

Show that conventions for the interpretation are crucial

- Language mapping

- UML interpretation

LU U

O
slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

AB

"Design is really two activities: architectural design and detailed design.

Architectural design involves making strategic decisions about how system
functionality is factored among independent system components, how components
relate and how control transfers from one component to another. It often includes a
specification of how users give and receive information, and how the system
communicates with other systems.

Detailed design consists of tactical decisions, such as the choice of algorithms
and data structures to meet performance and space objectives” [Gold95a]

Requirements
Collection

Coding

S
X |

Maintenance

=B
32 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Documentation inexistent, obsolete or too prolix
Abstraction needed to understand applications (complexity)
Original programmers left

Only the code available

4
4
4
4

Why UML?

Standard

Communication based on a common language

Can support documentation if we are precise about its interpretation
Extensible

Hype and market!

Iy I Ny Ny

=B
33 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

A small example in C++: A Tic-Tac-Toe Game!
You will do it now........
But:
1 do not interpret the code
1 do not make any assumption about it
d do not filter out anything

=B
34 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

; Emor EveniType Mpssnge

Board FlayeriD
mmm:r\t:(wm.mpmm—
S myHaight = (odagt rmytHelght

hel 1

-y
putPlaca(

: Int = (pleceaToWin}

TeTacTow

=B
35 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

We should have heuristics to extract the design.

Try to clean the previous solution you found

Try some heuristics like removing:

private information,

remove association with non domain entities,
simple constructors,

destructors, operators

I Ny Iy

=B
36 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Board()
putFleos()
oparmior =()
potPlece()

) TicTacTos ::ﬂ
0 STk TacTos))

=B
37 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

When we extract design we should be precise about:
Jd What are we talking about? Design or implementation?
d What are the conventions of interpretation that we are applying?
4 What is our goal: documentation programmers, high level views....

UML purists do not propose different levels of interpretation, they refer to the UML
semantics!

d Levels of interpretations are not of UML but there are necessary!

What is the sense of representing subclassing based inheritance
between two classes using generalization?

Dictionary is a subclass of Set in Smalltalk (subclassing)
but a Dictionary is not a subtype nor generalization of Set

So at the minimum we should have:

e Clear level of interpretation + Clear conventions + Clear goal + UML
extensions: stereotypes

=B
38 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Fowler proposed 3 levels of interpretations called perspectives [Fowl97a]:
- conceptual
- specification
- implementation

Three Levels:

4 Conception: we draw a diagram that represents the concepts that are somehow
related to the classes but there is often no direct mapping.

1 Specification: we are looking at interfaces of object not implementation, types
rather than classes. Types represent interfaces that may have many
implementations

d Implementation: implementation classes

=B
39 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Syntax:
visibility attributeName: attribute Type = defaultValue
+ name: String

Conceptual:
Customer name = Customer has a name

Specification:
Customer class is responsible to propose some way to query and set the name

Implementation:
Customer has an attribute that represents its name

Possible Refinements

Attribute Qualification - Immutable: Value never change
- Read-only: Client cannot change it

=B
40 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Syntax: visibility name (parameter-list):return-type
+ public, # protected, - private

- Conceptual: principal functionality of the object. It is often described as a sentence
- Specification: public methods on a type
- Implementation: methods

Can be approximate to methods but operations are more abstract methods
methods represent how such operations are defined.

Possible Refinements:
-Method qualification: Query (does not change the state of an object)
Cache (does cache the result of a computation), Derived Value (depends
on the value of other values), Getter, Setter

=B
41 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

- Represent relationships between instances

- Each association has two roles: each role is a direction on the association.
- a role can be explicitly named, labelled near the target class
if not named from the target class and goes from a source class to a target class
- a role has a multiplicity: 1, 0, 1..*, 4

Lineltems = role of direction Order to OrderLines
Order . - ,
dateReceived Lineltems role = OrderLine role

ﬁlﬁ'ﬂiﬂdam“g One Order has several OrderLines
| price; Money
dispatchi()
close()

1

Lineltems -

OrderLine
quantity: Integer
price: Monay
imSatified; Boolean

OB
42 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Conceptual Perspective: associations represent conceptual relationships between

classes

Order Customer
dateReceived ;Eglrgss
izPrepaid
number: String craditFRating (); String
price: Money

dispatchi)
close()

1

Orclerlin e

cuantity: lntecer - 1
rice: Mon Product

isSatified: Boolean

An Order has to come from a single Customer.

A Customer may make several Orders.

Each Order has several OrderLines that refers to a single Product.
A single Product may be referred to by several OrderLines.

=B
43 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

44

Specification Perspective: Associations represent responsibilities

Customer
D‘l'dEf - 1

Implications:

- One or more methods of Custorner should tell what Orders a given Customer has made.
- Methods within Order will let me know which Customer placed a given Order and what

Line ltems compose an Order

Associations also implies responsibilities for updating the relationship, like:
- specifying the Customer in the constructor for the Order
- add/removeOrder methods associated with Customer

=B
slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

lf:ual:nmer

Oircesr - 1
name

dateReceived ™ oddress
isPrepaid
number: String creditRating(): String
price; Money

di h
Slosel)

OrderLine
guantity: Integer - 1
rice: Money coy
issatified: Boolean

Product

No arrow = navigability in both sides or unknown
e conventions needed!!

- Conceptual perspective: no real sense
- Specification perspective: responsibility

an Order has the responsibility to tell which Customer it is for but Customer don't
- Implementation perspective:

an Order points to a Customer, an Customer doesn’t

=B
45 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Customer

creditRating(). String

AN
Corporate Customer Personal
creditRating() Customer
remind() creditRating(]
billForMonth(Integer)

Conceptual: What is true for an instance of a superclass is
true for a subclass (associations, attributes, operations).

Corporate Customer is a Customer

Specifications: interface of a subtype must include all
elements from the interface of a superclass (conformance).

Substituability principle: if that's works for superclass that should works for a subclass.

Implementation: Generalization semantics is not inheritance. But we should interpret it
this way for representing extracted code.

A subclass inherits all the methods and fields of its superclass(es). It may override some

of them.

=B
46 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

LIML
4 language independent
1 fuzzy (navigability, package...)
v We should define how we interpret it:
= define some convenlions

In C++, examples show that:
Boarde board [)
Boardi operator =(const Ecards other] throw (const chac®)

board(): Board

Place* myMap;
myMap: Piece

clape Gomoku: public Boardgame |
apublic inherits»

virtual wvoid chackMinneriint x, int v):

checkWinner

static int widthi);

widthiInteger

OB
47 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

What is the semantics of private, protected and public.
Is it class-based (C++) or instance based (Smalltalk)?
in C++: - any public member is visible anywhere in the program
- a private member may be used only by the class that defines it
- a protected member may be used by the class that defines it or its subclasses
class based private
in Smalltalk: - instance variables are private = C++ protected
- instance based private
- methods are public
in Java class based like C++ but package rules:
- a member with package visibility may be accessed only by instances of other
classes in the same package
- a protected member may be accessed by subclasses but also by any other
classes in the same package as the owing class
== protected is more public than package
- classes can be marked as public or package
a package class may be used only by other classes in the same package

=B
48 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Does it mean that CustomizedBoard can be instantiated
by calling Board("Player 1")7

In Smalltalk: Yes this i1s normal inhentance between
(meta) classes.

Board

Board (s Stnng):Board

.ZIA

CustomizedBoard

In Java: No there is no inherntance between non-default class constructor.

fustomizedBoard instance = new CustomizedBoard(] - Board({] iz called

customizedBoard instance = new Board(*player 1%) -» does

== Conventions needed

49 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz)

not work

AB

d Mechanism to specialize the semantics of the UML elements
d New properties are added to an element
J When a concept is missing or does not fit your needs select a close element and
extend it.
= Screen
e default
- mmm'ndm allScreens. Collection 'Fgﬂtﬂdﬂﬂl
r open: (s SAng): SCreen - creen
it i e | |deal St Gl
+claar{Integer Integer Integer. Integer) defaultWindowClass(); Class aliScreens: jﬁﬂﬂmﬂ
+getEvent(e Event bounds {): Rectangle open: (s String). Screen
S g, colararoner(:Recnge | - [camt e
= SR Bookan defaultWindowClass(): Class
J 40 predefined sterectypes (c = class, r = relation, o = operation, a = attribute, d
= dependency, g = generalization): metaclass (c), instance (r), implementation
class (c) constructor (o), destructor(o), friend (d), inherits (qg), interface (c).
private (g), query (o), subclass (g), subtype (g), utility (classifier) (only class scope
operations and attributes)
4 Do not push stereotypes to the limits else you lose standard

=B
50 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

How to distinguish between associations between classes and association between
instances?

In VisualWorks, UlBuilder class is related to the UlLookPolicy class

UlBuilder UlLookPolicy

UlBuilder «class» UlLookPolicy
{class}

But an instance of UIBuilder is also related to an instance of UlLookPolicy
== Use a stereotype or a constraint

=B
51 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Goal: Explicit references to domain classes

Jd Domain Objects
Qualifying as attributes only implementation attributes that are not
related to domain objects.
Value objects -> attributes and not associations,
Object by references -> associations
Ex: name: String -> an attribute
order: Order -> an association
myDisplay: Display -> not an association

d Define your own conventions
Ex: integer x integer -> point attribute

d Two classes possessing attributes on each other
-> an association with navigability at both side

=B
52 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

1 Filtering based coding conventions or visibility
In Java, C++ filter out private attributes

W

O In Smalitalk depending on code practices you may filter out attributes

- attributes

- that have accessors and are not accessed into subclasses.

- with name: *Cache.

- attributes that are only used by private methods.

d If there are some coding conventions
class Order {

public Customer customerd); (singles wvalus)

public Enumerator orderLines(); (multi-walues]}

53 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz)

dateReceived

name

address

number: String
price: Money

creditRating(): String|

nce:
Esﬂtiﬁe

OrderLine
guantity: nteger

d: Boolean

AB

You may not extract
- accessors,
- operators,
-simple instance creation methods
(new in Smalltalk, constructor with no parameters)
- non-public methods,
- methods already defined in superclass,
- methods already defined in superclass that are not abstract, recursively
- methods that are responsible for the initialization, printing of the objects

Use company conventions to filter
- Access to database
- Calls for the Ul

- Naming patterns

=B
54 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

If there are several methods with more or less the same intent
- select the method with the smallest prefix
if you want to know that the functionality exists not all the details
- select the method with the more parameters
if you want to know all the possibilities but not all the ways you can invoke them
- categorize methods according to the number of time they are reference into clients
but a method can be a hook method that is often called but still important

In Smalltalk, do not show
- methods that belongs to categories: ‘printing’, ‘accessing’, ‘initialize-release’,
‘private’...
- methods with name: #printOn:, #storeOn:,
- methods with the name of an attribute

What is important to show.
- Smalltalk class methods in ‘instance creation’ category,
- Constructors in Java or C++=> represent the creation interface of an object

=B
55 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Jd Design Patterns reveal the intent so they are definitively appealing for
supporting documentation [John92a] [Oden97a]

But.
d Difficult to identify design patterns from the code
[Brow96c, Wuyt98a, Prec98a]

What is the difference between a facade and a mediator from the code
point of view?

MNeed somebody that knows

Lack of support for code annotation so difficult to keep the use of patterns and
the code evolution [Flor97a]

LU

=B
56 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

How to identify the impact of changes?

I change
AN domain Propagation

\ f

application

=B
57 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Set W Set (Optimized)
add(Element) add(Element) -n}
addAll{Set) ::) addAll(Set) —

2 ~

CountingSet CountingSet
count count
add(Element) % add(Element) %
addAll(Set) = addAll(Set)

not all elements
are counted

e WAB
RESEARCH

58 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz)

domain \ \K A provider

Z# N contract

reuser

application

Reuse Contracts [Stey96a] propose a methodology to:
- specify and qualify extensions
- specify evolution
- detect conflicts
- Classification Browser support Reuse Contract extraction

=B
59 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Coarsening
Set et

add add
addAll |add] addAll [add]

finement
¥ add [+count]
CountingSet CountingSe

count count
add [count] add [count]

Extend UML to specify which other methods a method invokes (reuse contracts)
In class Set

+ addAll: (c Collection): Collection {invokes add}

=B
60 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

61

[Focusing only at static element structural elements (class, attribute, method) is
limited, does not support:

- protocols description (message A call message B)
- describe the role that a class may play e.g. a mediator

d Calling relationships is well suited for
- method interrelationships
- class interrelationships

UML proposes Interaction Diagrams = Sequence Diagram or Collaboration Diagram

=B
slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

62

A sequence diagram depicts a
scenario by showing the
interactions among a set of
objects in temporal order.

Objects (not classes!) are shown
as vertical bars.

Events or message dispatches
are shown as horizontal (or
slanted) arrows from the send to
the receiver.

Recall that a scenario describes a
typical example of a use case, so
conditionality is not expressed!

Caller

timea

e — = = e e e e e s e s e == ===

Phone Line Callee
callar lifls receaivaer =
| dial tone begins
dial (1) "
< dial tone ends
dial (2)
dial (2})
- ringing tone | _phone rings -
e answer phone
_,_t::nne slops ringing stops .

slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz)

SOFTWARE
RESEARCH

AB

Statically extracting methods.
- potential not the real behaviour
- blur important effective scenario

But extracting runtime information needs.
- reflective language support (MOP, message passing control)
- code instrumentation (heavy)
- storing retrieved information (may be huge)

Amount of generated data is HUGE.
- selection of the parts of the system that should be extracted
- selection of the functionality
- selection of the use cases
- filters should be defined
(several classes as the same, several instance as the same...

= A simple approach could be to open a special debugger that generates
specific traces

=B
63 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

64

What we did not talk about
[Abstract Classes
1 Aggregations and composition extraction [Wins87a]
A Qualified associations Lessons Learnt
You should be clear about:
[Your goal (detailed or architectural design)
A Conventions like navigability,
d Language mapping based on stereotypes
A Level of interpretations
For Future Development
d Emphasize literate programming approach
4 Extract design to keep it synchronized
UML as Support for Design Extraction
Often fuzzy
Composition aggregation limited
Do not support well reflexive models
But UML is extensible, define your own stereotype

(I I A

slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz)

SOFTWARE
RESEARCH

AB

Metrics for OO
reengineering

=B
65 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

d Why Metrics in OO Reengineering?
d Which Metrics to Collect?
- Goal-Question-Metric paradigm
- Metric Definitions
d Applicability for...
- Problem Detection
- Stability Assessment
- Reverse Engineering
d Conclusion

[

OB
66 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Cost Estimation
Jd What's the effect of reuse?
d Is it worthwhile to reengineer, or is it better to start from scratch?

=> Not covered @

Software Quality Evaluation
d Which parts have bad quality? (Hence, should be reengineered first)
Jd Which parts have good quality?
=> Metrics as a project management tool

Iterative Development
d Can | use metrics to measure changes?
d Can | use change metrics to reverse engineer design?
=> Metrics as a reverse engineering tool

=B
67 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Goal
d Support reverse and reengineering of object-oriented programs

Question

1. Which parts of the design will cause problems
with future extensions?

2. Which parts of the design are unstable? e

3. Which parts of the design have been i
refactored?

Metric
d Low overhead for developer
1 Take advantage of OO structure
J Exploit presence of different releases
=> Collect from source code

=B
68 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Question - Assumptions

1. Which parts of the design will cause problems with future
extensions?

1 Large methods & classes
1 Classes with big impact on the inheritance hierarchy
1 Classes influenced a lot via the inheritance hierarchy

2. Which parts of the design are unstable?
1 Methods and classes that change in size
1 Places where the inheritance hierarchy is changed

3. Which parts of the design have been refactored?
1 Methods that decrease in size have been split

1 Classes that change in size have their attributes and methods
redistributed

[Changes in the inheritance relationship are symptoms for
optimization of the class hierarchy

69 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz)

OF

SOFTWARE
RESEARCH

AB

70

Class Size Metrics
» # methods (NOM)
« # instance attributes (NIA)
= # class attributes (NCA)
* ¥ of method size (WMC)

Inheritance Metrics
* hierarchy nesting level (HNL)
» # immediate children (NOC)
* # inherited methods, unmodified

(NMI) Class
» #overridden methods (NMO)
inhertts belongsTo
Method access Attribute

‘ Method Size Metrics
INvoKes « # invocations (NOI)

= # statements (NOS)
+ # lines of code (LOC)

=B
slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

®

* between 2/3 and 1/2 of detected
problems are left unchanged in
subsequent release

CHHT

= considerable amount of detected
problems measure worse in subsequent
release

=> unreliable as problem detection tool => B0%-20% distribution as a litmus test

=B
71 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

&) ')

» changes may go unnoticed * all detected changes are real
=> false negatives are possible => no false positives (but lot of noise)

Sometimes the kind of instability is revealing!
change in HNL change in NOC

in the middle
of the hierarch

\‘—Jar the leaf of the hierarchy

=B
72 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

* vulnerable to renaming

« imprecise for many changes
* requires experience

» considerable resources

=> inherent to source code extraction

73 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz)

» good focus (scaleability)

reliable

unbiased

=> good in the early stages

SOFTWARE
RESEARCH

provides road map (best focus first)
reveals class interaction

AB

Recipe
d Use change in "Hierarchy Nesting Level” (HNL) as main indicator

J Complement with changes in “# methods” (NOM), “# instance attributes” (NIA)
and “# class attributes” (NCA) to look for push-up, push down of functionality

d Include changes in “# inherited methods” (NMI) and “# overridden methods”
(NMI) to assess overall protocol

Split B into X and B’

SPLIT (delta_HNL(B") > 0) and MERGE

A’ ((delta_NOM(B') < 0) A
A or (delta_NIA(B') < 0) A

A or (delta_NCA(B') < 0)) A’
X X

T 4 Merge X and B into B’ ? T'

B (delta_HNL(B') < 0) and B

((delta_NOM(B') =0) 1

B’ or (delta_NIA(B") > 0)
or (delta_NCA(B") = 0))

=B
74 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Recipe
d Use change in "# immediate children” (NOC) as main indicator

d Complement with changes in “# methods” (NOM), “# instance attributes™ (NIA)
and “# class attributes” (NCA) to look for push-up, push down of functionality

SPLIT Split A into X and A’
(delta_NOC(A’) <> 0) and

y B ((delta_NOM(A’) < 0)
/j [\\ / fr \ or (delta:NIA(A’) <0)
B C X B’

¢’ or (delta_ NCA(A) < 0))

A’ Merge X and A into A’
A% z'[i. (delta_NOC(A’) <> 0) and
X ((delta_NOM(A’) >0)
D\ or (delta_NIA(A’) > 0)
B € b\ or (delta NCA(A") > 0))

El c.f

75 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz)

MERGE

=,
[INTA

L
A

[[peabaid O =
RESEARCH

Recipe
4 Use decreases in “# methods” (NOM), “# instance attributes™ (NIA) and “# class
attributes”™ (NCA) as main indicator

Jd Select only the cases where "# immediate children” (NOC) and "Hierarchy
Nesting Level” (HNL) remains equal

MOVE

-

A

29—
0O—=o m—m
—

b
?

c.!

76 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz)

Move fromBto A", C or D’
((delta_NOM(B') < Q)
or (delta_NIA(B") < 0)
or (delta_NCA(B') <0))
and (delta_HNL(B") = 0)
and (delta_NOC(B') = 0)

e\ B
RESEARCH

Recipe
J Use decreases in “# invocations™ (NOI) as main indicator
d Combine with “# statements” (NOS) and "# Lines of Code” (LOC)
d Check similar decreases in other methods defined on the same class

A’.al) Split part of A.a() in A".x()
{ ... (delta_NOI(A'.a()) < 0)
* Factor out part of A.a() and A.b({)
. info A’.x()
{ (delta_NOI(A'.a()) < 0)
.} A'.b() and (delta_NOI(A'.b()) < 0)
' and (delta_NOI(A".a())

_ = delta_NOI(A'.b()))

=B
7 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Question
Can metrics help to answer the following questions?

1. Which parts of the design will

cause problems with future Mot reliably
extensions?

2. Which parts of the design are
unstable? Yes

3. Which parts of the design have

been refactored? Yes

78 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz)

£

SOFTWARE
RESEARCH

AB

Refactoring

OB
79 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

u
d
u
d
A

Why Refactoring?

lterative Development Life-cycle
What is Refactoring?

Which Refactoring Tools?
Case-study: Internet Banking

prototype

consolidation: design review
expansion: concurrent access
consolidation: more reuse

1 Conclusion

80 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz)

SOFTWARE
RESEARCH

AB

Relative Effort of Maintenance Relative cost of fixing mista

[Somm96a] [Davi95a]
Between 50% and 75% of available effort Changes costs tremendous
is spent on maintenance. 65% of that while your project lives on.

concerns new functionality, which you

could not foresee when you started. I)

requirement coding delivery
design testing

OB
81 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Change is the norm, not the exception !

Initial
Requirements

PROTOTYPING

N

New / Changing
Requirements

EXPANSION

CONSOLIDATION

More
Reuse

=B
82 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Two Definitions

d The process of changing a software system in such a way that it does not alter
the external behaviour of the code, yet improves its internal structure [Fowl99a]

Jd A behaviour-preserving source-to-source program transformation [Robe98a]

Typical Refactorings

Class Refactorings Method Refactorings Attribute Refactorings
add (sub)class to hierarchy | add method to class add variable to class
rename class rename method rename variable
remove class remove method remove variable

push method down push vanable down

push method up pull variable up

add parameter to method | create accessors

move method to component | abstract variable

extract code in new method

=B
83 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Change Efficient

Refactoring
J Source-lo-source program
transformation

4 Behaviour preserving
== improve the program struclure

Programming Environment
J Fast edit-compile-run cycles

J Support small-scale reverse
engineering activities
=> convenient for “local” ameliorations

84 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz)

Failure Proof

Regression Testing
d4 Repeating past tests
4 Tests require no user interaction
d Tests are deterministic
4 Answer per test is yes / no

=> verify if improved structure does not
damage previous work

Configuration & Version Management

Jd keep track of versions that
represent project milestones

== possibility to go back to previous
version

e\ B
RESEARCH

a bank has customers

customers own account(s) within a bank
with the accounts they own, customers may
- deposit / withdraw money

- transfer money

- see the balance

u
A
A

A secure: only authorised users may access an account
A reliable: all transactions must maintain consistent state

=B
85 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

customerNr : int ccountNr : int
alance : int = 0

customerNr() :int

ccountNr (): int
etBalance () :int
etBalance (amount:int)

IBCustomer i>_r____ IBAccount
|
|
|
|
|
|
|
|
|

IBBank

validCustomer (cust : IBCustomer) : boolean

createAccountForCustomer (cust:IBCustomer) : int
customerMayAccess (cust: IBCustomer, account:int) : boolean|
seeBalance (cust : IBCustomer, account:int) : int

transfer (cust:IBCustomer, amount:int, fromAccount:int,
toRAccount:int)

checkSumAccounts () : boolean

OB
86 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

87

Ensure the “secure” and “reliable” requirements.

IBBank: :createlAccountForCustomer (cust: IBCustomer) : int
require: validCustomer (cust)
ensure: customerMavAccess (cust, <<results>>)

IBBank: :seeBalance (cust: IBCustomer, account:int) : 1int
require: (validCustomer (cust)) AND
(customerMayAccess (cust, account))
ensure: checkSumlAccounts ()

IBBank: :transfer (cust: IBCustomer, amount:int, fromAccount:int,
toAccount:int)

require: (validCustomer (cust))
AND (customerMayAccess (cust, fromAccount))
AND (customerMayAccess (cust, CoAccount))
ensure: checkSumAccounts ()

=B
slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Include test cases for
d IBCustomer

- customerNr()

J |IBAccount

- getBalance()
- setBalance()

J |IBBank

- createAccountForC

ustomer()
- transfer() /

seeBalance()
(single transfer)

- transfer() /

seeBalance()
(multiple transfers)

aTest
setUp |
e mewAccount(l)
» ADAccount
testAccount
- accountNr
-
[= 1]
P -
getBalance
[= 0] g
.d.__
setBalance (100)
-
getBalance
[= 100]
d___

slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz)

SOFTWARE
RESEARCH

AB

Design Review (i.e., apply refactorings AND RUN THE TESTS!)
d Rename attribute

- manually rename “balance” into “amountOfMoney” (run test!)

- apply “rename attribute” refactoring to reverse the above
+ run test!
+ check the effect on source code

1 Rename class
- check all references to “IBCustomer”

- apply “rename class” refactoring to rename into IBClient

+ run test!
+ check the effect on source code

d Rename method
- rename “init()” into “initialize()” (run test!)
- see what happens if we rename “initialize()” into “init))
- change order of arguments for “transfer” (run test!)

=B
89 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Additional Requirement
d concurrent access of accounts

Add test case for
J IBBank

- testConcurrent: Launches 2 processes that simultanecusly transfer money
between same accounts
=> test fails!

OB
90 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

91

IBCustomer

e e e e e e e e e o m— m— m— m— —

<>_’_ IBAccount

accountNr : int
balance : int
transactionld : int

workingBalance : int

accountNr {): int
getBalance (transaction : int) : int

setBalance (transaction :int,
amount : int)

lock (transaction : int)

commit (transaction : int)

abort (transaction : int)

isLocked() : boolean

isLockedBy (transaction : int) : boolean

IBBank

slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz)

O
RESEARCH

AB

IBAccount : :getBalance (transaction:int) : int

require: isLockedBy (transaction)

ensure:
IBAccount: :setBalance (transaction:int, amount: int)

require: isLockedBy(transaction)

ensure: getBalance (transaction) = amount
IBAccount: :lock (transaction:int)

require:

ensure: isLockedBy (transaction)
IBAccount: :commit (Cransaction:int)

require: isLockedByi(transaction)

ensure: NOT isLocked()
IBAccount: :abort (transaction:int)

require: islLockedBy(transaction)

ensgure: NOT isLocked()

=B
92 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Adapt implementation
d apply “add attribute” on IBAccount with “transactionld” and “workingBalance”
A apply “add parameter” to “getBalance()" and “setBalance()” with “transaction”

d use normal editing to expand functionality of “seeBalance()” and “transfer()”
=> |oad “IBanking2”

Expand Tests

[previous tests for “getBalance()” and “setBalance()” should now fail
=> adapt tests

1 new contracts, incl. commit and abort
=> new tests

d testConcurrent works!
=> we can confidently ship a new release

=B
93 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

More Reuse

d A design review reveals that this
“transaction” stuff is a good idea and
should be applied to IBCustomer as
well.

=> Code Smells

A duplicated code (lock, commit, abort
+ transactionld)

d large classes (extra methods, extra
attributes)

=> Refactor

1 “Lockable” should become a
separate component, to be reused in
IBCustomer and IBAccount

94 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz)

IECuatomer

customerNyr : 1nt
name : String
address : String
pasaword : String
transactionld : int
workingName : String

getName (fransaction : int) : String
setName (fransaction: int, name:String)

lock (transaction : int)

commit (transaction : int)

abort (transaction : int)

isLocked() : boolean

isLockedBy (transaction : int) : boolean

[[peabaid O =
RESEARCH

95

TERccount

transactionId : int

coocunthis
alancs

orkingBalance : int

int
int

laoccountir

amount :

igLocked ()

boclean

getBalance (Cransaction
int) :int
letBalance (transactiaon : inkt

lock (transacticn : int)
commit (Cransaction : int)
jabart (transaction : int)

i sLockedBy (transaction : int)

[]: int

f

int)

booclean

slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz)

Split the class

I TELockable

|transactinnId : int

i glocked () : boolean
isLockedBy (transaction

lock (transaction : int)
commit (Eransaction : int)
Bbort (transaction : int)

s oint)

bhoolean

TEAccount

Eccﬁuntﬂr : int
alance : int
workingBalance : int

accountlr () : intc
getBalance (Cransaction

|petBalance (transaction :
amount : int)

int):int

int,

SOFTWARE
RESEARCH

AB

Refactoring: Create Subclass
J apply "Create Subclass” on “|BAbstract” to create an empty “|BLockable” with

subclass(es) “IBAccount™ & “IBCustomer”

| TBAbstrack |

,f_fl_\ THLockablLe

[
I1EHank

IHBAccount IECuatomar

=B
96 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Refactoring: Move Attribute
d apply “pull up attribute” on “IBLockable” to move “transactionld” up

IELockable

JAY

THAccount
transacticonid @ in
accountlr : int

balance : int
workingBalance : int

=B
97 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Refactoring: Move Method
J apply “push up method” on “IBAccount” to move “isLocked”, “isLockedBy",

‘notLocked” up

IBLockable

1 coun

sLocked() : boolean
hotLocked() ; boolean
sLockedBy (transaction : int) ; boolean

J apply “push up” to "abort:”, "commit:”, “lock:”
== failure; accesses to “balance” and “workingBalance” attributes

=B
98 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Refactoring: Split Method + Move Method

d a&PIy “extract method” on groups of accesses to "balance” and
“WorkingBalance'

(Do your want to extract assignment? -> Yes)
commit: transactionID

"Commit myself as part of the given transaction"

self require: [self isLockedBy: transactionlD]
FailureSignal.

alance := workingBalance.
rkingBalance := nil.
transactionldentifier := nil.

mmitWorkingState

gelf ensure: [self notLocked].

d similar for “abort:” (-> clearWorkingState) and “lock:” (-> copyToWorkingState)
Jd apply "push up method” on "IBAccount” to move "abort:”, "commit:”, "lock:" up

=B
99 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Clean-up: make the extracted methods protected and define them as new abstract
methods in the IBLocking class

d Apply “rename protocol” on “IBAccount” to rename “public-locking” into
‘protected-locking”

Refactoring: Copy Method

1 Apply “move method” on “IBAccount” to copy “clearWorkingState”,
“‘copyToWorkingState”, “commitWorkingState™ to “IBLockable>protected-
locking”

d Make “IBLockable::clearWorkingState™, ... abstract
e= This is destructive editing and not a refactoring

Are we done?

d Run the tests ...
1 Expand functionality of the IBCustomer

=B
100 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

101

Refactoring Philosophy
d combine simple refactorings into larger restructuring
== improved design
=> ready to add functionality
Jd Do not apply refactoring tools in isolation

Smalltalk | C++ Java
1 refactoring tools + -(?) e
J rapid edit-compile-run cycles + - +-
J reverse engineering facilities +- 4+ 4+
Jd regression testing + + +
1 version & configuration management + + +

=B
slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

102

Know when is as important as know-how
1 Refactored designs are more complex
d Use "code smells” as symptoms

1 Rule of the thumb: State everything “Once and Only Once” (Kent Beck)
=> a thing stated more than once implies refactoring

d Wiki-web
http://c2.com/cgl/wiki

=B
slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

With proper
d tool support
d culture chock

d management support

one can reduce the costs between
the different phases in the
development cycles.
I The tools are there ...
« 111
e

requirement coding delivery
design testing requirement coding delivery
design testing

OB
103 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Bibliography

OB
104 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

» [Wate94a], [Will96a] are more recent special issues on reverse and reengineering.

» Since 1994, there is a yearly conference on reverse engineering. It is called the "Work-
ing Conference on Reengineering”. The proceedings from 1995 onwards are pub-
lished by IEEE Computer Society Press.

Organizations

+ IEEE Computer Society’s Technical Committee on Reverse Engineering
http://www.tcse.org/revenar

» The Reengineering Forum (an industry association)
h;;E:{iﬂﬂwlrﬁgngln§§:=gtg{

Taxonomy

» [Chik90a] (reappeared in [Chik90b]) provide a reverse and reegineering taxonomy.
Unfortunately, it does not cover OO specific issues like refactoring.

http://www.tcse.org/revengr/taxonomy . html

Metrics

+ [Fent97a] is the seminal work on metrics but does cover very little on OO. [Hend96a]
provides an overview of the state of the art in OO metrics.

* [Lore94a] is a practible handbook on how to use metrics to check OO source code,

=B
105 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

» [Fowl97a] provides a fast introduction to UML including the notion of “perspectives’
which is quite interesting from a reverse engineering point of view because it is a way
to specify how a certain UML diagram should be interpreted (i.e., on a Conceptual,
Specification or Implementation level).

» [Booc98a], [Rumb99a] provide a good user reference and language reference for
UML.

» [John92a] [Oden97a] present how patterns can support the documentation of a frame-
works.

» [Brow96c], [Wuyt98a], [Prec98a] present some possible approaches to support de-
sign patterns extraction.

* [Flor97a] shows how design patterns can be supported at the development envi-
ronemt level.

* [Stey96a] presents Reuse Contracts a way to document frameworks for evolution.
» [Wins87a] presents some discussion about variety of composition relationships.

=B
106 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

Refactoring and Code Smells

« The Ph.D. work of Opdyke [Opdy92b] resulted in a number of papers describing in-
cremental redesign performed by humans supported by refactoring tools [Opdy93al],
[John93b].

« [Fowl99a] summarises practical experience with refactorings and code smells.

« The Refactoring Browser —a Smalltalk tool that represents the state of the art in the
field— is described in [Robe97a] and can be obtained from

http://st-www.cs.uiuc.edu/

» Both Casais [Casa91b], [Casa92a], [Casa94a], [Casa95a] and Moore ([Moor96a]) re-
port on tools that optimise class hierarchies without human intervention. Schulz et al.
illustrate the feasability of refactorings on a subset of C++ [Schu98a].

* There exists a web-page discussing "code smells", i.e. suspicious symptoms in

source code that might provide targets for refactoring
http://c2.com/cal/wiki?CodeSmells

Meta-Meta Models

* CDIF (CASE data interchange format)
http://www.eigroup.org/

» MOF (Meta-Object Facility)
http: //www.omd.org/

=B
107 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

[Arno92a] Robert S. Arnold, Software Reengineering, IEEE Computer Society Press, Los Alamitos,
CA, 1992.

[Bigg89c] T.J. Biggerstaff, "Design Recovery for Maintenance and Reuse," IEEE Computer, IEEE
Computer Society Press, October 1997, pp. 36-49.

[Bigg89d] T.J. Biggerstaff, "Design Recovery for Maintenance and Reuse," Software Reengineer-
ing, Robert S. Arnold (Ed.), IEEE Computer Society Press, 1992, pp. 520-533.

[Booc9B8a] Grady Booch , James Rumbaugh and Ivar Jacobson, The Unified Modeling Language
User Guide, Addison-Wesley, 1998, ISBN: 0-210-57168-4.

[Brow96c] Kyle Brown, "Design Reverse-engineering and Automated Design Pattern Detection in
Smalltalk,” Technical Report, no. TR-96-07, North Carolina State University, 1996.

[Brow3éc] Kyle Brown, Design Reverse-Engineering and Automated Design Pattern Detection in
Smalltalk, TR-96-07, North Carolina State University, 1996, Ph.D. Thesis available from http://
www.ksccary . com/kbrown, htm.

[Casa91b] Eduardo Casais, "Managing Evolution in Object Oriented Environments: An Algorithmic
Approach,” Ph.D. thesis (no. 369), Centre Universitaire d’'Informatique, University of Geneva,
May 1991,

[Casa%92a) Eduardo Casais, "An Incremental Class Reorganization Approach,” Proceedings
ECOOP'92, O. Lehrmann Madsen (Ed.), LNCS 615, Springer-Verlag, Utrecht, The Netherlands,
JunelJuly 1992, pp. 114-132.

=B
108 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

109

[Casa94a] Eduardo Casais, "Automatic Reorganization of Object-Oriented Hierarchies: A Case
Study," Object-Oriented Systems, vol. 1, no. 2, Chapman & Hall, December 1994, pp. 95-115.
[Casa95a] Eduardo Casais, "Managing Class Evolution in Object-Oriented Systems," Object-Orient-

ed Software Composition, O. Nierstrasz and D. Tsichritzis (Ed.), Prentice Hall, 1995, pp. 201-
244,

[Casa97a] Eduoardo Casais and Antero Taivalsaari, "Object-Oriented Software Evolution and Re-
engineering (Special Issue)," Journal of Theory and Practice of Object Systems (TAPOS), vol.
3, no. 4, 1997, pp. 233-301.

[Chik90a] E.J. Chikofsky and J.H. Cross Il, "Reverse Engineering and Design Recovery: A Taxon-
omy," |[EEE Software Engineering, 1990 January, pp. 13-17.

[Davi9b5a] Alan M.Davis, 201 Principles of Software Development, McGraw-Hill, 1995.

[Fent97a] Norman Fenton and Shari Lawrence Pfleeger, Software Metrics: A Rigorous and Practical
Approach, Second edition, International Thomson Computer Press, London, UK, 1997.

[Flor97a] Gert Florijn, Marco Meijers and Pieter van Winsen, "Tool Support for Object-Oriented Pat-
terns," Proceedings ECOOP'97, Mehmet Aksit and Satoshi Matsuoka (Ed.), LNCS 1241, Spring-
er-Verlag, Jyvaskyla, Finland, June 1997, pp. 472-495.

[Fowl97a] Martin Fowler, UML Distilled, Addison-Wesley, 1997.
[Fowl99a] Martin Fowler, Refactorings (Working Title), Addison-Wesley, 1999.

[Gold95a] Adele Goldberg and Kenneth S. Rubin, Succeeding With Objects: Decision Frameworks
for Project Management, Addison-Wesley, Reading, Mass., 1995.

=B
slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

110

[Hend96a] Brian Henderson-Sellers, Object-Oriented Metrics: Mesures of Complexity, Prentice-
Hall, 1996.

[John92a] Ralph E. Johnson, "Documenting Frameworks using Patterns," Proceedings OOPSLA
'92, ACM SIGPLAN Notices, vol. 27, no. 10, Oct. 1992, pp. 63-76.

[John93b] Ralph E. Johnson and William F. Opdyke, "Refactoring and Aggregation,” Object Tech-
nologies for Advanced Software, First JSSST International Symposium, Lecture Notes in Com-
puter Science, vol. 742, Springer-Verlag, Nov. 1993, pp. 264-278.

[Lehm85a] Lehman M. M. and Belady L., Program Evolution - Processes of Software Change, Lon-
don Academic Press, 1985.

[Lore94a] Mark Lorenz and Jeff Kidd, Object-Oriented Software Metrics: A Practical Approach,
Prentice-Hall, 1994.

[Moor96a] lvan Moore, "Automatic Inheritance Hierarchy Restructuring and Method Refactoring,"
Proceedings of OOPSLA '96 Conference, ACM Press, 1996, pp. 235-250.

[Oden97a] Georg Odenthal and Klaus Quibeldey-Cirkel, "Using Patterns for Design and Documen-
tation," Proceedings of ECOOP'97, LNCS 1241, 1997, pp. 511-529.

[Opdy92b] William F. Opdyke, "Refactoring Object-Oriented Frameworks," Ph.D. thesis, University
of lllinois, 1992.

[Opdy93a] William F. Opdyke and Ralph E. Johnson, "Creating Abstract Superclasses by Refactor-

ing," Proceedings of the 1993 ACM Conference on Computer Science, ACM Press, 1993, pp.
66-73.

=B
slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

111

[Prec98a] Lutz Prechelt and Christian Kramer, "Functionality versus Practicality: Employing Existing

Tools for Recovering Structural Design Patterns”, Journal of Universal Computer Science, 1998,
4,12, B66-882 december

[Press84a) Roger S. Pressman, Software Engineering: A Practitioner's Approach, McGraw-Hill,
1994,

[Robe87a] Don Roberts, John Brant and Ralph E. Johnson, "A Refactoring Tool for Smalltalk," Jour-
nal of Theory and Practice of Object Systems (TAPOS), vol. 3, no. 4, 1997, pp. 253-263.

[Rumb99a] James Rumbaugh , lvar Jacobson and Grady Booch, The Unified Modeling Language
Reference, Addison-Wesley, 1999, 0-210-30998-X,

[Schu98a] Benedikt Schulz, Thomas Genssler, Berthold Mohr and Walter Zimmer, "On the Compu-
ter Aided Introduction of Design Patterns into Object-Oriented Systems.." Proceedings of the
TOOLS 27 Conference (Asia "98), IEEE Computer Society Press, 1998.

[Somm96a) lan Sommerville, Software Engineering Fifth Edition, Addison-Wesley, 1998,

[Stey96a)] Patrick Steyaert, Carine Lucas, Kim Mens and Theo D'Hondt, "Reuse Contracts: Manag-
ing the Evolution of Reusable Assets,” Proceedings of OOPSLA "96 Conference, ACM Press,
1996, pp. 268-285.

[Wate94a) Richard C. Waters and Elliot Chikofsky, "Reverse Engineering: Progress Along Many Di-
mensions (Special Issue),” Communications of the ACM, vol. 37, no. 5, May 1994, pp. 22-93.

[Wins8TaMortonE Winston RogerChaffinandDouglasHerrmann,"ATaxonomyofPart-WholeR elations”,
Cognitive Science, 1987, 11, 417-444

[Will96a] Linda Wills and Philip Newcomb, "Reverse Engineering (Special Issue),” Automated Soft-
ware Engineering, vol. 3, no. 1-2, June 1996, pp. 5-172.

=B
slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

[Wuyt98a] Roel Wuyts, "Class-management using Logical Queries, Application of a Reflective User
Interface Builder," Proceedings of the TOOLS 26 Conference (USA '98), IEEE Computer Society
Press, 1998.

OB
112 slides are based on OO Reengineering (Demeyer, Ducasse, Nierstrasz) RESEARCH

