
Prof. Dr. Wolfgang Pree

Department of Computer Science
University of Salzburg

cs.uni-salzburg.at

Component Software –
selection of chapters 1-4



W. Pree 2

Contents

 Motivation
 Market vs Technology
 Standards
 Foundations



W. Pree 3

Motivation



W. Pree 4

going beyond OO

 “Object orientation has failed but component software is
succeeding” Udell, 1994

 All other engineering disciplines introduced components
as they became mature and they still use components.

 Solve current software crisis via an analogy to “Software
Integrated Circuits”

 Components are independent units of deployment,
allowing independent development



W. Pree 5

What are Software Components?

 Binary units of independent production / deployment

 Procedures, classes, modules and even applications in
Executable form that remain composable (e.g., libraries)

 Components are for composition

 Composition enables existing components to be reused
by rearranging them into even new components



W. Pree 6

Why Software Components?

 OO technology
 mostly used for monolithic applications
 ignores market aspects – only a small amount of

class libraries and/or frameworks exists in the
public/commercial domain

 Definition of objects is purely technical – does not
include notions of independence or late composition

 Component = unit of deployment
 Framework, module or set of classes compiled and

linked in a package



W. Pree 7

What is missing in OO?

interoperability

visual/interactive configuration



W. Pree 8

Our definition of the term (software) component

 A piece of software with a
programming interface



W. Pree 9

Wiring standards

Interoperability problem:

=> wiring standards

Java

C++

ST

C



W. Pree 10

Filling the gap

Mega components (SAP, DB systems, operating
systems)

only a few medium-sized components exist
so far

very small components
(GUI components, etc.)



W. Pree 11

Mechanistic view

Currently software components assembly requires
exact matching of interfaces:



W. Pree 12

Adaptive architectures

Alternative: components configure
themselves automatically through testing &
fitting.

Sources of inspiration:
 Sun’s Jini, Microsoft‘s .NET
 agent technology
 ontologies

?



W. Pree 13

Software development

 Custom made
 Flexible and tailored to customer needs
 Expensive, often too late to be productive
 Requires major updates periodically – software revolution

 Parameterized standard software
 Major trend toward “outsourcing”
 Cheaper and up to date (vendor has the burden of maintenance)
 No competitive advantage
 Not always possible to adapt to all needs – business has to be

adapted

 Component software provides a middle path – software evolution



W. Pree 14

Software Components

 Requirements - Sufficient variety and Quality

 First component vendors shape the market (e.g.
Windows CE)

 Software => blueprints for products

 Software IC failed to capture the most distinctive aspect
of software as a metaproduct.



W. Pree 15

Benefits from using components

 Process of component assembly allows significant
customization of standard components.

 Individual components can be custom-made for specific
requirements

 No more massive upgrade cycles (evolution replaces
revolution).

 Modeling advantages of OO technology are of value
when constructing a component.

 Software based on components benefits from combined
productivity and innovation of all component vendors



W. Pree 16

Caveats

 General confusion between abstractions and instances
 Distinction between class and object is frequently

omitted
 Mathematical modeling fails to capture the engineering

and market aspects of component technology.
 Software technology is an engineering discipline
 Formally everything can be done without components
 Reuse, time to market, quality and viability concepts are

greatly diminished.



W. Pree 17

Market versus
Technology



W. Pree 18

Market vs Technology

 Market is a vital issue for component design in the way
to success. Technology is just a basic support for the
market. But without a market, even the best technology
cannot survive. (C. Szyperski)

 Imperfect technology in a working market is sustainable;
perfect technology without any market will vanish.

(C. Szyperski)



W. Pree 19

Market vs Technology

 Market
 Provide enough supply for estimated demand and

create extra demand to maintain a good market.
 Component warehouses

 Technology
 Not adequately developed, especially regarding to

the third-party component integration.
 Modular checking, components should interoperate

correctly and safely
 Performance issues



W. Pree 20

Standards



W. Pree 21

Standards

 Component standards - essential for the development
and success of component markets

 No component could address all needs in all
environments

 Specify the required “interfacing” between a set of
components as needed by clients and vendors.

 Standards
 First introduced are vendor specific
 Neutral organization - no proprietary solution



W. Pree 22

Wiring standards for components

 Components need to be interconnected to be useful

 A common standard is desirable, but not essential
 as long as the market is large enough
 adapters can be made to solve “wiring problems”

 Standards can coexist and also compete but many
cannot survive in the long run.

 Today most standardization efforts are either at the
“wiring” level or at the intra-component level.



W. Pree 23

Foundations



W. Pree 24

Definition of a component

 A component is a
 binary unit of
 independent

production, acquisition and deployment
 that interacts to form a functional system

(C. Szyperski)



W. Pree 25

Component characteristics

 Units of independent deployment
 Separated from the environment and from other

components
 Never deployed partially
 Hidden construction details

 Units of composition
 encapsulate implementation
 interaction through well-defined interfaces

 No persistent state, attributes not influencing
functionality



W. Pree 26

Object characteristics

 unit of instantiation
 may have stae and this can be externally observable
 encapsulates its state and behavior


