
Polymorphism (Chapter 6)

Prof. Dr. Wolfgang Pree

Department of Computer Science
University of Salzburg

cs.uni-salzburg.at

W. Pree 2

Polymorphism (1)

 Interface - requires no more than is essential for the service to be
provided.

 Clients and providers - free to overfullfill their contract.
 Client

 may establish more than is required by the precondition
 may expect less than is guaranteed by the postcondition.

 Provider
 may require less than is guaranteed by the precondition
 may establish more than is required by the postcondition.

 Pre- and postconditions are usually specified using predicates.

W. Pree 3

Polymorphism (2)

 The interface requires callers of operation write to
make sure that the character to be written is
inserted within the current range of the text.

W. Pree 4

Polymorphism (2 – example)

 An implementation GreatTextModel may relax this by allowing
insertions to happen past the end of the current text, by padding
with blanks where necessary.

W. Pree 5

Polymorphism (3)

 Equally, a provider may decide to create the illusion of an
infinitely long text preinitialized with all blanks.

 There are, surprisingly, many further possible ways in which
providers can interpret the interface contract.

 A provider may accept
arbitrary positions, including
negative ones, in all
operations, simply by first
clipping the specified position
to the currently valid range.

 Alternatively, a provider may
decide to grow a text
dynamically, making max
return a non-constant value.

W. Pree 6

Polymorphism (4)

 On the client’s end of an interface, the same sort of relaxation
is possible. A client may guarantee more than is required and
expect less than is provided.

 A client of TextModel.write may use the operation only to
append to a text.

W. Pree 7

Polymorphism (5)

 The flexibility introduced by requiring only implications, instead of
equivalences, becomes very important when considering
interactions of multiple providers and clients.

 Libraries always supported the concept of a service provider
catering for many clients.

 In any one given configuration, there is only one implementation of
a library interface and the only concern on the provider’s side is
versioning.

 The situation has changed with the introduction of self-standing
interfaces and dynamic dispatch (late binding).

W. Pree 8

Types, subtypes, and type checking (1)

 Ideally
 all conditions of a contract would be stated explicitly and

formally as part of an inerface specificaion.
 Highly desirable to have a compiler or other automatic tools

check clients and providers against the contract and reject
incorrect ones.

 Fully formalizing the interface contracts is a first major obstacle.
 Automatic checking remains a major challenge of ongoing

research. An efficient general-purpose verifier is not feasible.
 Theorem proving

 Too expensive to be done in a production compiler.
 Requires manual assistance by an expert.

W. Pree 9

Types, subtypes, and type checking (2)

 For example, version conflicts among independently provided
components can only be checked at configuration or load time.
Likewise, index range errors can, generally, only be detected at
runtime.

 By combining a type system with automatic memory management
and certain runtime checks, a language implementation can fully
eliminate memory errors – and some other error classes as well.
Smalltalk, Java, C#, Oberon fall into this category. However many
others, Modula-2, C and C++, do not.

 In the context of objects and interfaces, a type is best understood
as a set of objects implementing a certain interface.

 The parameters form a part of an operations’s preconditions. The
types of output and in-out parameters plus the type of returned
values form a part of an operation’s postconditions.

 Thus, a type is an intervace with a simplified contract.

W. Pree 10

Types, subtypes, and type checking (3)

 An object may implement more than the interface required in a
certain context. It may implement additional interfaces or a
version of the required interface extended with additional
operations or both.

W. Pree 11

Types, subtypes, and type checking (4)

 A client expecting a certain type really expects an object fulfilling a
contract. Thus, all objects fulfilling the contract could be used. On
the level of types, this includes all extended types as long as the
understanding is that objects of an extended type respect the base
contract.

 Interface inheritance is the most common way to form subtypes.
Another way is structural subtyping, in which no base interface is
named. Instead, operations are repeated and a subtype is said to
be formed if a subset of the operations coincides with operations
defined for another type View, TextView, GraphicsView, or other.

This is called polymorphism, and the variable is said to be of a
polymorphic type. As there are several forms of polymorphism, this
particular one is also called subtype or inclusion polymorphism.

W. Pree 12

Contra :: Co Variance (1)

 http://c2.com/cgi/wiki?ContraVsCoVariance:
 To summarize the concept: When inheriting from a class and over-

riding one of its methods, how should you constrain the types
accepted as arguments and returned as results according to the
method being over-ridden?

 Say you have a class Foo, which has a method bar(). Method bar()
takes an argument of type middle_type, and returns a value of type
middle_type. Now you make a subclass of Foo called SubFoo, and
you override bar(). What types can the new bar() take? What types
can it return?

 Look at return types first: we want to be able to substitute SubFoo
where existing code expects Foo, so it needs to return things of
type middle_type, or of some subtype (e.g. sub_type). This should
be pretty obvious.

W. Pree 13

Contra :: Co Variance (2)

 As for what types our new bar() can take: One answer (cf. C++) is:
bar() can take only things of type middle_type. You can't declare it
to take sub_type, and you can't declare it to take super_type. This
is called invariance.

 Another answer: bar() can only be declared to take things that are a
subtype of middle_type - so middle_type is OK, and sub_type is
OK, but super_type is out. This is called covariance.

 Finally, the third answer: bar() can only be declared to take things
that are a supertype of middle_type - so any of middle_type,
super_type, and sub_type may be passed to bar(). This is called
contravariance.

W. Pree 14

Contra :: Co Variance (3)

 Covariance seems to jibe with our notion that subclasses are more
specialized, less general than their superclasses. So you might have a
Collection class which takes and returns Objects; you could subclass it to
make a FooCollection class which takes and returns Foos (where Foo is a
subclass of Object).

 Contravariance sounds kind of counterintuitive at first, but it's actually just
analogous to the famous advice about implementing protocols: "Be liberal
in what you accept, and conservative in what you send." So just as you
have to return a subtype of the original bar()'s return type, you have to
accept any supertype of whatever the original bar() accepts. If your type
system enforces contravariance of parameters, then it can tell at compile
time whether your code is typesafe (cf. SatherLanguage, ObjectiveCaml,
CeePlusPlus (since invariance is just a special case of contravariance)). If
it enforces covariance, it can't really do that, but it can make some good
guesses (cf. EiffelLanguage) - though Eiffel is known to crash when it
guesses wrong.

Covariance and contravariance : conflict without a cause Castagna,
Giuseppe ACM Transactions on Programming Languages and Systems Vol.17,
No. 3 (May 1995), pp. 431-447

W. Pree 15

More on subtypes (1)

 A provider may establish more than is required by a contract.
Hence, a subtype interface can replace the types of output
parameters and return values by something more specific.

 As the types of output parameters and return values can thus be
varied in the same direction as the types of the containing
interfaces, this is called covariance.

 A provider may expect less than is guaranteed by a contract.
Hence, a subtype interface could replace the types of input
parameters by something more general - supertypes. In other
words, the types of input parameters may be varied from types to
supertypes when going from an interface of a certain type to an
interface of a subtype of that type. As the types of input parameters
can thus be varied in the opposite direction of the types of the
containing interfaces, this is called contravariance.

W. Pree 16

More on subtypes (2)

 Types of in-out parameters
simultaneaously from part of an
operation’s pre- and
postcondition.

 It follows that types of in-out
parameters cannot be varied at
all in a subtype interface,
sometimes called invariance of in-
out parameter types.

 Covariantly redefining getModel
in TextView. The same can be
done for getModel in
GraphicsView.

 This is obviously useful. Clients
that care only about View will get
a generic Model when they ask
for the views model. However,
clients that know they are dealing
with a TextView object will get a
TextModel.

W. Pree 17

More on subtypes (3)

interface View {
 … // as above
 void setModel (Model m); // is this a good idea?
}

 However, a TextView object will get a TextModel. If
covariant change of input parameter was safe, setModel
could be changed in TextView to accept a TextModel.

W. Pree 18

Object languages and types

 Some languages, such as Smalltalk, do not have an explicit type
system.

 A compiler can still derive types by inspection of strictly local
program fragments, such as in the Smalltalk dialect StrongTalk. In
such languages, avoidance of explicit typing is a matter of
convenience – ther is less to write.

 Adding explicit typing is still useful, as it makes important
architectural and design decisions explicit.

 Modern languages, such as Java use an explicit type system and
statically check programs at compile time. In addition, they check
narrowing type casts at runtime.

 Few of the mainstream languages support any changes in types of
operations when forming subtypes. In C++, covariant return types
were introduced only in early 1994. Java and C# still do not support
any type changes.

W. Pree 19

The paradigm of independent extensibility (1)

 The principle function of component orientations is to support
independent extensibility.

 A system is independently extensible if it is extensible and if
independently developed extensions can be combined.
For example, all operating systems are one-level independently
extensible by loading applications. Extensions to applications are
sometimes called plugins.

 Combining the “dekernelization” efforts of operating system
architects and the modularization efforts of application architects
leads to a new vision for overall system architectures – components
everywhere! It is all about forming a system architechture that is
independently extensible on all levels.

W. Pree 20

The paradigm of independent extensibility (2)

 Partitioning of systems into smallest components (to
maximize reuse) conflicts with efficiency, but also with
robustness when facing evolution and configurational
variety.

 Micro-kernel architecture enforces total isolation of
application-level processes to establish system safety
and support security mechanisms. Frequent crossing of
protection domain boundaries can severely affect
performance.

 Overall system performance directly conflicts with
extreme micro-kernel designs.

W. Pree 21

The paradigm of independent extensibility (3)

 How can component technology and independent
extensibility as a recursive system design concept ever
be viable if performance is so severely affected?

 It turns out to be the wrong question.
 True question: “Why is performance so severely

affected?”
 Obvious answer: “because it is expensive to perform

cross-context calls.”
 A cross-context call on well-tuned operating systems is

still easily a hundred times more expensive than local in-
process call.

W. Pree 22

The paradigm of independent extensibility (4)

 Personal computers: Neither the Mac OS nor MS-DOS
had a true process model. Hardware protection was
mostly ignored. A malicious program could easily
“crash” the entire system.

 Considered acceptable as these machines typically
serve a single user who can avoid the crash simply by
avoiding the use of unreliable applications.

 It is possible to have your cake and eat it too? Could
there be a third way?
One way is to choose carefully the granularity of
components. Another way is to guarantee statically that
a component will be safe.

W. Pree 23

Safety by construction –
viability of components (1)

 The discussion on type safety points in the right direction.
 Here is an example. The Java class files (Java’s portable compiled

format) and the Java virtual machine have been crafted to interact
in a way that prevents type-unsafe applets from being executed in a
non-local environment.
 Java is a type-safe language.
 It provides automatic memory management using garbage

collection.
 Finally, it performs runtime checks on all operations that are

“dangerous”, but cannot be statically checked, such as array
bounds checks.

 Together, these techniques guarantee that memory errors cannot
occur. As class files, produced by the Java compiler, could be
tampered with the virtual machine rechecks them when loading one
coming from a non-local site, such as across the internet.

W. Pree 24

Safety by construction –
viability of components (2)

 Another example is the Microsoft .NET Common
Language Runtime (CLR). CLR also uses late
compilation and avoids interpretation, eliminating the
notion of a virtual machine. It defines an intermediate
language that has been designed to support a wide
variety of programming languages and still map
efficiently to a wide variety of processors.

 Strong safety properties can be established at compile-
time, checked at install, load, or JIT compile-time, and
then be relied on without further checking while
executing the resulting efficient code.

W. Pree 25

Module safety

 Type safety and elimination of memory errors are not enough, it
would still be possible for a program to call arbitrary services
present in or loadable into the system.

 One additional requirement: module safety. A component has to
specify explicitly which services – from the system or other
components – it needs to access. This is done in the form of
module (or package) import lists. The language and system do not
allow access to any non-imported module. This is like access
control in file systems.

 Module safety is not quite as simple as it sounds. In component
systems it is important that other components (and services) can be
retrieved by name. A clean and popular way to support components
retrieval by name is a reflection service. Java, Component Pascal,
and .NET CLR all offer such a service. Where access to
components is to be restricted, reflection services require special
attention so as not to create a security loophole.

W. Pree 26

Module safety and meta-programming

 Where meta-programming interfaces exist, these need to be
explicitly restricted such that these services do not break
encapsulation. This is contrary to some of the typical usages of
meta-programming, such as debugging or data structure
serialization services.

 A system may offer two meta-programming interfaces
 one that is module safe and open for general use
 and another that is module unsafe and restricted to trusted

components.

W. Pree 27

Safety, security, trust (1)

 Type safety, module safety, and absence of memory errors –
trustworthy?

 If the target is a set of components, installed locally, interacting on a
personal computer, then this approach may already be close to
satisfactory. If the target was the highest security level, then this
approach would be totally unacceptable.

 Low- to medium-security system – this approach is probably at its
limits. What is wrong? First, and above all, this approach fully relies
on the tight semantics of the language. To be fully trustworthy a
formal semantics of the language together with formal proofs of the
claimed safety properties would be required. Very few programming
languages satisfy this requirement and there is no mainstream
object-oriented language.

W. Pree 28

Safety, security, trust (2)

 A language implementation could still break any proved property.
To go all the way, the language processors and the language
runtime systems again need to be formally specified and verified.

 Trust is a matter of reducing the unknown to the known and trusted,
and doing so in a trusted way. This is obviously primary a
sociological process.

 Unix security mechanism: The designers of the mechanism
published its details in full and encouraged everyone to try to break
it. After years, the mechanism gained (or, better, earned) the trust it
currently receives.

 The Java designers also publicized their security strategies early on
and encouraged serious research groups to challenge the
approach. After years of steadily decreasing reports of found
problems, people will increasingly trust the approach.

W. Pree 29

Bottleneck interfaces

 Interfaces introduced to allow the interoperation
between independenty extended abstractions are
somethimes called bottleneck interfaces (cf Adapter
design pattern).

 A bottleneck interface is a self-standing contract. As a
bottleneck interface couples independent extension
families, it cannot itself be extended.

 Once published, it can only be withdrawn or replaced
but not extended.

W. Pree 30

Evolution versus immutability of interfaces
and contracts

 As soon as a contract has been published to the world,
it (the interface and its specification) can no longer be
changed. This holds for clients and providers bound by
a specific contract.

 A provider can always stop providing a particular
interface. It will then potentially lose part of its client
base – the part has not yet been migrated to some
newer interface. However, a provider can never change
the specification of an existing contract as that would
break clients without any obvious indication.

W. Pree 31

Syntactic versus semantic contract changes
(1)

 Changes to a contract can take two forms. Either the
interface of the specification is changed. If the interface
is changed, this is referred to as a syntactic change.

 If the specification is changed, this is called a
semantic change.

 Typical providers in object-oriented settings are classes,
the problem caused by contract change is sometimes
referred to as the fragile base class problem.

 A simple way to avoid these problems is to refrain from
changing contracts once they have been published.

W. Pree 32

Syntactic versus semantic contract changes
(2)

 It is again helpful to consider the analogy of traditional contracts. No
clause in a contract, once signed, can be changed without the
agreement of all involved parties. Of course, once there is an
uncontrollable number of parties, gaining agreement can become
difficult or impossible. However, such contracts do have
mechanisms that allow for change. The two fundamental
mechanisms are
 acknowledging existence of overriding law and instances, and
 statement of a termination time.

 Today, only Microsoft’s COM declares all published interfaces to be
immutable. Eventually such older interfaces can and should go.
IBM’s SOM did something different. A new release can only add to
an interface, it cannot take functionality away.

W. Pree 33

Contract expiry

 Some of the current component infrastructures offer
licensing services and it is a natural property of licenses
that they expire after a preset date.

 Istead of supporting legacy contracts forever, adding
more baggage to providers and clients, there is a clean
way to cut off the past. However, without mutually
agreed expiry dates, this will always come as a surprise
to some users.

W. Pree 34

Other forms of polymorphism

 Overloading groups otherwise unrelated operations
(C++)

 Using the same implementation to serve a variety of
types: A list implementation can be parameterized with
the type of the list elements. The list implementation
itself is generic and provided only once. This is called
parametric polymorphism.

 Parametric polymorphism is similar to C++ templates.
However, C++ templates lead to code explosion as a
template is necessarily compiled to different code for
each instantiation. Also, templates cannot be statically
type-checked as type checking cannot occur before
parameters are supplied.

