
Components, interfaces,
reentrance (Chapter 5)

Prof. Dr. Wolfgang Pree

Department of Computer Science
University of Salzburg

cs.uni-salzburg.at

W. Pree 2

Components and interfaces (1)

 Semantics - actual meaning of things beyond their outer
form

 Component technologies - interoperation of alien
components

 Interfaces
 means by which components connect
 set of named operations that can be ivoked by

clients
 The specification of the interface - mediating middle for

two parties to work together

W. Pree 3

Components and interfaces (2)

 Interfaces
 directly provided by a component - procedural

interfaces of traditional libraries
 provided indirectly by objects - Object interfaces

 There is a dualism between specifying components and
specifying the interactions between components.

 Interfaces appear as the roles at the endpoints of an
interaction specification.

W. Pree 4

Direct and indirect interfaces (1)

 Direct (procedural) and indirect (object) interfaces can
be unified - use static objects that can be part of a
component

 Object interface - dynamic method lookup
 The Object implementing an interface belongs to a

component different from the component with which the
client seems to interact through the interface

 Procedural interfaces are always direct
 Explicit procedural indirection is possible by means of

procedure variables (also called function pointers).

W. Pree 5

Direct and indirect interfaces (2)

 Effective coupling of two dynamically selected parties
via a well defined interface - late binding: right at the
heart of object-oriented programming

 In a component system proper working of the resulting
dynamic confituration is hard to control.

 The quality of the interface specification holds things
together.

W. Pree 6

Versions (1)

 Versions of components can be prolific.
 Traditional version management assumes versions of a

component evolve at a single source.
 Subtle aspect - Moving from direct to indirect interfaces.
 Direct interfaces check versions at bind time

 Versioned system - avoid indirect coupling of parties of
incompatible versions

 Unless versions are checked in every place where an
object reference crosses components boundaries,
version checking is not sound.

W. Pree 7

Versions (2)

 Few component infrastructures address the component versioning
problem properly.

 Goal - ensure that older and newer components are either
compatible or clearly detected as incompatible.

 General strategy - support a sliding window of supported versions.
 Another possible approach - immutable interface specifications.

Each interface, once published, is frozen.
Supporting multiple versions = supporting multiple interfaces.

 More refined approach
 Mutation of definitions from one version to the next.
 Define precisely what changes are valid to retain backwards

compatibility.
 Multiple versions of a component can be loaded and

instantiated in the same space.

W. Pree 8

Interfaces as contracts

 Interface specifications is contracts between a client of an interface
and a provider of an implementation of the interface.

 Contract
 what the client needs to do to use the interface
 specifying pre- and postconditions for the operation

 Client
 establishes the precondition before calling the operation
 relies on the postcondition being met whenever the call to the

operation returns
 Provider

 relies on the preconditions being met whenever the operation is
called.

 has to establish the postcondition before returning to the client.
 Implementation can weaken preconditions or strengthen

postconditions.

W. Pree 9

Contracts and extra-functional requirements

 Contemporary contracts often exclude precise performance
requirements.

 Changing performance can break clients.
 Contractual specification

 functional aspects (interface syntax and semantics with
invariants, and pre- and postconditions)

 service level - availability, mean time between failures, mean
time to repair, throughput, latency, data safety for persistent
state, capacity …

 Failure to fulfill the service level = Wrong result.

 The practice of including extra-functional specifications into a
contract and monitoring them strictly will be used more in the future.

W. Pree 10

Undocumented „features“

 It is always possible to „observe“ behavior of an
implementation beyond its specification.

 A way of exploring an implementation’s unspecified
„features“ is called debugging.

 In practice, it is very difficult to avoid non-contractual
dependencies.

 A contract needs to maintain a balance between being
precise and not being to restrictive.

W. Pree 11

What belongs to a contract?

 Contracts as interface with pre- and postconditions and,
perhaps, invariants are simple and practical.

 However, simple pre- and postconditions on operations
merely specify partial correctness.

 The requirement that an operation should also
eventually terminate leads to total correctness =>
default convention for all contracts.

W. Pree 12

Safety and progress

 The concept that something guaranteed by a precondition will lead
to something guaranteed by a postcondition can be generalized.

 Common notation is the „leads-to“ operator – ex. the clause „model
update leads-to notifier calls“

 Progress conditions often rely on some form of temporal logic.
 The notion of contracts can be formalized to capture safety and

progress conditions, although still neglecting performace and
resource consumption.

 Pre- and postconditions are widely accepted and usually combined
with informal clauses to form complete contracts.

 The drawback of such semiformal approaches is the exclusion of
formal verification.

W. Pree 13

Extra-functional requirements

 The specification techniques (conditions, contracts,
histories, specification statements) are restricted to
functional aspects.

 Violation of extra-functional requirements can break
clients.

 Unless performance is regulated by contracts, it can be
difficult or impossible to pinpoint the underperforming
components.

 The provider also has to respect other resource
limitations.

W. Pree 14

Specifying time and space requirements

 Ideally, a contract should cover all essential functional and extra-
functional aspects. It is not yet clear how this can best be achieved,
leaving room for ongoing future research.
Ex.: The time complexity of legal implementations is bounded.

 It is possible to determine absolute time and space bounds for a
given provider on a given platform.

 The gap between complexity bounds in a contract and absolute
bounds (in seconds or bytes) on a specific platform needs to be
bridged.

 Automated composer, could compute absolute bounds for a given
platform.

 The specification of worst-case bounds may not be the best choice.
Ex.: Quicksort vs Heapsort

W. Pree 15

Dress code – formal or informal?

 Interface contracts should be as formal as possible to
enable verification.

 In practice the formal specifications are rarely used
because of their complexity.

 Pre- and postconditions – a semiformal style.
 None of the real-world laws are formal.
 Formalizing contracts, where possible and agreeable, is

a good idea.
 Attempting to formalize everything can easily lead to

totally unapproachable, and therefore unsolvable,
situations.

W. Pree 16

Callbacks and contracts

W. Pree 17

Callbacks and contracts

 Callback
 procedure that is passed to a library at one point
 registered with the library
 reverses the direction of the flow control

 Callback invocations = up-calls
 In a strict procedural library model always the client calls the library.
 Library has to establish a “valid” state before invoking any callbacks.
 A callback may cause the library’s state to change through direct or

indirect calls to the library.
 Validity of the library state is specified as part of a contract.

W. Pree 18

Examples of callbacks and contracts

 Callbacks introduce subtle dependencies that lead to
unexpected complexities and error-prone situations.

 Common practice to demonstrate pre- and
postconditions by using effectively flat abstract data
types (ADTs) examples.
Ex.: A directory service with two versions of a client

 Major points are missed when using trivial examples

W. Pree 19

A directory service

 Directory service as part of a simple file system
supports callbacks to notify clients of changes in the
managed directory.

 Directory service interface is grouped into two parts
- file lookup and addition or removal of named files
- registration and unregistration of callbacks

W. Pree 20

A directory service

W. Pree 21

A client of the directory service

 Simple client that uses directory callbacks to maintain
visual display of the directory’s content.

 A callback recursively invokes operations on the calling
service.

 Several points left unclear in the directory contract:
- is the notifier called at all, called at once, or called

twice?
- to call the notifier before or after the directory itself

has been updated?

W. Pree 22

A client of the directory service

W. Pree 23

Same client, next release

 Variation of DirectoryDisplay that uses a pseudo name
“Untitled” for anonymous files that have not been
registered with the directory, but have been announced
to the display service.
Assumption: no registered file will ever be called
“Untitled”.

W. Pree 24

Same client, next release

W. Pree 25

W. Pree 26

Same client, next release
 Unlike a contract, an implementation answers all

questions about the what, when, and where – assuming
the semantics of the programming language are known.

 It is not appropriate to rely only on implementation
details when designing or implementing a new client.

W. Pree 27

Same client, next release

 Result: Stack overflow during a test insertion of an entry
“Untitled”.

W. Pree 28

A broken contract

PROCEDURE AddEntry(IN n: Name; f: Files.File);
(* pre n≠ ”” and f≠NIL *)
(* post ThisFile(n) = f *)

 The postcondition ThisFile (“Untitled”) = someFile does
not hold on return from AddEntry. A client relying on this
postcondition would break.

 The notifier is “out of loop”.

W. Pree 29

Prevention is better than cure

 Histories of possible state - specify the behavior of
asynchronous systems.

 Resulting contracts - far less manageable than simple
pre- and postconditions.

 A notified observer must not change the notifying
observed object - transitive nature restriction.

 A notifier may invoke any other operation that internally,
for whatever reason, uses the service that originally
notified.

 Middle ground - equip a library using callbacks with
state test functions.

W. Pree 30

Proofing the directory service

 Addition of a test function InNotifier and its proper use in
the preconditions of AddEntry and RemoveEntry would
solve the problem.

W. Pree 31

Proofing the directory service

 Test functions are a mixed blessing. It would be preferable to resort
to a more declarative form in the contract, rather than relying on an
executable function that inspects state.

 Test functions can be invoked by any client of a service and thus
solve the problem of transitive restrictions.

 As the precondition can be checked at runtime, clients can be
implemented to behave correctly.

W. Pree 32

Test functions in action

 Test functions in interfaces are not commonplace today.
 Test functions are nevertheless used sometimes.

Ex. - Java security manager - an object that protects
critical services from being called by untrusted code.

 The indirect recursion across abstractions caused by
callbacks in a good basis from which to understand the
similar difficulties introduced by webs of interacting
objects.

W. Pree 33

From callbacks to objects

 Objects references introduce linkage across arbitrary
abstraction domains.

 Proper layering of system architectures lies somewhere
between the challenging and the impossible certainly
not as natural as with procedural abstractions.

 Object reference can be used at one time in a layer
above that of the referenced object and at another time
in a layer below that of the referenced object.

 With object reference every method invocation is
potentially an up-call, every method potentially a
callback.

W. Pree 34

W. Pree 35

From callbacks to objects

W. Pree 36

W. Pree 37

From callbacks to objects

W. Pree 38

From callbacks to objects

W. Pree 39

From callbacks to objects

W. Pree 40

From callbacks to objects

 The flow of control against the layers of abstraction (up-
call) clearly exposes inconsistencies to arbitrary other
objects – a circumstance that should be reflected in the
interfaces of text models and views but usually is not.

W. Pree 41

From interobject consistency to object re-
entrance

 Model view scenario shows how multiple objects can be subject to
consistency constraints. Objects arranged in strict layers, with messages
being sent only from objects located in higher layers to objects located in
lower layers.

 For object systems strict layering is rarely performed. Passing object
references “down” and abstractly dealing with upper objects in lower layers
one of the most powerful aspects of object orientation. Harnessing this
potential is a major challenge.

 The real problem observation of an object undergoing a state transition with
inconsistent intermediate states becoming visible. Inconsistencies can only
be observed by entering an object’s method.

 If the intermediate state is observed by means of re-entrance, maintaining
correctness becomes difficult.

FIGURE 5.7

 Object reentrance poses difficult problems even in a relatively simple
example.

W. Pree 42

From interobject consistency to object re-
entrance

 Object reentrance poses difficult problems even in a relatively simple example.

W. Pree 43

Self-interference and object re-entrance:
a summary (1)

 Re-entrance of methods can pose problems, as objects normally
have state and are not automatically re-entrant.

 Simple solution - require all invariants of an object to be established
before calling any method. All state needs to be made consistent
before calling a method.

 Invariants covering multiple objects in a cycle cannot always be
maintained. The observation of intermediate state can be difficult to
prevent.

 One way to address re-entrance problems - weaken invariants
conditionally and make the conditions available to clients by means
of test functions.

 On receipt of a notification that the model has changed, a view
cannot rely on the model to compute further.

 It either has to cache all required information or the marks have to
be removed before a model can be changed.

W. Pree 44

Self-interference and object re-entrance:
a summary (2)

 A significant number of design and implementation errors go back
to unexpected recursive re-entrance of objects. The recursion
leading to such re-entrances is obscured either by subtle
interactions of classes in an inheritance hierarchy or subtle
interactions of objects.

 Contracts based on pre- and postconditions can capture the
conditions to allow for safe interactions, even in the presence of
recursive re-entrance.

 Dealing with recursion and re-entrance is difficult in situations
where the recursion is explicit and part of the design. Self-recursion
within a single object can be affected by class inheritance and leads
to recursive re-entrance patterns that are neither explicitly specified
nor necessarily expected.

 Recursion and re-entrance become a more pressing problem when
crossing the boundaries of components. Each component must be
independently verifiable based on the contractual specifications of
the interface requires and those it provides.

W. Pree 45

Processes and multithreading

 The problems of recursive re-entrance of objects and
concurrent interaction of processes are similar. The idea
can be taken to the extreme, by assigning full process
semantics to every object.

 “Actors”
- go further and turn every object invocation into a

separate process!
- doing so is not efficient. Objects and processes are

kept separate and processes are populated by
multiple threads.

 Understanding and properly addressing the issues of re-
entrance in object systems does not become any
simpler by introducing processes or threads.

W. Pree 46

Histories

 Another approach to capturing the legal interactions among objects is the
specification of permissible histories.

 Valid state transitions can be specified by restricting the set of permissible
traces. The specification is a formally captured set of permissible traces.

 In most history-based specification techniques, permissible traces or
histories are specified indirectly.

 An object is substitutable for another if all traces of the new object,
projected to the states and operations of the old object, are explicable in
terms of the old object.

 If traces were used to specify an interface, then any class implementing
this interface would have to satisfy the substitutability criterion.

 Coordination language
 describe the composition processes, yielding composite components,
 describe connections between processes external to these processes

similar to connection-oriented programming and architecture
description languages.

W. Pree 47

Specification statements

 Specification statements – similar to that of statement-
oriented imperative languages. It is possible to insert
specification statements into a sequence of normal
statements.

 Specification statements state as much about an
implementation as needs to be stated to capture the
specification.

W. Pree 48

W. Pree 49

Specification statements

 The specification of notifiers prohibits the notifier from
modifying its notifying text.

