
Java, JavaBeans, EJB
(Chapter 14)

Prof. Dr. Wolfgang Pree

Department of Computer Science
University of Salzburg

cs.uni-salzburg.at

W. Pree 2

The Sun way – Java, JavaBeans, EJB,
and Java 2 editions

 Java is a true phenomenon in the industry.

W. Pree 3

Overview and history of Java component
technologies

 The applet was the initial factor of attraction and
breakthrough for Java.

 Java was designed to allow a compiler to check an
applet’s code for safety.

 Java was designed to allow for the compilation to
efficient executables at the target site. Just-in-time (JIT)
compilers.

 The second winning aspect of Java is the Java virtual
machine (JVM).

 By implementing the JVM on all relevant platforms, Java
packages compiled to byte code are platform
independent.

W. Pree 4

Organization of the Java 2 platform

W. Pree 5

Java 2 Enterprise Edition (J2EE)

 At the heart of the J2EE architecture is a family of
component models.
 on the client side, application components,

JavaBeans, and applets
 on the web server tier, servlets and JSPs
 On the application server tier, EJB in four variations

(stateless session, stateful session, entity, and
message-driven beans.

 JavaBeans components aren‘t really confined to any
particular tier. Its core technologies could be used in
almost any of the spaces shown in the figure.

W. Pree 6

Architectural overview of J2EE

W. Pree 7

Java, the language (1)

 Java is an almost pure object-oriented language.
 All Java code resides in methods of classes. All state

resides in attributes of class.
 All classes except Object inherit interface and

implementation from exactly one other class.
 Objects are either instances of classes or arrays.

Objects can be created but not explicitly deallocated.
 All Java classes and interfaces belong to packages.
 Packages introduce a level of encapsulation on top of

that introduced by classes. Default mode for access
protection allows arbitrary access classes in the same
package.

W. Pree 8

Java, the language (2)

 Interfaces extend any number of other interfaces.
 Classes extend exactly one other class, except for class

java.lang.Object, which has no base class.
 Classes can implement any number of interfaces.
 Final methods cannot be overridden.
 Static features belong to the class rather than to

instances of the class.
 Interface fields are implicitly public, static, and final

making them global constants.
 Interface methods are implicitly public and abstract.

W. Pree 9

Java structuring constructs

W. Pree 10

Interfaces versus classes

 Separation of interfaces and classes in a way that permits
single implementation inheritance combined with multiple
interface inheritance.

W. Pree 11

Exceptions and exception handling

 Exceptions and runtime errors are reflected in Java as
exception or error objects. Either explicitly thrown or
thrown by the runtime system, such as on out-of-bounds
indexing into an array.

 Java has exception types that can only be thrown by a
method’s implementation, if the method declaration
announced this possibility.

W. Pree 12

Threads and synchronization

 Java defines a model of concurrency and
synchronization and is thus a concurrent object-oriented
language. The unit of concurrency is a thread.

 Threads can be dynamically created, pre-empted,
suspended, resumed, and terminated.

 Thread termination is not automatically propageted to
child threads.

 Java supports thread synchronization either on entrance
to a synchronized method or at a synchronized
statement.

 Synchronization forces a thread to acquire a lock on an
object before proceeding. There is exactly one lock
associated with each object.

W. Pree 13

States and state transitions of Java threads

W. Pree 14

Garbage collection

 Java provides a number of mechanisms to allow
programs to interact with the JVM’s garbage collector.
The first such mechanism is object finalization.

 The best finalization strategy is to avoid resurrection
and to only use finalizers to release external resources.

 A garbage-collection pass can be “encouraged” by
calling System.gc. A best-effort finalization pass can be
requested by calling System.runFinalization().

 The vast majority of Java classes do not require a
finalizer.

W. Pree 15

JavaBeans (1)

 The clear distinction between class and object in Java is
not carried through in Java Beans. Although a bean
really is a component (a set of classes and resources),
its customized and connected instances are also called
beans.

 Beans have been designed with a dual usage model in
mind. Bean instances are first assembled by an
assembly tool, such as an application builder, at “design-
time,” and are then used a “runtime.”

 A bean instance can customize appearance and
functionality dynamically by checking whether or not it is
design-time or runtime.

W. Pree 16

JavaBeans (2)

 Main aspects of a bean model:
 Events
 Properties
 Introspection
 Customization
 Persistence

W. Pree 17

Events and connections

 Events in the JDK 1.1 terminology – and as used in
JavaBeans – are objects created by an event source
and propagated to all currently registered event
listeners. Event-based communication generally has
multicast semantics.

 A listener can implement a given event listener interface
only once. If it is registered with multiple event sources
that can all fire the same event, the listener has to
determine where an event came from before handling it.

 An event adapter is both an event listener and an event
source.

W. Pree 18

Properties

 A bean can define a number of properties of arbitrary
types. A property is a discrete named attribute that can
affect a bean instance’s appearance or behavior.

 Typical properties are persistent attributes of a bean
instance.

 A property can be bound.
 A property can also be constrained. If not veto exception

is thrown, the property is changed in the usual way.
 Normally, properties are edited by property editors. A

bean can also nominate a customizer class that
implements a specific customization interface.

W. Pree 19

Introspection

 Events and properties are supported by a combination
of new standard interfaces and classes.

 JavaBeans introduces the new notion of method
patterns.

 A method pattern is a combination of rules for the
formation of a method’s signature.

 Method patterns allow for the lightweight classification of
individual methods of an interface or class.

W. Pree 20

JAR files – packaging of Java components

 JAR files were originally introduced to support JavaBeans, but have
since been used to package all other Java components as well.

 The archive may include:
 A set of class files;
 A set of serialized objects that is often used for bean prototype

instances;
 Optional help files in HTML;
 Optional localization information used by the bean to localize

itself;
 Optional icons held in icon files in GIF format;
 Other resource files needed by the bean.

 The serialized prototype contained in the JAR file allows a bean to
be shipped in an initialized default form.

W. Pree 21

Reflection

 The Java core reflection service is a combination of
original Java language features, a set of support classes
and a language feature to support class literals.

 The reflection service allows:.
 Inspection of classes and interfaces for their fields

and methods;
 Construction of new class instances and new arrays;
 Access to and modification of fields of objects and

classes;
 Access to and modification of elements of arrays;
 Invocation of methods on objects and classes.

W. Pree 22

Object serialization

 To be serializable, an object has to implement interface
java.io.Serializable.

 A simple versioning scheme is supported – a
serializable class can claim to be a different version of a
certain class by declaring a unique serial version unique
ID.

 Object serialization must be used with care to avoid
security holes.

 Object serialization creates a stream of bytes in a single-
pass progress.

W. Pree 23

Java native interface

 The Java native interface (JNI) specifies, for each
platform, the native calling conventions when interfacing
to native code outside the Java virtual machine.

 JNI also specifies how such external code can access
Java objects for which references were passed.

 JNI allows native methods to: problems:
 Create, inspect, and update Java objects;
 Call Java methods;
 Catch and throw exception;
 Load classes and obtain class information;
 Perform runtime type checking.

W. Pree 24

Java AWT and JFC/Swing

 Delegation-based event model;
 Data transfer and clipboard support;
 Drag and drop;
 Java 2D Classes;
 Printing;
 Accessibility;
 Internationalization;
 Swing components and pluggable look and feel.

W. Pree 25

Advanced JavaBeans specifications

 Containment and services protocol
supports the concept of logically nesting JavaBeans bean instances.

 A nested bean can acquire additional services at runtime from its
container and a container can extend services to its nested bean.

 Java activation framework (JAF)
used to determine the type of arbitrary data, the operations
(“commands”) available over that type of data, to clocate, load, and
activate components that provide a particular operation over a
particular type of data. Command map – a registry for components
that is indexed by pairs of MIME types and command names.

 Long-term persistence for JavaBeans
an alternative to object serialization. The file format is XML with a
DTD or one or two proprietary Java file formats.

 InfoBus
creates a generic framework for a particular style of
composition.The idea is to design beans to be InfoBus-aware and
categorize beans into data producers, data consumers, and data
controllers, all of which can be coupled by an information bus
determining data flow.

W. Pree 26

Component variety – applets, servlets,
beans, and Enterprise beans (1)

 The Java universe defines five different component models, and
more may arrive in the future. The applet and JavaBeans models
are Enterprise JavaBeans, servlets, and application client
components.

 Applets were the first Java component model, aiming at
downloadable lightweight components that would augment
websites displayed in a browser.

 The second Java component model, JavaBeans, focuses on
supporting connection-oriented programming and is, as such,
useful on both clients and servers.

 JavaBeans are more popular in the scope of client-side rich
applications and sometimes perceived as being replaced by EJB on
the server.

 JavaBeans remain useful when building client-side applications as
they explicitly support a visual application design mode.

W. Pree 27

Java server pages (JSP) and servlets (1)

 Serving web pages and other formatted contents can be viewed as
a combination of three core functions.

 incoming requests for such contents need to be accepted, checked
for proper authorization, and routed to the appropriate components
ready to handle a particular request.

 Processes to retrieve or synthesize the requested contents.
 The retrieved or generated contents need to be sent to the

requesting party.
 The prototypical model handling these three steps is that of a web

server.
 A JSP server activates servlets as needed to handle requests.
 It is possible and common to implement servlets instead of writing

JSP pages.

W. Pree 28

Java server pages (JSP) and servlets (2)

 The servlet programming model is quite natural if
relatively small static HTML (or other markup) fragments
need to be combined with computed results.

 The dual model to embedding markup in source code is
to embed source code in markup
 JSP page

 To keep JSP pages largely contents-oriented and
maintain both readability and localizability, it is useful to
minimize code in JSP pages.

W. Pree 29

Contextual composition – Enterprise
JavaBeans (EJB) (1)

 JavaBeans approach to composition is connection-oriented programming
or, as wiring. Beans can define both event sources and event listeners.

 Java Beans model introduce support for hierarchical container structures.
 The InfoBus allows for a flexible decoupling of event sources and event

listeners by routing some or all communication through a bus structure that
allows for the interception of messages and application of policies without
requiring cooperation from the event source or listener and without a need
to re-wire.

 EJB. There are no provisions for connection-oriented programming at all.
 EJB components follow a relatively conventional model of object-oriented

composition.
 EJB is not about systematically improving compositionality of e-beans via

wiring of connections.
 EJB is weak at the connection-oriented composition level, it is strong at the

level of contextual composition.
 An EJB container configures services to match the needs of contained

beans.

W. Pree 30

Contextual composition – Enterprise
JavaBeans (EJB) (2)

 The container can use declared relationships to automatically find the entity
bean instance at the other end of a relationship of an entity bean instance.

 Deployed beans are conceptually composed with services and resources
by an EJB container.

 To enable interaction between services and an instance, contextual access
to services is provided to the instance – thus contextual composition.

 All access to beans is required to go through one of two interfaces – the
EJB home interface for lifecycle operations and the equivalent of static
methods and the EJB object interface for all methods on the bean instance.
Non-local clients will see these interfaces implemented on stub objects that
use RMI or RMI-over-IIOP to communicate with the corresponding EJB
container, which then relays calls to bean instances it contains. Local
clients can request local versions of both home and object interfaces. Not
allowed to access other beans directly.

 The EJB specification does not detail how a particular container wraps
bean instances.

W. Pree 31

Beans of many flavors (1)

 Four kinds of EJB beans:
 stateless session;
 stateful session;
 entity and
 message-driven beans.

W. Pree 32

Beans of many flavors (2)

 Session beans
is created by a client as a session-specific contract point.

 A stateless session bean does not maintain state across multiple
invocations.

 A stateful session bean remains associated with the one session for
its lifetime and thus can retain state across method invocations.

 Entity beans
use objects corresponding to database entities and encapsulate
access to actual database records.

 Entity relationships and database mapping
combining the descriptors for relationship among entity beans and
those for container-managed persistent fields yields an abstraction
for a flexible object-to-relational mapping.

 EJB 2.0 supports one-to-one, one-to-many, and many-to-many
relation-ships – all in both unidirectional and bidirectional versions.

W. Pree 33

Data-driven composition – message-
driven beans in EJB 2.0

 Support for data-driven composition is done by adding an entirely
new e-bean type – message-driven beans (md-beans).

 They have no container-managed persistent state.
 Don’t have a remote or local interface or home interface. The only

way to instantiate and use an md-bean is to register it for a
particular message queue or topic as defined by the Java message
service.

 A md-bean can be registered with exactly one such queue or topic
only, requiring external collection of messages meant to be handled
by an md-bean into a single queue or topic.

 It is possible to write all application logic using md-beans.

W. Pree 34

Distributed object model and RMI
 Distributed computing is mainly supported by the object

serialization service and the remote method invocation (RMI)
service.

 A distributed object is handled via references of interface type – it is
not possible to refer to a remote object’s class or any of its
superclasses.

 A remote operation can always fail as a result of network or remote
hardware problems.

 Parameter passing. If an argument is of a remote interface type,
then the reference will be passed. In all other cases, passing is by
value.

 The Java distribution model extends garbage collection as well.
Based on a careful bookkeeping of which objects may have remote
references to them.

 Java RMI interferes with the notion of object identity in Java with
the Java locking system’s semantics, which normally prevents self-
inflicted deadlocks.

W. Pree 35

Java and CORBA

 Important reason to incorporate CORBA into Java
projects is to enable the use of IIOP for communication
with non-Java subsystems.

 RMI is normally implemented using a proprietary
protocol which limits the use of RMI to Java-to-Java
communication.

 RMI-over-IIOP does not support the RMI distributed
garbage collection model and thus falls back on
CORBA’s lifecycle management approach to deal with
the lifetime of remote objects explicitly.

W. Pree 36

Enterprise service interfaces (1)

 Java naming and directory interface (JNDI)
Location of services by exact name or attributes.
 naming services
 Directory services
 DNS
 The RMI registry, and
 The CORBA naming service.
 LDAP-compliant directories

W. Pree 37

Enterprise service interfaces (2)
 Java message service (JMS)

JMS is a Java access mechanism to messaging systems – it doesn’t
implement messaging itself.

 JMS support message queues for point-to-point delivery of messages. It
also supports message topics that allow for multiple targets to subscribe.
Messages published to a topic are delivered to all subscribers of that topic.

 Java database connectivity (JDBC)
JDBC API is split into the core API and the JDBC optional package.

 JDBC depends on drivers to map the JDBC API to the native interfaces of
a particular database.

 Java transaction API and service (JTA, JTS)
Transaction management is almost always delegated to an EJB’s
container, there are cases where explicit transaction management is
required.

 Java transaction API comprises a low-level XA interface used by
server/container implementations and a high-level client interface
accessible to EJB beans implementations.

W. Pree 38

Enterprise service interfaces (3)

 J2EE connector architecture (JCA)
standardizes connectors between a J2EE application
server and enterprise information systems (EIS) such as
database management, enterprise resource planning
(ERP), enterprise asset management (EAM), and
customer relationship management (CRM) systems.

 defines resource adapters that plug into a J2EE
application server – one such adapter per EIS type.

W. Pree 39

Enterprise service interfaces (4)

 Java and XML
Java architecture for XML Binding (JAXB) provides an API and
tools that automate the mapping between XML documents and
Java objects.

 Java API for XML messaging (JAXM) is a J2SE optional package
that implements the simple objects access protocol (SOAP), v1.1
with attachments.

 Java API for XML-based RPC (JAX-RPC) supports the construction
of web services and clients that interact using SOAP and that are
described using WSDL.

 Java API for XML processing (JAXP) is a collection of DOM, SAX,
and XSLT implementations.

 Java API for XML registries (JAXR) provides uniform and standard
access to different kinds of XML registries, including the ebXML
registry and repository standard and the UDDI specification.

W. Pree 40

Interfaces versus classes in Java,
revisited

 Java separates and supports classes and interfaces, where an
interface is essentially a fully abstract class.

 JavaBeans allows classes to surface on bean boundaries.
 The Java AWT event model has been changed from an inheritance-

based solution in JDK 1.0 to a “delegation-based” (really a
forwarding-based) solution in JDK 1.1.

 The 1.0 approach led to undue complexity and was a source of
subtle errors.

 The non-distributed Java object model supports classes and
interfaces, the distributed Java object model restricts remote
access to interfaces.

 Enterprise JavaBeans restricts bean access to interfaces, there can
be only one remote interface on a EJB bean. If an EJB bean would
need to implement multiple interfaces, it suffices to define a single
interface extending these interfaces.

W. Pree 41

JXTA and Jini (1)

 JXTA and Jini address a similar problem – the
federation of systems over loosely coupled distributed
systems.

 Jini focuses on Java everywhere.
 Java-specific networking protocols such as RMI.
 Jini moves Java components to where they are needed.
 JXTA aims at open peer-to-peer computing, preferring

XML-based conventions and protocols on the network.
 Jiro aims to use federation to specifically aid systems

management.

W. Pree 42

JXTA and Jini (2)

 Jini – federations of Java services and clients
Jini describes how federations of Java services and clients of such
services can be formed over loosely coupled systems.

 How clients locate services, how services make themselves
available, and how the overall system copes with partial failure and
reconfiguration.

 Jini defines special services called lookup services, clients query
the lookup services in order to find specific services, and services
publish themselves by registering with lookup services.

 A Jini service can register with more than one lookup service and
multiple Jini services can register under the same service type. A
Jini client can consult multiple lookup services.

 Once a client has located a service, Jini is out of the loop.

W. Pree 43

JXTA and Jini (3)

 JXTA – peer-to-peer computing
JXTA is supposed to span programming languages, platforms
(such as Unix versus Windows), and networking infrastructure
(such as TCP/IP versus Bluetooth).

 JXTA comprises the following core protocols – peer discovery, peer
resolver, peer information, peer membership, pipe binding, and
endpoint routing.

 Communication is by means of messages sent via pipes.
 Higher-level communication semantics, such as reliable delivery,

can be built on top of basic pipes.
 The peer resolver protocol is used to implement advanced search

functionally.
 The peer information protocol can be used to retrieve status

(liveness) and capability information on other peers.
 JXTA is a bit like a virtual internet over the internet.

W. Pree 44

JXTA architectural layering

