b -
b
AN
H‘-
"
"
g
S
w e
i A
L
J —
)
|
f
B
i
— |I
o
JI-H-H..
. e,

eXtreme

* X %
*
*

P GRADE

The European Online Magazine for the IT Professional
http://www.upgrade-cepis.org
Vol. 11l, No. 2, Apr. 2002

P []
. -
[
,lf |
/ :
. III.'I I| ']
- .'Il 1 /
.'ll.l /
o .
Ll g "y
4 -
.l 2 . I - N
/ | 3
"4 |
A |
! |
]
o -
i P
——] .-""‘
e e
1
i "-l-
1 -
O
'_,’I‘IT/A /
i 'I.
e . " ,.""lll
_.-"
l-. i
e

iy

Programming

* X %
* *

* CEPIS*

* *
* p Kk

CEPIS

(Council of European Professional Societies)
unites
32 Informatics Professional Societies
across Europe
and 1s the voice of more than
150,000 ICT Professionals in our continent
<http://www.cepis.org>

UPGRADE is the European Online Magazine
for the Information Technology Professional,
published bimonthly at
http://www.upgrade-cepis.org/

Publisher

UPGRADE is published on behalf of CEPIS (Council of
European Professional Informatics Societies,
http://www.cepis.org/) by Novatica (http://www.ati.es/novatical/)
and Informatik/Informatique (http://www.svifsi.ch/revue/)

Chief Editors
Frangois Louis Nicolet, Zurich <nicolet@acm.org>
Rafael Fernandez Calvo, Madrid <rfcalvo@ati.es>

Editorial Board

Prof. Wolffried Stucky, CEPIS President

Gloria Nistal Rosique and

Rafael Fernandez Calvo, ATI

Prof. Carl August Zehnder and Frangois Louis Nicolet, SVI/FSI

English Editors: Mike Andersson, Richard Butchart, David
Cash, Arthur Cook, Tracey Darch, Laura Davies, Nick Dunn,
Rodney Fennemore, Hilary Green Roger Harris, Michael Hird,
Jim Holder, Alasdair MacLeod, Pat Moody, Adam David Moss,
Phil Parkin, Brian Robson

Cover page designed by Antonio Crespo Foix, © ATl 2002
Layout: Pascale Schiirmann

E-mail addresses for editorial correspondence:
<nicolet@acm.org> and <rfcalvo@ati.es>

E-mail address for advertising correspondence:
<novatica@ati.es>

Copyright

© Novatica and Informatik/Informatique. All rights reserved.
Abstracting is permitted with credit to the source. For copying,
reprint, or republication permission, write to the editors.

The opinions expressed by the authors are their exclusive
responsibility.

Coming issue:
“Information Retrieval”

* ¥ %
*

P GRADE

The European Online Magazine for the IT Professional
http://www.upgrade-cepis.org
Vol. lll, No. 2, April 2002

eXtreme Programming

Guest Editor: Luis Fernandez Sanz

Joint issue with NOVATICA and INFORMATIK/INFORMATIQUE

2

4

11

18

23

27

Presentation: eXtreme Programming
— Luis Ferndndez Sanz, Guest Editor

A new method of Software Development: eXtreme Programming
— César F. Acebal and Juan M. Cueva Lovelle

What is eXtreme Programming — also known as XP? The aim of this article is to answer that
question, and to reveal the nature of this new method of software development to the uninitiated
reader. We will try to be sufficiently informative so that you will all come away with some idea of the
basic underlying principles, and for anyone who might want to delve deeper into the subject, we will
provide suitable references.

Programming Extremism — Michael McCormick

The author reviews antecedents and experiences of the "agile" methodology of software
development called eXtreme Programming, comparing it to other methodologies and pointing to its
advantages and disadvantages from a pragmatic standpoint, depending on the kind of project it
applies to. He draws the conclusion that it is necessary to stay away from "religious" positions about

existing methodologies.

The Need for Speed: Automating Acceptance Testing in an eXtreme
Programming Environment
— Lisa Crispin, Tip House and Carol Wade (Contributor)

How to focus acceptance testing for XP, how to design automated tests that are low-maintenance
and self-verifying, how to apply the values of XP to test automation, and ways to gather metrics and

provide useful reports.

Qualitative Studies of XP in a Medium Sized Business
— Robert Gittins, Sian Hope and Ifor Williams

Qualitative Research Methods are used to discover the effects of applying eXtreme Programming in
a software development business environment. Problems dominating staff development, productivity
and efficiency are parts of a complex human dimension uncovered in this approach. The
interpretation and development of XP’s “Rules and Practices” are reported, as well as the
interlaced communication and human issues affecting the implementation of XP in a medium sized

business.
XP and Software Engineering: an opinion — Luis Ferndndez Sanz

In this article, the author makes some reflections on certain specific aspects of eXtreme
Programming as described in Kent Beck’s book “eXtreme Programming explained. Embrace
change”. The analysis presented here is in relation to principles and techniques of software

engineering.

XP in Complex Project Settings: Some Extensions
— Martin Lippert, Stefan Roock, Henning Wolf and Heinz Ziillighoven

XP has one weakness when it comes to complex application domains or difficult situations at the
customer’s organization: the customer role does not reflect the different interests, skills and forces
with which we are confronted in development projects. We propose splitting the customer role into
a user and a client role. The user role is concerned with domain knowledge; the client role defines
the strategic or business goals of a development project and controls its financial resources. It is the
developers’ task to integrate users and clients into a project that builds a system according to the

users’ requirements, while at the same time attain the goals set by the client.

eXtreme Programming

Presentation: eXtreme Programming

Luis Ferndndez Sanz, Guest Editor

This issue is focused on XP (eXtreme programming), one of
the recent proposals in the software development field that has
achieved a really important media impact among software
practitioners. As a new way of improving the agility of software
projects, XP relies on several principles (automated testing,
pair development, etc.) that shorten the project life cycle
between releases. But these principles are also devised to
obtain a general improvement of software quality and user
satisfaction, avoiding problems due to delays and exceeding
budget. All these promises have raised a general interest in this
development philosophy. Trying to satisfy the curiosity of our
readers, we have decided to publish an interesting set of paper
intended to contribute to a deeper understanding of XP, the pros
and the cons.

“Extreme programming: a new software development
method” was presented in the Sixth Software Quality and Inno-
vation Spanish Conference (2001) organised by the Software
Quality Group of ATI. In this paper, a brief description of the
main characteristics and principles of XP is included. This
contribution helps the reader to know the fundamentals of
Extreme Programming.

“Programming extremism”, by M.McCormick, is a keen
analysis of the implications of XP in the field of software proc-
esses. His observations about the two antagonist communities
in software engineering (and the need of a third party of prag-
matists) and how the beliefs of each one interfere in their ob-
jective perception of which is the best solution for each type of
project and organisation are really interesting. The necessary
reference to CMM (and other “formal” models of software
process improvement and evaluation) is included.

“The Need for Speed: Automating Acceptance Testing in an
Extreme Programming Environment” (L.Crispin, T.House and
C.Wade) presents details of one of the more robust contribu-
tions of XP: automated testing. Instead of the usual unconcern-
ing in testing that can be observed in the traditional software
organisations, XP stresses the importance of a proper and effi-
cient testing practice. As well as a brief review and discussion
of XP testing principles (in a Q&A format), this paper presents
details about a practical experience using JUnit and other
“tools”. This paper was presented in the XP 2001 conference
(thanks to both the negotiation of Michele Marchesi, co-chair-
man of the Conference, and the collaboration of the authors).

“Qualitative Studies of XP in a Medium Sized Business” is
another paper from XP2001 (thanks again to Marchesi and the

© Novética and Informatik/Informatique

authors). The paper examines the benefits of a flexible manage-
ment approach to XP methodology. Presentation and discus-
sion of results of an empirical study using qualitative research
techniques (questionnaires, direct observation, etc.) are includ-
ed as part of a good review of situations that emerge when
people try to apply XP in a real organisation.

“XP and software engineering” presents my own analysis of
XP. From the perspective of somebody who has to approach
extreme programming from the “outer world”, this paper is
focused on several important improvement proposals. Of
course, the doubts of the author about the success of some
principles of XP related to classical software engineering
practices (e.g. configuration management vs common property
of code) are also included.

One of the main advantages of XP is the agility of the
proposed software process and its direct application to small
projects with a high rate of requirements volatility. But, is XP
suitable for larger or more complex projects? To answer this
question, M.Lippert, S. Roock, H. Wolf and H. Ziillighoven
present an extension of the roles of client representatives and
the creation of new document types to address the subsequent
project situation.

I hope this variety of contributions would satisfy the increas-
ing demand of information about XP of software practitioners
(in general sense) and our readers as the persons who we detove
our work to.

Luis Ferndndez Sanz received a degree in informatics engi-
neering from Technical University of Madrid (Spain) in 1989 and
a Ph. D. degree in informatics from University of the Basque
Country in 1997 (as well as an extraordinary mention for his
doctoral thesis). He is currently head of the department of pro-
gramming and software engineering at Universidad Europea-
CEES (Madrid). From 1992, he is the coordinator of the software
engineering section of Novdtica. He is author or coauthor of
several books about software engineering and software measure-
ment, as well as different papers in international journals and con-
ferences. He is member of the Software Quality Group of ATT and
he has acted as chair of the VI Spanish Conference on Software
Quality and Innovation organised by ATI. He is a member of ATI
and the Computer Society of the IEEE.
<lufern@dpris.esi.uem.es>

UPGRADE vol. iil, No. 2, Apri 2002 2

eXtreme Programming

Useful references on eXtreme Programming

Note: See also the references included in the papers published in
this issue.

Books

K. Beck: Extremme programming. Embrace change, Addison-Wesley,
2000.

K. Beck & M. Fowler: Planning extreme programming, Addison-
Wesley, 2000.

R. Jeffries, A. Anderson, C. Hendrickson, K. Beck, R. E. Jeffries:
Extreme Programming Installed, Addison-Wesley, 2000

G. Succi, M.Marchesi: Extreme Programming Examined, Addison-
Wesley, 2001.

W. C. Wake: Extreme Programming Explored, Addison-Wesley, 2001.

R. Hightower & N. Lesiecki: Java Tools for Extreme Programming:
Mastering Open Source Tools Including Ant, JUnit, and Cactus,
John Wiley & Sons, 2001.

K. Auer, R. Miller: Extreme Programming Applied: Playing to Win,
Addison-Wesley, 2001.

M. Fowler, K. Beck, J. Brant, W. Opdyke & D. Orberts: Refactoring:
Improving the Design of Existing Code, Addison-Wesley, 1999.

Conferences

Third International Conference on eXtreme Programming and Agile
Processes in Software Engineering, May 26-29, 2002, Alghero,
Sardinia, Italy. <http://www.xp2002.org>.

XP Agile Universe, August 4-7, 2002, Chicago, Illinois, USA.
http://www .xpuniverse.com.

Web sites

Xprogramming, an Extreme Programming Resource.
<http://www.xprogramming.com/>

Extreme Programming: A gentle introduction
. <http://www.extremeprogramming.org/>

PortlandPatternRepository and WikiWikiWeb:
<http://c2.com/cgi/wiki>

XP Developer:
<http://www.xpdeveloper.com/>

JUnit and other XUnit testing frameworks.
<http://www.junit.org/>

3 UPGRADE vol. i, No. 2, April 2002

eXtreme Programming.
<http://www.armaties.com/extreme .htm>

Pair programming.
<http://pairprogramming.com/>

XP123 - Exploring Extreme Programming.
http://xp123.com/

Some important recent articles
J. Highsmith, A. Cockburn, Agile Software Development: The

Business of Innovation, IEEE Computer, September, 2001, pp.

120-122.

This article include a brief explanation o f characteristics and ad-

vantages of agile software development approaches (not only

XP). Moreover, it include a manifesto where representative per-

sons related to agile development software methods state their

compromise with “individuals, working software, customer col-
laboration and responding to change” as a clear guide for over-
coming current problems in software development. The impor-
tance of this article, in my opinion, does not reside in its content
but in the reaction that it has provoked in the IEEE Computer

Magazine Community. For example:

* A letter from S. Rakitin was published in December (Letters,
“Manifesto elicits cynicism”, IEEE Computer, December,
2001, pp. 4-7). In it, the author strongly disagreed with the
point of view of Highsmith and Cockburn.

An article by the well-known B. W. Boehm (B. W. Boehm, “Get
Ready for Agile Methods, with care”, January, pp. 64-69) tried
to balance the advantages of agile processes and several impor-
tant preventive measures that should be taken in consideration
in order to avoid “overresponding to change”.

Two recent letters (Letters, “Professional Approach to Software
Development” and “Unavoidable statistics”, IEEE Computer,
March, 2002, pp.6-7) in the issue of March 2002 make interest-
ing contributions to the point of view expressed by Rakitin and
Boehm.

As anyone can see, XP is a really “hot spot” for the software devel-
opment community.

© Novética and Informatik/Informatique

eXtreme Programming

A new method of Software Development: eXtreme Programming

César F. Acebal and Juan M. Cueva Lovelle

What is eXtreme Programming — also known as XP? The aim of this article is to answer that question, and
to reveal the nature of this new method of software development to the uninitiated reader. Naturally the
length of any technical article does not permit more than a brief introduction to any new method or
technique, but we will try to be sufficiently informative so that you will all come away with some idea of the
basic underlying principles, and for anyone who might want to delve deeper into the subject, we will provide

suitable references.

Keywords: eXtreme Programming, XP, Software Develop-
ment.

41 Introduction

XP is a new software development discipline which,
amid much fanfare, has recently joined the welter of methods,
techniques and methodologies that already exist.To be more
precise: this is a lightweight method, as opposed to heavy-
weight methods like Métrica. Before we go on, we’d like to
make a clarification: in this article we refer to XP as a “meth-
od”, contrary to the official IT tendency to apply the term

“methodology” (science of methods) to what are no more than

methods' or even mere graphic notations.

It could be said that XP was born “officially” five years ago
in a project developed by Kent Beck at Daimler Chrysler, after
he had worked for several years with Ward Cunningham in
search of a new approach to the problem of software develop-
ment which would make things simpler than the existing meth-
ods we were used to. For many people, XP is nothing more than
common sense. Why then does it arouse such controversy, and
why do some people adore it while others heap scorn on it? As
Kent Beck suggests in his book [Beck 00], maybe it’s because
XP carries a series of common sense techniques and principles
to extreme lengths. The most important of these techniques are:
* Code is constantly reviewed, by means of pair programming

(two people per machine)

* Tests are made all the time, not only after every class (unit
tests), but also by customers who need to check that the
project is fulfilling their requirements (functional tests)

* Integration tests are always carried out before adding any
new class to the project, or after modifying any existing one
(continuous integration), making use of testing frameworks,
such as xUnit

* We (re)design all the time (refactoring), always leaving code
in the simplest possible state

1. Ricardo Devis Botella. C++. STL, Plantillas, Excepciones, Roles
y Objetos (Templates, Exceptions, Roles and Objects). Paraninfo,
1997. ISBN 84-283-2362-3

© Novética and Informatik/Informatique

¢ Iterations are radically shorter than is usual in other meth-
ods, so that we can benefit from feedback as often as possi-
ble.

By way of summary, and to wrap up this section and to get
down to the nitty-gritty, I will leave you with this quote from
Beck’s aforementioned book.

“Everything in software changes. The requirements change.
The design changes. The business changes. The technology
changes. The team members change. The problem isn't change,
per se, because change is going to happen; the problem, rather,
is the inability to cope with change when it comes.”

2 The four variables
XP sets out four variables for any software project: cost,
time, quality and scope.
It also specifies that of these four variables, only three of
them can be established by parties outside the project (custom-

César Ferndndez Acebal received a degree in informatics en-
gineering from Oviedo University. He worked as a teacher in Java
and Web programming for students of higher professional educa-
tion. Afterwards, he worked as technical director in a web site de-
velopment company. He has combined these positions with a con-
tinuous educational activity related to Java, XML, Web
development, etc. He is currently an IT architect of B2B 2000, an
e-business company. His research interests include object-orient-
ed programming and software engineering and agile software
processes. He is a member of ATI, IEEE, Computer Society,
ACM, etc. <acebal @ieee.org>

Juan Manuel Cueva Lovelle is a mining engineer from Oviedo
Mining Engineers Technical School in 1983 (Oviedo University).
He has the Ph. D. from Technical University of Madrid in 1990.
From 1985 he is Professor at the Languages and Computers Sys-
tems Area in Oviedo University. ACM and IEEE voting member.
His research interests include Object-Oriented technology, Lan-
guage Processors, Human-Computer Interface, Object-Oriented
Databases, Web Engineering, Object-Oriented Languages De-
sign, Object-Oriented Programming Methodology, XML, WAP,
Modelling Software with UML and Geographical Information
Systems. <cueva@1lsi.uniovi.es>

UPGRADE vol. iil, No. 2, April 2002 4

eXtreme Programming

ers and project managers), while the value of the free variable
will be established by the development team in accordance
with the other three values. What is new about this? It’s that
normally customers and project managers considered it their
job to pre-establish the value of all the variables: “I want these
requirements fulfilled by the first of next month, and you have
this team to work with. Oh, and you know that quality is the
number one priority!”

Of course when this happens — and unfortunately it happens
quite often — quality is the first thing to go out of the window.
And this happens for a simple reason which is frequently
ignored: no one is able to work well when they are put under a
lot of pressure.

XP makes the four variables visible to everyone — program-
mers, customers and project managers —, so that the initial
values can be juggled until the fourth value satisfies everybody
(naturally, with the possibility of choosing different variables
to control).

Also the four variables do not in fact bear such a close rela-
tion with one another as people often like to think. There is a
well known saying that “nine women cannot make a baby in
one month” which is applicable here. XP puts special stress on
small development teams (ten or twelve people at most) which
naturally can be increased if necessary, but not before, or the
result will generally be the opposite of what was intended.
However, a number of project managers seem to be unaware of
this when they declare, puffed up with pride, that their project
involves 150 people, as if it were a mark of prestige, something
to add to their CV. It is good, however, to increase the cost of
the project in matters such as faster machines, more specialists
in certain areas or better offices for the development team.

With quality too, another strange phenomenon occurs: often,
increasing the quality means the project can be completed in
less time. The fact is that as soon as the development team gets
used to doing intensive tests (and we will be coming to this
point soon, as it’s the corner stone of XP) and coding standards
are being followed, gradually the project will start to progress
much faster than it did before. The project’s quality will still
remain 100% assured — thanks to the tests — which in turn will
instil greater confidence in the code and, therefore, greater ease
in coping with change, without stress, and that will make peo-
ple programme much faster... and so on.

The other face of the coin is the temptation to sacrifice
the internal quality of the project — that which is
perceived by the programmers — to reduce the delivery
time of the project, trusting that the external quality —
that which the customers perceive — will not be affected
too greatly. However, this is a very short term bet, which
tends to be an invitation for disaster, since it ignores the
basic fact that everyone works better when they are
allowed to do a quality job. Ignoring this will cause the
team to get demoralised and, in the long term, the project
will slow down, and much more time will be lost than
ever could have been hoped to be saved by cutting down
on quality.

Cost of the Change

With regard to the project’s scope, it is a good idea to let this
be the free variable, so that once the other three variables have
been established, the development team should decide on the
scope by means of:

* The estimation of the tasks to perform to satisfy the custom-
er’s requirements.

e The implementation of the most important requirements
first, so that at any given time the project has as much func-
tionality as possible.

3 The cost of change

Although we cannot go into any great depth on this
subject here, we believe it is important to at least mention one
of the most important and innovative suppositions that XP
makes in contrast to most known methods. We are referring to
the cost of change. It has always been considered a universal
truth that the cost of change in the development of a project
increased exponentially in time, as shown in figure 1.

XP claims that this curve is no longer valid, and that with a
combination of good programming practices and technology it
is possible to reverse the curve, as we show in figure 2.

Naturally, not everyone agrees with this supposition (and in
Ron Jeffries web site [Jeftries] you can read several opinions to
this effect). But in any event it is clear that if we decide to use
XP as a software development process we should accept that
this curve is valid.

The basic idea here is that instead of changing for change’s
sake, we will design as simply as possible, to do only what is
absolutely necessary at any given moment, since the very
simplicity of the code, together with our knowledge of refactor-
ing [Fowler 99] and, above all, the testing and continuous inte-
gration, all mean that changes can be carried out as often as
necessary.

4 Practices
But let’s get down to brass tacks. What does XP really
entail? What exactly are these practices we have been referring
to, which are able to bring about this change of mentality when
it comes to developing software? Trusting that you, the reader,
will excuse the enforced brevity of our explanation we will now
give a brief description of these practices.

/
/

Requirements Analysis Design Implementation Tests Production

Figure 1: Cost of change in “traditional” software engineering

5 UPGRADE vol. i, No. 2, April 2002

© Novética and Informatik/Informatique

eXtreme Programming

paragraph, you can find interesting articles which ex-
plain how these tests should be written.

Refactoring

This responds to the principle of simplicity and basi-
cally consists of leaving the existing code in the simplest
possible state, so that no functionality is lost — or gained
— and all tests continue to be carried out correctly. This

Cost of the Change

7/ Requirements Analysis

Design Implementation Tests Production

will make us feel more comfortable with the code
already written and therefore less reluctant to modify it

Figure 2: Cost of change in XP

Planning

XP sees planning as a permanent dialogue between the busi-
ness and technical parties involved in the project, in which the
former will decide the scope — what is really essential for the
project —, the priority — what should be done first —, the compo-
sition of the releases — what should be included in each one —
and the deadline for these releases.

The technical people, for their part, are responsible for esti-
mating the time needed to implement the functionalities which
the customer requires, for reporting on the consequences of
decisions taken, for organising the work culture and, finally, for
carrying out a detailed planning of each release.

Small releases

The system first gets into production just a few months at
most before it is completely finished. Successive releases will
be more frequent —at intervals of between a day and a month—.
The customer and the development team will benefit from the
feedback produced by a working system and this will be
reflected in successive releases.

Simple design

Instead of being hell bent on producing a design which
requires the gift of clairvoyance to develop, what XP advocates
is, at any given moment, that we should design for the needs of
the present.

Testing

Any feature of a programme for which there is not an auto-
mated test simply does not exist. This is undoubtedly the cor-
nerstone on which XP is built. Other principles are liable to be
adapted to the characteristics of the project, the organisation,
the development team... But on this one point there is no argu-
ment: if we aren’t doing tests, we aren’t doing XP. We should
be using some automated testing framework to do this, such as
JUnit [JUnit] or any of its versions for different languages.

Not only that, but we will write the tests even before we write
the class which is to be tested. This is an aid to following the
principle of programming by intention, that is, writing code as
if the most expensive methods had already been written, and so
we only had to send the corresponding message, in such a way
that the code will be a true reflection of its intention and will
document itself. On JUnit’s web site, mentioned in the previous

© Novética and Informatik/Informatique

when some feature has to be added or changed. In the

case of legacy systems, or projects taken over after they

have already been started, we would be bound to need to

devote several weeks just to refactoring the code — which
tends to be a source of tension with the project managers in-
volved when they are told that the project is going to be held up
for several days “just” to modify existing code, which works,
without adding any new functionality to it.

Pair programming

All code will be developed in pairs — two people sharing a
single monitor and keyboard. The person writing the code
should be thinking about the best way to implement a particular
method, while his colleague will do the same, but from a more
strategic viewpoint:

e Are we going about this in the right way?

* What could go wrong here? What should we be checking in
the tests?

¢ Is there any way to simplify the system?

Of course, the roles are interchangeable, so that at any
moment the person observing could take over the keyboard to
demonstrate some idea or simply to relieve his colleague.
Similarly the composition of the pairs could change whenever
one of them were required by some other member of the team
to lend a hand with their code.

Collective property of the code

Anyone can modify any part of the code, at any time. In fact,
any one who spots an opportunity to simplify, by refactoring,
any class or any method, regardless of whether they have
written them or not, should not hesitate to do so. This is not a
problem in XP, thanks to the use of coding standards and the
assurance that testing gives us that everything is going to carry
on working well after a modification.

Continuous integration

Every few hours — or at the very least at the end of a day’s
programming — the complete system is integrated. For this
purpose there is what is known as an integration machine,
which a pair of programmers will go to whenever they have a
class which has passed a unit test. If after adding the new class
together with its unit tests the complete system continues to
function correctly — i.e. passes all the tests —, the programmers
will consider this task as completed. Otherwise they will be
responsible for returning the system to a state in which all tests
function at 100%. If after a certain time they are unable to

UPGRADE vol. iil, No. 2, Apri 2002 6

eXtreme Programming

Waterfall Iterative
Analysis
Time
Tests
v
Scope
(a) (b)

Planning

XP While XP is a code centred
method it is not just that. It is also
above all a software project manage-
ment method, in spite of the criticism
levelled by many people, perhaps
after a too hasty reading of an article
such as this one. But for anyone who
has taken the trouble to read any of
the books explaining the process, it
will be clear that planning makes up a
fundamental part of XP. The thing is
that, given that software develop-

(c)
ment, like almost everything in this

Figure 3: Comparison of long development cycles: (a) the waterfall model (b) shorter
iterative cycles, for example, the spiral model and (c) the mix of all these activities which
XP employs throughout the whole software development process

discover what it is wrong, they will bin the code and start over
again.

40 hours a weeks

If we really want to offer quality, and not merely a system
that works — which we all know, in IT, is trivial® — we will want
each member of our team to get up each morning rested and to
go home at 6 in the evening tired but with the satisfaction of a
job well done, and that when Friday comes around he or she
can look forward to two days’ rest to devote to things which
have nothing whatsoever to do with work. Naturally it doesn’t
have to be 40 hours — it could be anything between 35 and 45,
but one thing is certain: nobody is capable of producing quality
work 60 hours a week.

Customer on site

Another controversial XP rule: at least one real customer
should be permanently available to the development team to
answer any question the programmers may have for them, to
establish priorities... If the customer argues that their time is
too valuable, we should realise that the project we have been
given is so trivial that they do not consider it worthy of their at-
tention, and that they don’t mind if it is based on suppositions
made by programmers who know little or nothing of the cus-
tomer’s real business.

Coding standards

These are essential to the success of collective property of the
code. This would be unthinkable without a coding based on
standards which allow everyone to feel comfortable with code
written by any other member of the team.

2. Ricardo Devis Botella. Curso de Experto Universitario en Inte-
gracion de Aplicaciones Internet mediante Java y XML. (Univer-
sity Expert Course in the Integration of Internet Applications via
Java and XML) University of Oviedo, 2000.

7 UPGRADE vol. i, No. 2, April 2002

life, is a chaotic process, XP does not
attempt to find a non-existent deter-
minism but rather provides the means
necessary to cope with that complex-
ity, and accepts it, without trying to
force it into constraints of heavy-
weight or bureaucratic methods. We wholeheartedly recom-
mended you to read Antonio Escohotado’s gentle introduction
to chaos theory [Escohotado 99], which we believe has a lot to
do with the idea behind XP. In short, lightweight methods — and
XP numbers among them — are adaptive rather than predictive
[Fowler].

The life cycle

If, as has been demonstrated, long development cycles of
traditional methods are unable to cope with change, perhaps
what we should do is make development cycles shorter. This is
another of XP’s central ideas. Let’s take a look at a chart which
compares the waterfall model, the spiral model and XP:

6 Conclusions
As we said at the beginning article, XP, just one year after
the publication of the first book on the subject, has caused a
great furore among the software engineering community. The
results of the survey below, commissioned by IBM, evidences
the fact that opinions on the subject are divided [IBM 00]:

Pair programming comes in for some especially strong criti-
cism — above all from project managers, though it is an opinion
which is doubtless shared by many programmers with an over-
developed sense of ownership regarding code (“I did this, and
what’s more I am so good at programming and I have such a
command of the language’s idioms that only I can understand
it”), but a lot is also said about the myth of the 40 hour week,
that ““all this business about tests is all very well if you have
plenty of time, but they are an unaffordable luxury under
current market conditions”... and many other vigorous criti-
cisms in a similar vein.

There are also people who say, (and this criticism is perhaps
more founded than the previous ones) that XP only works with
good people, that is, people like Kent Beck, who are able to
make a design which is good, simple and, at the same time —
and maybe precisely for that reason — easily extendable, right
from the outset.>

© Novética and Informatik/Informatique

eXtreme Programming

| tried it and | hate it

It's a bad idea, it'll never work

It's a good idea, but it'll never work

References

[Beck 99]
Kent Beck. Embracing Change with eXtreme
Programming. Computer (magazine of the
IEEE Computer Society).Vol. 32, No. 10.
October 1999, pp. 70-77

[Beck 00]
Kent Beck. eXtreme Programming Explained:
Embrace Change. Addison Wesley Longman,
2000. ISBN 201-61641-6

I've tried it and | love it

0% 10% 20% 30%

40%

Figure 4: IBM survey (October 2000): What do you think about EXtreme

Programming?

One of the things we are trying to say is that XP should not
to be misinterpreted due to the inevitable superficiality of arti-
cles such as the one you are reading. At the end of the day the
creator of this method is not some upstart, but one of the
pioneers in the use of software templates, creator of CRC files,
author of the HotDraw drawing editor framework, and the
xUnit testing framework. Were it for no other reason, it would
be worth at least taking a look at this new and exciting software
development method.

However, none of the practices advocated by XP are an
invention of the method; all of them existed before, and what
XP has done is to put them all together and prove that they
work.

In any event, Beck’s first book is a breath of fresh air which
should be compulsory reading for any software engineer or
software architect, to use the term preferred by our friend
Ricardo Devis, whatever conclusions you may finally draw
about XP. At the very least, it’s great fun to read.

3. Radl Izquierdo Castanedo. Comunicacion privada. (Private com-
munication)

© Novética and Informatik/Informatique

51% [Beck/Fowler]
‘ ‘ Kent Beck, Martin Fowler. Planning eXtreme
Programming. Addison-Wesley. ISBN
50% 60% 0201710919
[Escohotado 99]

Antonio Escohotado. Caos y orden (Chaos and

order). Espasa Calpe, 1999. ISBN 84-239-

9751-0. An interesting introduction to chaos

theory, which in our view describes the atti-

tude you need to approach software develop-

ment from an XP point of view.

[Fowler]
Martin Fowler. The New Methodology. http://www.martinfowl-
er.com/ articles/newMethodology.html

[Fowler 99]
Martin Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999. ISBN 0201485672

[Jeffries et al. 00]
Ronald E. Jeffries et al. EXtreme Programming Installed. Addi-
son-Wesley, 2000. ISBN 0201708426

[IBM 00]
http://www-106.ibm.com/developerworks/java/library/java-poll-
results/xp.html. Java poll results: What are your thoughts on
EXtreme Programming? IBM survey, October 2000

[IEEE CS]
http://www.computer.org/seweb/Dynabook/Index.htm. eXtreme
Programming. Pros and Cons. What questions remain? The first
“dynabook” from the IEEE Computer Society was devoted to XP,
with a series of related articles.

[JUnit]
http://www.junit.org. JUnit, an automated testing framework for
Java, adapted from the framework of the same name for Small-
talk, and available in many other languages. These other versions,
under the generic name xUnit, are available at the Ron Jeffries’
web site [Jeffries], in the software section.

[Jeffries]
http://www.xprogramming.com. One of the most complete XP
portals, by Ron Jeffries.

UPGRADE vol. iil, No. 2, Apri 2002 8

eXtreme Programming

Programming Extremism

Michael McCormick

The author reviews antecedents and experiences of the “agile” methodology of software development called
eXtreme Programming, comparing it to other methodologies and pointing to its advantages and disadvan-
tages from a pragmatic standpoint, depending on the kind of project it applies to. He draws the conclusion
that it is necessary to stay away from “religious” positions about existing methodologies.

Keywords: eXtreme Programming, XP, methodologies, Soft-
ware Engineering

The battle lines are drawn. Hostilities have broken out
between armed camps of the software development communi-
ty. This time the rallying cry is, “XP!”

At recent OOPSLA conferences advocates of Extreme
Programming (XP) made them-
selves conspicuous with their red “I
XP — Do You?” badges. Some well-
known authors and consultants in
the OO community reinvented
themselves as preachers of XP; others muttered under their
breath about the end of the world.

If you’ve been in a dark cave (or cubicle) for more than a
year, and you somehow haven’t heard about XP, it’s a light-
weight OO development process. Like all good religions, XP is
built around a codifiable belief system and a collection of prac-
tical techniques. These techniques include small teams, pair
programming, JAD with business stories, very short develop-
ment iterations, automated testing, and discovered design. This

Michael McCormick has worked with information technology
in the United States since 1977. He has worked with object-ori-
ented design and development processes since 1991, including
many techniques now incorporated in eXtreme Programming.
From 1997 to 2000 he was Principal Methodologist in the Object
Technology Centre of a Fortune 100 company. Currently he is
senior system architect in a large American bank. He is also affil-
iated with the Software Engineering Institute at Carnegie-Mellon
University and the Object Technology User group at Saint
Thomas University. In the past year he’s been quoted in eWeek,
Information Week, and Network World. His article “Program-
ming Extremism” triggered much dialog in America, was cited in
an academic paper, and debated at a conference (XP Universe).
Michael hopes that constructive XP debate will continue in
Europe, and welcomes reader e-mail at m.mccormick@acm.org.

© ACM. The original version of this article, “Programming Extrem-
ism”, has been published in “Communications of the ACM”, June 2001,
Vol. 44, pp. 109-111. We republish it with the kind permission of the au-
thor and of ACM.

© Novética and Informatik/Informatique

Extreme Programming, a lightweight OO devel-
opment process, is the latest eruption between
programmers and software engineers.

is not a general introduction to the EXP methodology. Those
interested should refer to [Beck 99], [Internet].

What XP uncovered (again) is an ancient, sociological San
Andreas fault that runs under the software community —
programming versus software engineering (ak.a. the scruffy
hackers versus the tweedy computer scientists). XP is only the
latest eruption between opposing continents.

Which brings us back to the OOS-
LA conferences. Imagine you were
an anthropologist moving invisibly
among the social cliques at
OOPSLA. If astute (and politically
incorrect) enough to risk some broad stereotypes, you might
discern two opposing belief systems (see the table).

If it weren’t for Microsoft bashing, what would ever bring
these tribes together? They resemble Republicans and Demo-
crats battling ideologies caught up in the divisive dualism of
either-or positions on hot-button issues (while the rest of the
country rolls its eyes and stays home from the polls).

But, just maybe, the software development world isn’t black-
and-white. Maybe it’s a fuzzy grayscale. For example, there
have been projects where “hack (er, prototype) until it works”
RAD approaches — some more “extreme” than XP — were suc-
cessful, even tactically appropriate. I’'ve seen a few. However,
in some cases I later saw those same RAD teams try applying
their techniques to other kinds of efforts, only to fail disastrous-
ly and wonder why.

At the other extreme, I've also watched helplessly while a
high ceremony heavyweight process brought an organization
of talented, formerly productive software engineers to a dead
stop. Crimes were committed in the name of SEI CMM and
ISO 9001. Yet, eventually management had to let go their
dreams of Malcolm Baldridge awards and let their people get
some real work done.

On the other hand, I once had the privilege to observe an
organization achieve CMM maturity Level 4! certification
without the baggage of a productivity-killing, paperwork-
clogged high ceremony methodology. Lean, mean ... yet
mature.

1. On a scale of 1 to 5, as assessed by the SEI. Most (90% by some esti-
mates) development organizations never even reach Level 2.

UPGRADE vol. iil, No. 2, Apri 2002 9

eXtreme Programming

Observed Belief Patterns in Software Community
Group “P” Beliefs Group “S” Beliefs
“Code is easy to change.” “Code is expensive to change.”
Likes verbal communication. Likes written specification.
“The code is the design.” “Code is poor design artifact.”
“Good designs emerge.” “Good design comes up front.”
“Programmers collaborate.” “Programmers can’t communicate.”
Codes with peers. Reviews code for defects.
Informal requirements suffice. Formal specs and change control.
Loved RAD. Smugly says, “l warned you!”

An XP evangelist2 recently accused the Software Engineer-
ing Institute of setting back the practice of computer program-
ming. Now certainly CMM has been abused, but this attitude
betrays a misunderstanding (and mistrust) of software engi-
neering’s goals. The goals are worthy, and (surprise) they can
even be implemented with lightweight methodologies where
appropriate.

It would be enlightening to conduct a CMM assessment of a
team successfully practicing XP. In theory, I see no reason why
the XP team should not achieve a maturity level of 2 or better.
CMM Level 2 is about managing project requirements and
schedules effectively and repeatably. XP claims to do just that,
using story cards and a planning game.

On the software engineering side of the fault line, there is an

equal amount of misunderstanding and mistrust. Superficial-
ly, XP resembles RAD in some respects, and at least as many
crimes have been committed in the name of rapid prototyping
as in the name of SEI CMM. Yet, as with CMM, in many such
cases RAD itself was less to blame for its failures than were the
people who misused it. Besides, XP theoretically demands a
level of discipline and rigor well above RAD.

It’s time to stop the methodology crusades. A one-size-fits-all

development process does not exist. Software projects vary
wildly in technology, size, complexity, risk, critically, regulato-
ry, and cultural constraints, and many other key variables.
Alistair Cockburn® has done insightful work mapping out the
spectrum of software projects, and the parallel Methodology
Space. He argues persuasively that there is a sweet spot where
XP will flourish, mainly on smaller, less critical projects.

What’s needed is not a single software methodology, but a
rich toolkit of process patterns and “methodology components”
(deliverables, techniques, process flows, and so forth) along
with guidelines for how to plug them together to customize a
methodology for any given project. My own work led me away
from one-size-fits-all methods, and toward tailorable process
frameworks based on proven best practices.

By recognizing each project’s unique needs and circumstanc-
es, and giving them the flexibility they need to succeed (while

2. Ron Jeffries, speaking at the Current Object Practices and Experience
conference (COPE ’99), St. Thomas University, St. Paul MN,
11/16/99.

3. Cockburn’s writings on Methodology Space are available from the
Humans and Technology Web site (members.aol.com/humansandt/).
Especially recommended is his article “One Methodology Per Pro-
ject”

10 UPGRADE vol. iil, No. 2, April 2002

balancing their parochial needs against strategic goals of the
enterprise to improve reuse, quality, cost, and so forth), we
found corporate development guidelines gain more acceptance
from development teams. A process rejected by practitioners is
doomed to fail. Methodologists, managers, and Software Engi-
neering Process Group police must resist the temptation to
blame such rejections on the so-called practitioners, which
would be like the Coca-Cola Company blaming consumers for
the failure of New Coke.

Even if XP is best suited only to certain projects, it ought to
be one of the tools in our bag of tricks. How often (if ever) one
actually uses XP (or any other process) becomes a matter of
project circumstances, not religious beliefs.

The dream (now misguidedly advocated by some members
of the Object Management Group) of a single, standard grand
unified process is fool’s gold. It would be much more useful to
collaborate on a series of process frameworks, or a meta-meth-
odology, based on abstractions of proven process patterns.
Under certain project conditions, XP might be an instantiation
of the framework. Under other conditions, something like
RUP* or OPEN’ might emerge. Robert Martin has even
demonstrated that XP can be viewed as a sort of degenerate
case of RUPS In the end, we're still left with the underlying
social conflict — those scruffy programmers and tweedy soft-
ware engineers pitted against each other. Even if the XP issue
is defused and the current furor subsides, another conflict
seems likely to erupt again.

If the opposing groups are like Democrats and Republicans,
then maybe what the software development community needs
is a Reform Party. Is there a disaffected, apathetic silent major-
ity that is neither scruffy nor tweedy, that isn’t violently
emotional about methodology? You bet there is. Most of us
want tools that work, not religious dogma.

Who speaks for the pragmatists? It’s time for a third party in
software development politics.

References

[Beck 99]
Beck, K. The XP Bible Remains Extreme Programming
Explained: Embrace Change. Addison-Wesley, Cambridge,
Mass., 1999.

[Internet]
www.extremeprogramming.org; www.XProgramming. com; or
/c2.com/cgi/wiki?Extreme-Programming.

4. Rational Unified Process, a relatively formal OO development process
derived in large measure from Ivar Jacobson’s Objectory, but now
marketed by Rational Corp. under this some-what misleading name.
Recently RUP has moved belatedly toward a flexible framework in an
effort to embrace (or co-opt, depending on your point of view) XP
(see also footnote 6); www.rational.com/products/rup/index.jsp for
more on RUP.

5. The OPEN group, a consortium of companies and individuals, propose
an alternative process standard. It rivals RUP, but remedies some of its
shortcomings. In its second version, OPEN was already evolving to
more of a framework than a fixed process before the advent of RUP or
XP; www.open.org.au/.

6. Rational’s latest Unified Process is rubbery enough it can be squeezed
and stretched to look almost like XP. Robert Martin dubbed his
“extreme RUP” dx (read it upside-down); www. objectmen-
tor.com/publications/RUPvsXP.pdf.

© Novética and Informatik/Informatique

eXtreme Programming

The Need for Speed:
Automating Acceptance Testing in an eXtreme Programming
Environment

Lisa Crispin, Tip House and Carol Wade (Contributor)

In “eXtreme Programming Explained”’, Kent Beck compares eXtreme Programming to driving a car: the
driver needs to steer and make constant corrections to stay on the road. If the XP development team is steer-
ing the car, the XP tester is navigating. Someone needs to plot the course, establish the landmarks, keep track
of the progress, and perhaps even ask for directions. Acceptance tests must go beyond functionality to deter-
mine whether the packages meet goals such as specified performance levels. Automating end-to-end testing
from the customer point of view can seem as daunting as driving along the edge of a cliff with no guard rail.
At Tensegrent, a software engineering firm in Denver organized around XP practices, the developers and the
tester have worked together to design modularized, self-verifying tests that can be quickly developed and
easily maintained. This is accomplished through a combination of in-house and vendor-supplied tools.

Keywords: Testing, Automated Testing, Acceptance Testing,
Test Scripts, Tester, Test Tools, Web Testing, GUI Testing.

Introduction

The three XP books give detailed explanations of many
aspects of the development side of XP. The test engineer com-
ing from a traditional software development environment may
not find enough direction on how to effectively automate
acceptance tests while keeping up with the fast pace of an XP
project. In an XP team, developers are also likely to find them-
selves automating acceptance tests — an area where they may
have little experience. Automating acceptance testing in an XP
project may feel like driving down a 12% grade in a VW bug
with a speeding semi in the rear-view mirror. Don’t worry — like

Lisa Crispin has more thanl0 years experience in testing and
quality assurance, and is currently a Senior Consultant with Bold-
Tech Systems (http://www.boldtech.com), working as a tester on
Extreme Programming (XP) teams. Her article “Extreme Rules of
the Road: How an XP Tester can Steer a Project Toward Success”
appeared in the July 2000 issue of STQE Magazine. Her presenta-
tion “The Need for Speed: Automating Acceptance Tests in an
Extreme Programming Environment” won Best Presentation at
Quality Week Europe in 2000. Her papers “Testing in the Fast Lane:
Acceptance Test Automation in an Extreme Programming Environ-
ment” and “Is Quality Negotiable?”” will be published in a collection
called Extreme Programming Perspectives from Addison-Wesley.
She is co-writing a book Testing for Extreme Programming which
will be published by Addison-Wesley in October 2002. Her presen-
tations and seminars in 2001 included “XP Days” in Zurich,
Switzerland, XP Universe in Raleigh, and STAR West. Lisa can be
contacted at lisa.crispin@att.net.

Tip House is Chief Systems Analyst at the OCLC Online
Computer Library Centre Inc., a non-profit organization dedicated

© Novética and Informatik/Informatique

all of XP, it requires courage, but it can — and should — be fun,
not scary.
The XP practices we follow at Tensegrent include:
- pair programming
- test first, then code
- do the simplest thing that works (NOT the coolest thing that
works!)
- 40-hour week
- refactoring
- coding standards
- small releases
- play the planning game
We apply these same practices to testing — including pair
testing.

to furthering access to world's information, where he develops and
supports test automation tools and document management systems
for the Web. Although his main interest has always been software
development, he also has a long-standing interest in software test-
ing, software measurement, and quality assurance, having presented
papers on these subject at development, measurement and testing
conferences in the US and Europe. He has achieved Certified Qual-
ity Analyst, Certified Software Quality Engineer, and Lead Ticket
Auditor certifications, and managed the independent test function at
OCLC during their three year successful effort to become registered
to the ISO9000 standards. Tip can be contacted at house@oclc.org.

Carol Wade, a technical writer for over twenty years, Ms. Wade
has worked primarily in the field of computer software, writing end-
user documentation. For nine years, Ms. Wade worked for Los
Alamos National Laboratory, where she served as a writer/editor
and started a language translation service. Currently, she is the sole
technical writer for Health Language, Inc., which has produced the
first language engine for healthcare.

UPGRADE vol. iil, No. 2, April 2002 11

eXtreme Programming

Do XP teams really need a dedicated tester? It’s hard for a
tester to answer this in an unbiased manner. In my experience,
even senior developers don’t have much testing experience,
beyond unit and integration tests and perhaps load tests. They
tend to write acceptance tests only for “happy paths” and don’t
think of the nasty evil steps that might break the system. At
Tensegrent, we had one project wrapping up while another one
was starting, so a decision was made to do the first two-week
iteration of the new project with a developer serving as a part-
time tester. By their own admission, without an experienced
tester to push them, the developers got 90% of all the stories
done by the end of the iteration. To the customer, this looked
like nothing at all was done, and they were very unhappy. It
took some work to win back the customer’s trust.

How is Testing in XP Different?

How does acceptance testing in an XP environment deviate
from traditional software testing? First of all, let's look at
acceptance testing. Acceptance tests prove that the application
works as the customer wishes. Acceptance tests give custom-
ers, managers and developers confidence that the whole prod-
uct is progressing in the right direction. Acceptance tests check
each increment in the XP cycle to verify that business value is
present. Acceptance tests, the responsibility of the tester and
the customer, are end-to-end tests from the customer perspec-
tive, not trying to test every possible path through the code (the
unit tests take care of that), but demonstrating the business
value of the application. Acceptance tests may also include
load, stress and performance tests to demonstrate that the
stability of the system meets customer requirements.

Should I strap on a helmet and arm the air bags?

Testing in an XP environment feels like a drive through twist-
ing mountain roads at first. When I first read eXtreme Program-
ming Explained, the very idea of testing without any formal
written specifications seemed a bit TOO extreme. It’s been
difficult learning all the different ways I can contribute to the
team’s success. My roles can be confusing and conflicting —
I’m part of the development team, but I need a more objective
viewpoint. I’m a customer advocate, making sure the customer
gets what she pays for. At the same time, I need to protect the
developers from a customer who wants MORE than they paid
for.

While XP is definitely a new way to drive, the road isn’t as
unfamiliar as some might think. For example, many people new
to XP think that XP projects produce very little documentation.
This hasn’t been our experience. For one thing, the acceptance
tests themselves become the main documentation of the cus-
tomer requirements. They can be quite detailed and extensive.
As an XP project progresses, many other documents may be
produced: installation instructions, UML documents, Javadocs,
developer setup documents, the list goes on. The difference
between these and the documents in many traditional projects
is, the XP project documents are up to date and accurate

Question: How do you write acceptance test cases without
documents?

12 UPGRADE vol. iil, No. 2, April 2002

Answer: You don’t need documents, because you have a
customer there to tell you what she is looking for. Not that this
is always easy. In my experience, it is fairly easy to get a
customer to come up with tests for the intended functionality of
the system. What is more difficult, and requires a tester’s skill,
is to make sure the customer thinks about areas such as securi-
ty, error handling, stability, and performance under load.

Other differences between traditional and XP development
are more subtle. It's really a matter of degree. XP projects move
fast even when compared with the pace at the Web startup
where I used to work. It’s the fast lane on the Autobahn. A new
iteration of the software, implementing new customer “sto-
ries”, is released every one to three weeks. My goal is always
to get acceptance test cases defined within the first day or two
of an iteration, as these are the only written “specifications”
available. For our projects, the acceptance test definitions have
been a joint effort of the team.

From a tester's point of view, the developer to tester ratio in
XP looks about as comfortable as driving through the desert in
an un-air-conditioned Jeep. According to Kent Beck, there
should be one tester for each eight-developer team. At Tenseg-
rent, the ratio gets even higher.

Eeek! Are you SURE protective gear isn’t required?

Fear not! XP builds in checks and balances that enable a
small percentage of test specialists to do an adequate job of
controlling quality.

- Because the developers write so many unit tests, which they
must write before they begin coding — the tester doesn't need
to verify every possible path through the code.

- The developers are responsible for integration testing and
must run every unit test each time they check in code. Inte-
gration problems are manifested before acceptance tests are
run.

- The customer gives input to the acceptance tests and
provides test data.

- The entire development team, not just the tester, is responsi-
ble for automating acceptance tests. Developers also help
the tester produce reports of test results so that everyone
feels confident about the way the project is progressing.

A caveat — if developers aren’t diligent in writing and run-
ning unit tests and integrating often, you’re going to have to
hire more testers. A couple of iterations into our first project at
Tensegrent, I told my boss I thought we’d have to hire more
testers, there was no way I could keep up! The problem was
simply that the developers hadn’t gotten the hang of “test
before code” yet. Once they did a thorough job of unit and
integration testing, my job became much more manageable.

The roles of the players on an XP team are quite blurred
compared with those in a traditional software development
process. Thus our Tensegrent XP (“XP”) philosophy is
“specialization is for insects”. Here are some of the tasks I
perform as a tester:

- Help the customer write stories

- Help break stories into tasks and estimate time needed to
complete them

- Help clarify issues for design

© Novética and Informatik/Informatique

eXtreme Programming

- Team with the customer to write acceptance tests
- Pair with the developers to develop test tools, automated test
scripts, and/or test data.

Question: The whole concept of pair programming sounds
weird enough. How can a tester pair with a programmer?

Answer: I'm not a Java programmer and our developers don't
know the WebART scripting language, but we still pair pro-
gram. The partner who is not doing the actual typing contrib-
utes by thinking strategically, spotting typos and bad habits,
and even serving as a sounding board for the coder. This is a
fabulous way for developers and testers to understand and work
together better. It also gives the tester much more insight into
the system being coded.

I was reluctant to pair test at first. If the developers wrote the
test scripts, would I be able to understand them and maintain
them? The developers weren’t anxious to pair with me for test-
ing, either. They felt too busy to spare time for acceptance test-
ing. Then we had a project where I needed very complicated
test data loaded into a Poet database for testing a security
model. By pairing with a developer, I finished in at least half the
time it would have taken to do it alone, and did a better job.
Now developers take turns on “test support” to produce test
scripts and data needed for automation, sometimes also to help
define test cases if I’'m having trouble understanding a story.

Once you've mustered the courage to switch to the XP fast
lane, it feels fun and safe.

How do I Educate Myself About XP?

Just as you wouldn't attempt to drive a Formula One car with-
out preparing yourself with training and practice, the XP team
needs good training to start off on the right road and stay on it.

Start by reading the XP books. The first written about XP is
Extreme Programming Explained, by Kent Beck. The other two
are also essential: Extreme Programming Installed, by Ron
Jeffries, Ann Anderson, and Chet Hendrickson; and Planning
Extreme Programming, by Kent Beck and Martin Fowler.

You can get an overview and extra insight into XP and simi-
lar lightweight disciplines from the many XP-related websites,
including:

http://www.xprogramming.com

http://www.extremeprogramming.org

http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap
http://www.martinfowler.com

When we at Tensegrent had assembled our first team of eight
developers and a tester, we got together and went through
Extreme Programming Explained and Extreme Programming
Installed as a group, discussing each XP principle, recording
our questions (many of them on testing) and deciding how we
thought we would implement each principle. This took several
hours but put us all on common ground and made us feel more
secure in our understanding of the concepts.

Once your team has read and discussed the XP literature, it's
time to get professional training. We hired Bob Martin of
ObjectMentor, a consulting company with much XP expertise,
for two days of intense training (see www.objectmentor.com
for more information). After Bob answered all our questions,

© Novética and Informatik/Informatique

we felt much more confident about areas that had previously
been difficult for us to understand, such as the planning game,
automated unit testing and acceptance testing.

Don't stop there. Talk to XP experts. Look at the Wiki pages
and sign up for the egroups. If no XP user group has been
formed in your city, start one.

Automating Acceptance Tests

What can you automate?

According to Ron Jeffries, author of XP Installed, successful
acceptance tests are, among other things, customer-owned and
automatic. However, customer-owned does not necessarily
mean customer-written. In fact, as Kent Beck points out in
Extreme Programming Explained, customers typically can’t
write functional tests by themselves, which is why an XP team
has a dedicated tester: to translate the customers ideas into
automatic tests.

Even with a dedicated tester, though, the “automatic” criteri-
on has given us some trouble. We automate whenever it makes
sense, but like most things, it is a trade-off. When you have to
climb a steep dirt road every day, a four-wheel drive vehicle is
a necessity, but it’s overkill if you’re just cruising around the
block.

For example, we haven't found a cost-effective way to auto-
mate Javascript testing (so, we just avoid using Javascript). And
we're also struggling with how to automate non-Web GUI test-
ing in an acceptable timeframe.

It costs time and money to automate tests and to maintain
them once you’ve got ‘em. Recently we had a contract for three
two-week iterations with four developers and myself to devel-
op some components of a system for a customer. While the
system involved a user interface, the design of the Ul itself was
to be done later, outside of our project. We developed a very
basic interface to be able to test the system. The system
involved multiple servers, interfaces, monitors and a database.
Full test automation would have been a big effort. It didn't
make sense to spend the customer's tight resources on scripts
that had a short life span. Still, I automated the more tedious
parts of the testing so I could get the tests done in time. In
addition, I needed scripts for load testing. About 40% of the
testing ended up automated. For a longer project, I would
prefer to automate more.

Principles of XP Functional Test Automation
To get more automation, you have to make automation pay
off in the short term, and this means spending less time devel-
oping and maintaining the automated tests. Here are the princi-
ples we are using to accomplish this:
* Drive the test automation design with a “Smoke Test”, a
broad but shallow verification of all the critical functionality.
* Design the tests like software, so that the automated tests do
not contain any duplicate code and have the fewest possible
modules.
* Separate the test data from the test code, so that you can
deepen test coverage by just adding additional test data.

UPGRADE vol. iil, No. 2, April 2002 13

eXtreme Programming

* Make the test modules self-verifying to tell you if they
passed or failed of course, but also to incorporate the unit
tests for the module.

» Verify only the function of concern for a particular test, not
every function that may have to be performed to set up the
test.

o Verify the minimum criteria for success. “Minimum”
doesn’t mean “insufficient”. If it weren’t good enough, it
wouldn’t be the minimum. Demonstrate the business value
end-to-end, but don’t do more than the customer needs to
determine success.

» Continually refactor the automated tests, by combining,
splitting, or adding modules, or changing module interfaces
or behaviour whenever it is necessary to avoid duplication,
or to make it easier to add new test cases

* Pair program the tests, with another tester or a programmer.

* Design the software for testability, such as building hooks
into the application to help automate acceptance tests. Push
as much functionality as possible to the backend, because it
is much easier to automate tests against a backend than
through a user interface. I sit in on the developers’ iteration
planning and quick whiteboard design sessions. If I perceive
business logic getting into the front end, for example in
Javascript, I challenge the wisdom of such a move.

An XP Automated Test Design

Appendix A gives an example of a lightweight test design
illustrating the application of the principles we have been using
successfully at Tensegrent. I'm using WebART (see the Tools
section below) to create and run the scripts. However, this
design approach should work with any method of automation
that permits modularization of scripts. The appendix gives
details on downloading both the sample scripts and WebART.

Who automates the acceptance tests?

Some sports appear to be individual, when in actuality, they
involve a team. Winners of the Tour de France get all the glory,
but their victory represents a team effort. Similarly, the XP
team may have only one tester, but the entire team contributes
to automating acceptance tests. If tools are needed to help with
acceptance testing in an XP project, write stories for those tools
and include them in the planning game with all the other
stories. You'll probably need to budget at least a couple of
weeks for creating test tools for a moderately size project.

In the early days of Tensegrent, we initiated a project for the
specific purpose of developing automated test tools. This had
several advantages, in addition actually producing the tools:

- Practice with XP writing stories, playing the planning game,
estimating. This gave us confidence in our XP skills that
served us future projects.

- Practice with development technologies. Developers could
experiment with different approaches and get experience
with new tools. For example, the developers investigated in
advance the advantages of using a dom versus a sax parser
on the XML files containing customer test data. Doing this
in advance gave us more time to experiment and research

14 UPGRADE vol. iil, No. 2, April 2002

technologies than we might have had later with a client
project.

- Mutual understanding. The team tasked with producing an
acceptance test driver consisted of only four members and
me, so I was called on to pair program. This exercise gave
me insight into how tough it is to write unit tests, write code
and refactor the code. The developers gave a lot of thought
to acceptance testing and we had long discussions about
what the best practices would be. This is a great foundation
for any XP team.

Tools

To keep the XP car humming, XP testers need a good tool-
box: one containing tools designed specifically for speed,
flexibility and low overhead.

I've asked several XP gurus, including Kent Beck, Ward
Cunningham and Bob Martin, the following question: “What
commercial tools do you use to automate acceptance testing?”’
Their answers were uniform: “Grow your own”. Our team
extensively researched this area. Our experience has been that
we are able to use a third-party tool for Web application test
automation, but we need homegrown tools for other purposes.

For unit testing, we use a framework called jUnit, which is
available free from http://www.junit.org. It does an outstanding
job with unit tests. Even though I am not a Java programmer, I
can run the tests with jUnit's TestRunner and can even under-
stand the test code well enough to add tests of my own. It's
possible to do some functional tests with jUnit. Some XP teams
use this tool for automating acceptance tests, but it can’t test the
user interface. We didn't find it to be a good choice for end-to-
end acceptance testing.

Tools for Creating Acceptance Tests

Some XP pros such as Ward Cunningham advocate the use
of spreadsheets for driving acceptance tests. We want to make
it easy for the customer to write the tests, and most are comfort-
able with entering data in a spreadsheet. Spreadsheets can be
exported to text format, so that you and/or your development
team can write scripts or programs to read the spreadsheet data
and feed it into the objects in the application. In the case of
financial applications, the calculations and formulas your
customer puts into the spreadsheet communicate to the devel-
opers how the code they produce should work.

At Tensegrent, we provide a couple of ways for documenting
acceptance test cases. Usually we use a simple spreadsheet
format, separating the test case data itself from the description
of the test case steps, actions and expected results. We’ve also
experimented with entering test cases in XML format which is
used by an in-house test driver. We’re continuing to experiment
with the XML idea, but the spreadsheet format has worked
well. See Appendix B for a sample acceptance test spreadsheet
template.

Appendix C shows a partial excerpt of a sample XML file
used for acceptance test cases. The test case consists of a
description of the test, data and expected output, steps with
actions to be performed and expected results.

© Novética and Informatik/Informatique

eXtreme Programming

Automated Testing for Web Applications

Test automation is relatively straightforward for Web appli-
cations. The challenge is creating the automated scripts quickly
enough to keep pace with the rapid iterations in an XP project.
This is always toughest in the early iterations. There are times
that I feel like the slow old car blocking the fast lane. For that
extra burst of speed, I use WebART (http://www.oclc.org/we-
bart), an inexpensive HTTP-based tool with a powerful script-
ing language. WebART enables me to create modularized test
scripts, creating many reusable parts in a short enough time-
frame to keep up with the pace of development. Javascript test-
ing presents a bigger obstacle. We test it manually and carefully
control our Javascript libraries to minimize changes and thus
the required retesting. Meanwhile, we continue to research
ways of automating Javascript testing.

Our developers wrote a tool to convert test data provided by
the customers in spreadsheet or XML format into a format that
can be read by WebART test scripts so that we can automate
Web application testing. Even small efforts like this can help
you gain that competitive edge in the speedy XP environment.

Automated Testing for GUI Applications

Test automation for non-HTTP GUI applications has been
more of an uphill climb. You can travel faster in a helicopter
than a mountain bike, but it takes a long time to learn to fly a
helicopter; they cost a lot more than a bicycle and you may not
find a place to land. Similarly, the commercial GUI automated
test tools we've seen require a lot of resources to learn and
implement. They're budget breakers for a small shop such as
ours. We searched far and wide but could not come up with a
WebART equivalent in the GUI test world. JDK 1.3 comes with
a robot that lets you automate testing of GUI events with Java,
but it's based on the actual position of components on the
screen. Scripts based on screen content and location are inflex-
ible and expensive to maintain. We need tests that give the
developers confidence to change the application, knowing that
the tests will find any problems they introduce. Tests that need
updating after each application change could cause us to lose
the race.

We felt that the most important criteria for acceptance tests is
that they be repeatable, because they have to be run for each
integration. We decided to start by developing our own tool,
“TestFactor-e”, that will help customers and testers run manual
tests consistently. It will also record the results. We plan to
enhance this tool to feed the test data and actions directly into
application backends in order to automate the tests. As we have
only been developing web applications, this effort is on the
back burner.

No matter what the system being tested, it takes time to get
up to speed with automation. I plan to do manual testing in the
first iteration. At the start of the second iteration, I can start
automating, using the method described in Appendix A. There
are times I run into a roadblock which sets me back a day or
two. The solution to that is to find someone to pair with me. As
the tester in an XP project, you may feel lonely at times, but
remember, you aren’t ever alone!

© Novética and Informatik/Informatique

Reports

Getting feedback is one of the four XP values. Beck says that
concrete feedback about the current state of the system is price-
less. If you’re on a long road trip, you check for road signs and
landmarks that tell you how far along your route you’ve come.
If you realize you’re running behind, you skip the next stop for
coffee or push the speed a bit. If you’re ahead of schedule, you
might detour to a more scenic road. The XP team needs a
constant flow of information to steer the project, making
corrections to stay in the lane. The team's continual small
adjustments keep the project on course, on time and on budget.
Unit tests give programmers minute-by-minute feedback.
Acceptance test results provide feedback about the “Big
Picture” for the customer and the development team.

Reports don't need to be fancy, just easy to read at a glance.
A graph showing the number of acceptance tests written, the
number currently running and the number currently succeeding
should be prominently posted on the wall. You can find exam-
ples of these in the XP books. Our development team wrote
tools to read result logs from both automated tests and manual
tests run with “TestFactor-e”. These tools produce easy-to-read
detail and summary reports in HTML and chart format.

With all this feedback, you’ll confidently deliver high-quality
software in time to beat your competition. You’ll meet the
challenges of 21st century software development!

Appendix A: Lightweight Test Design

XP Automated Test Design

The sample scripts used to illustrate the test design are
written with a test tool called WebART (http://www.oclc.org/
webart/). Any test tool that permits modularization and param-
aterization of the scripts should support this design. To down-
load a soft copy of the sample scripts, go to http://www.oclc.
org/webart/samples/ and click on the “qwmain Sample Scripts”
link.

The Sample Application

Our sample application is a telephone directory lookup web-
site, http://www.qwestdex.com. This is certainly not intended
as an endorsement of Qwest and we have no connection with
them, it was just a handy public application with characteristics
that allow us to illustrate the tests.

Action Minimum Passing Criteria
Go to login page Page contains the login form
Login Valid login name and password brings up

profile page
Valid search retrieves table of businesses

Search for valid category in
specified city

Logout

Page contains link to login page and
home page

Table 1

UPGRADE vol. iil, No. 2, April 2002 15

eXtreme Programming

Goto Starting
Login - Url
Login
Page
Login User Id &
Password
Profile
Page
Go to
Search

Search
Page

Search @———— ggtegow &
ity
Results
Page
Logout
Figure 1
The Smoke Test

We will consider the critical functionality to be logging into
the site and finding the businesses within a certain city and
category. Pretend that this is the most important story in the
first iteration. Table 1 shows the basic scenario we want to test.

The Test Design

We know that there will be more functionality to test in sub-
sequent iterations, but we will use the simplest design we can
think of to accomplish these tests without duplication. Then we
will refactor as necessary to accommodate the additional tests.

The modules will be Go to Login, Login, Go to Search,
Search, and Logout. In figure 1 is a diagram showing how the
modules are parameterized.

Separating the test data from the code

The items on the right side of the diagram represent test data:
the URL of the login page, the user id and password to use to
login, and the category and city to search. The test data is
segregated into a test case file, which is read in by the test when
it executes. In figure 2 is sample content of that file to run a
single test case.

Verification
The main modules use a set of primitive validation modules
to check for the specific conditions required in a system
response and determine a pass or fail condition. The validation
modules in turn call utility modules to record the results.
This example uses the following three validation modules:
* vtext validates that a response contains specified text. for the
text string.
* vlink validates that a page contains a specific link.

16 UPGRADE vol. iil, No. 2, April 2002

smoketest

[

itert:

Url <url=http://qwestdex.com>
UseridPassword <uid=bob&psw=bob>
CatCity <cat=banksé&city=dallas>

]

Figure 2

* vyform validates that a page contains a specified HTML form.

Utility Modules

There are also two utility modules which are used by the
main modules:

e trace — Displays execution tracing information in the

WebART execution window, for debugging the tests.

* Jog — Records validation outcomes in a log file.

The “zslog” module in the sample scripts writes test results
out in XML format. An in-house tool from Tensegrent called
TestFactor-e builds an HTML page from this log file showing
the results with colour-coding for pass, not run and fail. See
Appendix B for an example.

Creating the Scripts

Creating the first set of scripts is the hard work. Once you
have a working set of modules, you can reuse entire modules in
some cases or turn them into templates in other cases. Here are
the steps I use (preferably as part of a pair) to create test scripts:

1. Capture a session for the scenario I want to test. See
“capgwest” in the sample scripts as an example.

2. Copy “qwmain”, “zsqwlogin” and the other supporting
modules that I already have to new names. Strip out the code
that was specific to that application.

3. Paste in the code specific to the scenario I want to test,
copying from the captured script into the newly created
“templates”. Use XP principles here: work in small increments,
make sure your scripts work before you go on. For example,
first see if you can get the login to work. Then add the search.
Then add the logic for switching depending on the pass/fail
outcome. Remember to do the simplest thing that works and
add complexity only as you need it.

Appendix B: Partial Excerpt of XML Template for Accept-
ance Test Cases

<?xml version="1.0" encoding="UTF-8" standalone="no” 7>

<IDOCTYPE at-test SYSTEM “at-test.dtd” |
<IELEMENT input ANY >
<IELEMENT loan-amount ANY >
<IELEMENT interest-rate ANY >
<IELEMENT term-of-loan ANY >
<IELEMENT output ANY >

© Novética and Informatik/Informatique

eXtreme Programming

<IELEMENT monthly-payment ANY >

It

<at-test name="calc-monthly-payment” version="1.0" severity="CRITICAL">

<at-project>mortgage-calc</at-project>

<at-descripti

ion>

Enter loan amount, interest rate, term of loan (in months)

to calculate monthly payment.

<at-plan>

<at-step name="populate-loan-amount™>
<at-action>
<at-text>Enter “{0}" in the “Loan Amount field”.</at-text>
<at-value dset="values” select="/input[2]/loan-amount’/>
</at-action>
<at-expect>
<at-text>Cursor moved to “Interest Rate” field for input.</at-text>
</at-expect>

</at-description> </at-step>
<at-data-sets> </at-plan>
<at-struct id="values™>
<input> <[at-test>
<loan-amount>1000000000.00</loan-amount>
<interest-rate>0.5</interest-rate>
<term-of-loan>1200</term-of-loan>
<finput>
<output>
<monthly-payment>A big, fat wad of dough!</monthly-payment>
</output>
</at-struct>
</at-data-sets>
Appendix C: Sample Acceptance Test Spreadsheet
A B c D E
Template for acceptance test;
1)
Ref #: Timecard/QA/Acceptance Testsde
2 .
[teration:
What does this test? Lxampler Tests o
3 Functionality proven by this | make sure that whan & Hime entry racord
test case *is /is not * critical | /s inpus, it is saved fo the dalabase and
the report generated correcily,
4 What to do: Exatnples given in ltalics
5 |Step | Command/URL Action Input Data Expected Qutput
1 Access WwwitimecaraiaadEnty | Select & project releass, itaration, fask | Row 1, columns Profect | Selections displaving on
5 i browser and ender duration, date and comments | Release fleration, Task | screen
Duration, Diate,
Cotmmants
7 2 SHl on wwwidimecardiadaEniry | Click the save bution Message that dals was
saved i database
3 Access Select 2 project, stait date and end date | Row 1, columns Profect | Report generglad - data
wwwitimecaraigenarateReports Start Date, End Date matchas row T columns
8 i browser Froject Release, lteration,
Duration, Cost and Total
Cost
4 Repeat steps T - 3 with each
| row o the fest case
spreadsheet

© Novatica and

Informatik/Informatique

UPGRADE vol. iil, No. 2, April 2002 17

eXtreme Programming

Qualitative Studies of XP in a Medium Sized Business

Robert Gittins, Sian Hope and Ifor Williams

Qualitative Research Methods are used to discover the effects of applying eXtreme Programming (XP) in a
software development business environment. Problems dominating staff development, productivity and
efficiency are parts of a complex human dimension uncovered in this approach. The interpretation and
development of XP’s “Rules and Practices” are reported, as well as the interlaced communication and
human issues affecting the implementation of XP in a medium sized business. The paper considers the
difficulties of applying XP in a changing software requirements environment, and reports on early
deployment successes, failures and discoveries, and describes how management and staff adapted during
this period of change. The paper examines the benefits of a flexible management approach to XP
methodology, and records the experiences of both management and staff, as initial practices matured and

new practices emerged.

Keywords: Extreme Programming, Qualitative methods,
Software Methodology.

1 Related Work

Previous qualitative research [Seaman 99], [Sharp et al.
99], [Cockburn/Williams 02], has concentrated on non-judg-
mental reporting, with the intent of provoking discussion with-
in the culture being studied by providing observations and
evidence, collaborators deciding for themselves whether any
changes were required. This fieldwork study follows the format
of [Gittins/Bass 02], whereby the researcher is immersed for a
period in the software developer team; thereby the active
researcher becomes instrumental in the development and
improvement of XP. [Seaman 99] describes an empirical study
that addresses the issue of communication among members of
a software development organization. [Sharp et al. 99] use
combined ethnography and discourse analysis, to discover
implicit assumptions, values and beliefs in a software manage-

Robert Gittins is final year PhD student at the Ada Lovelace Lab-
oratory, University of Wales, BangorGwynedd, Wales, UK. His re-
search explores the interfaces between the disciplinary experts who
collaborate to develop approaches to developing commercial soft-
ware development solutions, especially for distributed systems.
Communication between these disciplinary domains, and the coop-
erative solution of conflicting design problems, are the key areas of
his investigation. His research goal is to contribute strategies, meth-
ods or algorithms for novel software tools to support the design
process. <r.g.gittins@informatics.bangor.ac.uk>

Sian Hope is a senior lecturer at the School of Informatics, Uni-
versity of Wales Bangor. Research interests are focused on contrib-
uting to enhancement of the discipline of Software Engineering by
researching into practically applicable development methods which
are firmly grounded on scientifically sound concepts. Fundamental

© Novética and Informatik/Informatique

ment system. [Cockburn/Williams 02] investigate “The cost
benefits of pair programming”. [Sharp et al. 00] describe a
“cross-pollination™ approach, to a deeper understanding of
implicit values and beliefs.

XP developed recently from [Beck 00] and [Beck/Fowler
00], and more recently in [Jeffries et al. 00]. [Williams/Kessler
00] study lone and paired programmers, and [Williams et al.
00] the cost effectiveness of pairing.

2 The Study

Secure Trading, the focus of this paper, is a medium sized
software company committed to implementing XP, and
comprises a team of nine developers. Secure Trading decided
to implement XP in a progressive manner, conscious of mini-
mising disruption to the business process. Reference material
from other companies, not specifically named in this paper, will
only be used in general terms to highlight some typical prob-
lems facing established, and highly traditional companies,

approaches are sought, which provide a bridge between theory and
practice and which are aimed at producing engineering methods,
tools and metrics for all phases of software development. Sian can
be contacted at sian@informatics.bangor.ac.uk

Ifor Williams. After obtaining a degree in Computer Engineering
from the University of Manchester Ifor went on to gain a PhD for
research into computer architectures suitable for the efficient execu-
tion of object-oriented applications. This work resulted in the design
of a machine (MUSHROOM) incorporating support for dynamic
binding, object-based virtual memory, efficient garbage collection
and targeted as a high-performance Smalltalk platform. Later he
spent some time developing software for the medical diagnostics in-
dustry using prescribed conventional development processes before
joining the rapidly changing.com world where XP proved to be in-
valuable. He can be contacted at ifor.williams @securetrading.com.

UPGRADE vol. iil, No. 2, April 2002 18

eXtreme Programming

sensitive to their developer environment, and to the cost of
disruption that change would incur on staff and production.

Secure Trading, had recently moved to larger offices. When
research started, their involvement with XP consisted of some
intermittent attempts at “pairing” developers. Their move
presented opportunities for improving “pairing” proficiency,
and the selective adoption of XP practices.

3 Qualitative Research Work

This research adopts some of the techniques historically
developed in the Social Sciences [Gittins 02], ethnography,
qualitative interviews and discourse analyses, an understand-
ing of “grounded theory” was particularly important. Grounded
theory can provide help in situations where little is known
about a topic or problem area, or to generate new ideas in
settings that have become static or stale. Developed by Barney
Glaser and Anselm Strauss [Glaser/Strauss 67] in the 60s,
grounded theory deals with the generation of theory from data.
Researchers start with an area of interest, collect data, and
allow relevant ideas to develop. Rigid pre-conceived ideas are
seen to prevent the development of research. To capture rele-
vant data, qualitative research techniques are employed
[Gittins/Bass 02] that include the immersion of the researcher
within the developer environment, qualitative data analyses,
guided interviews, and questionnaires.

3.1 Qualitative Data

Qualitative evaluation allows the researcher to study selec-
tive issues in detail, without the pre-determined constraints of
“categorised” analyses. The researcher is instrumental in the
gathering of data from open-ended questions. Direct quotations
are the basic source of raw materials, revealing the respond-
ent’s depth of concern. This contrasts with the statistical
features of quantitative methods, recognised by their encum-
brance of predetermined procedures.

3.2 Qualitative Interviews

[Patton] suggests three basic approaches to collecting quali-
tative data through interviews that are open-ended. The three
approaches are distinguished by the extent to which the ques-
tions are standardised and predetermined, each approach hav-
ing strengths and weaknesses, dependant upon the purpose of
the interview:

1) “Informal conversational” interviews, are a spontaneous
flow of questions where the subject may not realise that the
questions are being monitored. 2) The “General interview
guide” approach, adopted extensively for this study, predeter-
mines a set of issues to be explored. 3) The “Standardised
open-ended interview” pursues the subject through a set of
fixed questions that may be used on a number of occasions,
with different subjects.

In a series of interviews, data was collected using “Informal
conversation” and verbatim transcripts taken from “General
guided interviews”.

19 UPGRADE vol. iil, No. 2, April 2002

3.3 Questionnaires

In an extensive questionnaire consideration was given to the
“Rules and Practices” of XP. Questions targeted the software
development process, XP practices, and both managerial and
behavioural effectiveness. Behavioural questions were based
upon Herzberg’s “Hygiene and Motivation Factors” [Herzberg
74]. Ample provision was provided for open comments on each
of the topics, and a developer floor plan provided for a respond-
ent to suggest improvements to the work area. Repeating the
questionnaire at three monthly intervals will help research and
management by matching the maturing XP practices, as they
progress, against developer responses.

4 Rules and Practices

4.1 Pair Programming

(See [Beck 00], [Beck/Fowler 00]) XP advances what has
been reported for some time [Cockburn/Williams 02],
[Williams/Kessler 00], [Williams et al. 00]; Two programmers
working together generate an increased volume of superior
code, compared with the same two programmers working
separately. Secure Trading management, discussed the imple-
mentation of “Pairing” with the development team, who unan-
imously agreed to “buy-in” to the practice. The first question-
naire showed some of the team were unhappy with pairing.
28% of developers preferred to work independently, 57%
didn’t think they could work with everyone, and 57% stated
that pair programmers should spend on average 50% of their
time alone. XP practices recommend no more than 25% of a
conditional 40-hour week be paired. Two developers summed
up the team’s early attitude to pair programming: “I feel that
pair programming can be very taxing at times, although I can
see the benefits of doing it some of the time.”

“Not everyone makes an ideal pair. It only really works if the
pair is reasonably evenly matched. If one person is quiet, and
doesn’t contribute, their presence is wasted. Also, if a person is
really disorganised and doesn’t work in a cooperative way, the
frustration can (disturb) the other participant!”

Developers estimated that they spent approximately 30% of
their time pairing, with partner changes occurring only upon
task completion, changes being agreed and established ad hoc.
Frequent partner swapping, and partner mixing, commands
great merit in XP. Pairing practices matured with the introduc-
tion of a team “Coach” and later a “Tracker” [Beck 00]. Main-
tenance tasks were another problem which routinely disrupted
pairing. Here control was reviewed and tasks better ordered to
minimise this problem. In time, the impact of pairing activity
upon developers will translate into evidence, returned in the
periodic questionnaire reviews, and in the timeliness and
quality of code produced.

4.2 Planning Games

(See [Jeffries et al. 00]) Planning games were introduced
soon after pairing practices were established. The “customer”
duly chooses between having more stories, requiring more
time; against a shorter release, with less scope. Customers are
not permitted to estimate story or task duration in XP and

© Novética and Informatik/Informatique

eXtreme Programming

developers are not permitted to choose story and task priority.
Where a story is too complex or uncertain to estimate, a
“Spike” is created. Spike solutions provide answers to complex
and risky stories. Secure Trading succeeded well in developing
Planning games, utilising “Spike solutions” by logging a
“spike” as a fully referenced story to quickly attack the prob-
lem, reducing a complex, inestimable story to a simple, and
easily understood, group of stories. Results were very effective;
“spike solutions” proved easy to develop and derived estimates
for completion proved consistently accurate. It was common
practice to have the essential elements of both iteration and
release Planning games combined into one meeting. This prac-
tice worked for them in the context of the jobs they were plan-
ning.

4.3 Client On-site

(See [Beck 00]) Secure Trading rarely had this luxury. When
required the “Client” role was undertaken by a client’s repre-
sentative, co-opted from the Customer services department by
staff who had worked closely with the client and were able to
accept that responsibility. Developer Manager: “The inclusion
of a representative from Customer services has proven to be
hugely beneficial, providing immediate feedback of the
system’s successes and failures on a day-to-day basis.”

4.4 Communication

(See [Beck 00]) A great deal of attention is necessary in
providing an XP environment in keeping with the practices to
support XP. Key factors in communication are: the use of white
boards, positioning and sharing of desk facilities to facilitate
pair programmers, “stand-up” meetings, developers “buying-
in” to the concepts of the “rules and practices” of XP, and
“collective code ownership”. Interviews and questionnaires re-
vealed many areas of concern among developers. For example,
86% of developers disagreed that meetings were well organ-
ized; “Agreements at meetings are not set in concrete” and,
“Confidence is lost with meeting procedures, when agreed
action or tasks are later allowed to be interpreted freely by dif-
ferent parties.” Management were quick to address these con-
cerns by concentrating on the development of XP story card
practices. Developers were encouraged to agree, and finalise
with the client, the task description and duration estimates at
timely Planning Game meetings. Story cards were fully refer-
enced and signed by the accepting developer, thereby becom-
ing the responsibility of the initiating developer until comple-
tion. Only the responsible creator of a Card was authorized to
amend it.

The use and placement of White boards is said to be an
essential supporting means of good communication in XP
practices [Beck 00]. Mobile whiteboards were introduced by
Secure Trading soon after pair programming practices gained
momentum and used to record the story details agreed at
Planning Game meetings. At one point, story cards were
physically stuck to the boards in prioritised order with adjacent
notes written on the board. This proved unpopular and devel-
oped into cards being retained but not stuck on the white board.
Stories were written on the boards. Referenced stories

© Novética and Informatik/Informatique

contained ownership, estimation, as well as iteration and prior-
ity, which were displayed in columned format. On completion,
the owner added the actual task duration. The information
served to improve personal proficiency in estimation and in
providing feedback towards establishing project “velocity”
data, for future Planning Game meetings.

Stand-up meetings promote communication throughout the
team. Secure Trading introduced this practice from day one. At
ten o’clock every morning, a meeting allowed everyone to
briefly state (standing promotes brevity) their work for the day,
and discuss problems arising from the previous days activity.
Anyone was free to comment, offer advice or volunteer co-
operation. The benefits of adopting stand-up meetings were far-
reaching and seen by developers and management as an effec-
tive way to broadcast activities, share knowledge and encour-
age collaboration amongst and between team members and
management. Secure Trading meetings tended to degrade when
reports migrated to topics of yesterday’s activity, rather than
those planned for the day. This activity persists and may remain
or need to be resolved and modified as their particular brand of
XP develops.

4.5 Simple Design

Beck [Beck 00] summarises simple design in “Say every-
thing once and only once.” However a comment by one devel-
oper interviewed revealed a common concern, “Sometimes, it
is a bit too simplistic, and issues seem to be avoided” . XP states
that it is important to produce a simple system quickly, and that
“Small Releases” are necessary to gain feedback from the
client. Secure Trading didn’t see themselves in a position to
implement this practice so early in their XP programme. XP
allows companies to cherry-pick those practices they regard
suitable for implementation, in the order they see fit.

4.6 Tests

Unit tests are written in XP before main code and give an
early and clear understanding of what the program must do.
This provides a more realistic scenario, as opposed to “after-
the-code testing,” that could, for many reasons, neatly match
completed code. Time is saved both at the start of coding, and
again at the end of development. Latent resistance to early unit
testing became manifest, when the perceived closeness of a
deadline loomed. This activity is perhaps the hardest to imple-
ment and requires commitment from developers. An early
questionnaire revealed that 71% of Secure Trading developers
regarded unit-testing practices in general to be “very poor”.
Developer Manager on early introduction of unit testing: “If
you already have a large complex system, it is difficult to deter-
mine to what extent testing infrastructure is to be retrospective-
ly applied. This is the most difficult aspect in our experience.
Starting from scratch it is much easier to make stories and code
testable.”

4.7 Refactoring

(See [Fowler 99]). “The process of improving the code’s
structure while preserving its function.” The use and reuse of
old code is deemed costly, often because developers are afraid

UPGRADE vol. iil, No. 2, April 2002 20

eXtreme Programming

they will break the software. XP indicates that refactoring
throughout the project life cycle saves time and improves
quality. Refactoring reinforces simplicity by its action in keep-
ing code clean and reducing complexity. Secure Trading had
not developed refactoring activities in line with XP at that time.
Many developers expressed concern with refactoring, more
commonly reported by traditional companies: “... with more
people, we could spend more time refactoring and improving
the quality of our existing code base.” The questionnaire
revealed that 45% of developers considered refactoring sporad-
ic or very poor.

4.8 Collective Code Ownership

(See [Beck 00], [Beck/Fowler 00]). This concept states
“Every programmer improves any code anywhere in the system
at any time if they see the opportunity.” Collective code owner-
ship has many merits: It prevents complex code entering the
system, developed from the practice that anyone can look at
code and simplify it. It may sound contentious, but XP Test
procedures should prevent poor code entering the system.
Collective Code Ownership also spreads knowledge of the
system around the team. Secure Trading experienced growing
pains in developing this principle, revealed by the comments of
two developers: “I have conflicting interests in collective code
ownership. I think it is very good when it works, but there are
times when some code I have written seems to just get worse
when others have been working on it.”

“I like the idea of collective code ownership, but in practice
1 feel that I own, am responsible for, some bits of code.” From
the traditional perspective of individual ownership, it will be
important to record how attitudes change, as XP practices
mature.

4.9 Metaphor

A metaphor in XP is a simple shared story to encompass and
explain what the application is “like”, communicating a mental
image, so that everyone involved can grasp the essence of the
project in a term universally understood. This may seem to be
arelatively easy, or lightweight, activity to adopt. However, the
value of this practice was not immediately evident to develop-
ers, early difficulties developing and applying suitable meta-
phors were experienced and this practice was reluctantly aban-
doned for future consideration.

5 Companies Starting from Scratch

Long established and traditional companies, considering
adopting XP, have, unlike Secure Trading, many more difficul-
ties to overcome. They mostly comprise traditional teams of
developers, who are comfortably established, working in small
offices, in prohibitively cloistered environments. Management
is often aware that legacy software in circulation is in the “own-
ership” of one or two heroic developers, at the cutting edge of
their business. Some teams were reported as badly under-per-
forming and in some circumstances management had resorted
to consultants to resolve their problems with no significant
success reported. Often with great reluctance, management

21 UPGRADE vol. Iit, No. 2, April 2002

allowed the research team to visit developer offices. Tension
was evidently high. In these companies, “Risks” [Beck 00] are
high, quality is compromised, communication difficult, and
control largely ineffective. There are other considerations when
starting from scratch; The Secure Trading developer manager
reflecting upon attempts at implementing XP in his early
projects stated: “One of the key “discoveries” has been the rel-
ative ease to which XP has been employed on an all-new
project, and the difficulty in applying XP retrospectively on an
established system.’

6 Conclusions

A combination of qualitative and quantitative methods
has helped identify uncertainties in applying XP practices in a
medium sized software development company. How particular-
ly one company interpreted and developed their brand of XP,
moulded from their successes and failures. Successes in such
areas as the use and development of “spike solutions”, and
Customer role-play within “Planning Game” activity, and from
failures, as in developer reluctance to “buying-in” to “collec-
tive code ownership”, and the difficulties of implementing the
practice of “simple design”, and in the use of “metaphors”.
Partial success was seen in “Pair programming”, that having
posed early problems, showed improvement in maturity. Future
work will monitor the complex factors in the development of
XP within small and growing companies at various levels of
maturity. By acknowledging the characteristic unsharp bound-
aries of qualitative data sets, future work will investigate the
use of fuzzy logic for data analyses.

Acknowledgement
This paper acknowledges the funding and support of the EPSRC
(Award No. 99300131).

References

[Beck 00]
K. Beck: “Extreme Programming Explained: Embrace change”.
Addison Wesley. 2000

[Beck/Fowler 00]
K. Beck and M. Fowler: “Planning Extreme Programming”. Ad-
dison Wesley 2000.

[Cockburn/Williams 02]
A. Cockburn and L. Williams: “The cost benefits of pairprogram-
ming”.
http://members.aol.com/humansandt/papers/
pairprogrammingcostbene/pairprogrammingcostbene.htm.

[Fowler 99]
M. Fowler: “Refactoring: Improving the design of existing code”,
Addison Wesley. July 1999.

[Gittins 02]
R. G. Gittins: “Qualitative Research: An investigation into meth-
ods and concepts in qualitative research”. Technical Paper: via
http://www.sesi.informatics.bangor.ac.uk/english/home/
research/technical-reports/sesi-020.htm

[Gittins/Bass 02]
R. G. Gittins and M. J. Bass: “Qualitative Research Fieldwork:
An empirical study of software development in a small company,
using guided interview techniques”, TechnicalPaper: via http://
www.sesi.informatics.bangor.ac.uk/english/home/research/tech-
nical-reports/sesi-021.htm

© Novética and Informatik/Informatique

eXtreme Programming

[Glaser/Strauss 67]
B. G. Glaser and A. L. Strauss: “The discovery of grounded the-
ory: strategies of qualitative research” Chicago: Aldine Publica-
tions. 1967

[Herzberg 74]
F. Herzberg: “Work and the Nature of Man”, Granada Publica-
tions Ltd.1974

[Jeffries et al. 00]
R.Jeffries, A. Anderson and C. Hendrickson: “Extreme Program-
ming Installed”. Addison Wesley 2000.

[Patton]
M. Q. Patton: “Qualitative Evaluation and Research Methods”
(2nd Edit.). SAGE Publications

[Seaman 99]
C. B. Seaman: “Qualitative methods in empirical studies of soft-
ware engineering”, IEEE Trnsctns on Software Engineering,
Vol.25 (4):557-572 Jul/Aug 99.

© Novética and Informatik/Informatique

[Sharp et al. 99]
H. Sharp, M. Woodman, F. Hovenden and H. Robinson: “The role
of ‘culture’ in successful software process improvement.”
EUROMICRO:1999 Vol .2, p17.

[Sharp et al. 00]
IEEE Computer Society. H. Sharp, H. Robinson and M. Wood-
man: “Software Engineering: Community and Culture”. IEEE
Software, Vol. 17, No.1, Jan /Feb2000

[Williams/Kessler 00]
L. A. Williams and R. R. Kessler: “All I Really Wanted to Know
About Pair Programming I Learned in Kindergarten”. Communi-
cations of the ACM. May 2000 Vol .43, No5.

[Williams et al. 00]
L. A. Williams, R. R. Kessler, W. Cunningham and R. Jeffries:
“Strengthening the Case for PairProgramming”. IEEE Software,
Vol. 17, No. 4: July/August,2000,pp19-25.

UPGRADE vol. iil, No. 2, April 2002 22

eXtreme Programming

XP and Software Engineering: an opinion

Luis Ferndndez Sanz

In this article, the author makes some reflections on certain specific aspects of eXtreme Programming as
described in Kent Beck’s book “eXtreme Programming explained. Embrace change”. The analysis presented
here is in relation to principles and techniques of software engineering.

Keywords: eXtreme Programming, XP, Software Engineer-
ing

1 First contact

The first time I came across the term EXtreme Program-
ming (also known by the initials XP), my mind was immediate-
ly overrun with images of those well known extreme sports:
people who love danger and who spend their time skiing down
impossible mountainsides, making bungee jumps, etc.! Of
course the expression was deliberately coined by Kent Beck to
benefit from the fashion for this kind of sport in order to make
a bigger splash on the IT scene. Perhaps the idea was also to
suggest a world of “winners”, people who flirted with danger,
who were always “cool” (another in word) whatever they did
and who turned their back on convention. Regrettably, howev-
er, I discovered it was something altogether simpler and less
glamorous than the risk and adventure of extreme sports2 but,
fortunately, I did recognise the tremendous appeal of a new
approach to software development.

Curiosity naturally led me to seek out references on XP
where I could learn some more about it. Coincidentally, and at
the same time, I began to hear opinions from experienced
people; people who could never be accused of not being broad
minded. While some of them were drawn to this idea (although
somewhat sceptical about its potential for becoming a common
practice), others pointed out in no uncertain terms the “mad-
ness” of expecting to achieve quality in software developed us-
ing XP practices. I have been in this field long enough to expe-
rience several passing fads which claimed to be the cure of all
the ills besetting software development (of which there are
plenty), and high hopes were placed in all of them (mainly by
their mentors and supporters, sometimes with obvious
commercial interests at heart) in terms of their scope and life
span. There were many such trends and most passed away,
although it’s only fair to admit that some did make a contribu-
tion to current good practices. Which is why something told me
that I could be looking at just another passing fad wrapped up

1. This “confession” may not seem so surprising when you read
McCormick’s article [McCormick 01] which you can find else-
where in this edition.

2. The truth is that, in terms of physical appearance, there is seldom
any possible comparison between IT people and the extreme
sports community.

© Novética and Informatik/Informatique

Luis Ferndndez Sanz received a degree in informatics engi-
neering from Technical University of Madrid (Spain) in 1989 and
a Ph. D. degree in informatics from University of the Basque
Country in 1997 (as well as an extraordinary mention for his
doctoral thesis). He is currently head of the department of pro-
gramming and software engineering at Universidad Europea-
CEES (Madrid). From 1992, he is the coordinator of the software
engineering section of Novatica. He is author or coauthor of
several books about software engineering and software measure-
ment, as well as different papers in international journals and con-
ferences. He is member of the Software Quality Group of ATI and
he has acted as chair of the VI Spanish Conference on Software
Quality and Innovation organised by ATI. He is a member of ATI
and the Computer Society of the IEEE.
<lufern@dpris.esi.uem.es>

in impressive sounding terms. Even when a colleague, the type
who like to loudly proclaim any nonsense they have just learnt
(preferably something trendy) and who need constant attention
to compensate for their inferiority complex, piped up that he
knew what XP was and waxed lyrical about how wonderful it
all was®, subjectivity got the better of me.

But there is one thing I just cannot help doing: I can’t help
trying to find out for myself about the things which arouse my
curiosity, and I will not take anyone else’s opinion as gospel. In
my quest for information about XP it was not hard for me to
find various web sites (see the brief list at the end of this article)
which contained a copious selection of documentation, links
and resources on the subject of eXtreme Programming. Of
course, I had Beck’s classic book [Beck 00] in which he
explains the essence of XP. I even discovered the existence of
monographic international congresses on XP with several
editions already held. However something was worrying me. I
could see the same signs that I had seen before in some of the
previous fads: a lot of words (albeit reasonable and attractive
ones), a certain implicit assumption that XP is a dogma of faith
(nobody doubted that its principles were properly justified)
and, especially, a shortage of really reliable data and real life

3. It goes without saying that he planned to reap all the benefits of
XP straight away as his idea was to implement it immediately (as
I write, I have had no reports that he has done anything, just like
on so many other occasions).

UPGRADE vol. iil, No. 2, April 2002 23

eXtreme Programming

experiences. In fact, a simple search involving direct consulta-
tions with famous “extremes” in the international arena always
resulted in the same response: at best some academic experi-
ments somewhat divorced for any professional reality, some
experience, but few projects (though there were some) with
specific data and much less any formal experiments. However,
my intention is not to put XP practitioners down in any way
with this: it is sadly only too common a state of affairs in the
software world in any field*. However Chrysler’s famous C3
project in which Beck applied XP practices for the first time is
much talked about.

My main problem when it comes to expressing an opinion
about XP is that I don’t have any first hand references: I have
had no opportunity to apply XP in a project nor have I managed
to find colleagues in Spain who are practising it in a profession-
al environment. It’s true there are companies like IBM who
have given support to specific aspects of XP (for example, with
JUnit) and who have documentation on it. Other major compa-
nies like Sun give it some kind of exposure in their technical
documents, almost certainly because their marketing people
don’t want to miss out on the advertising draw it has (at least in
terms of the name and the frequency with which it crops up in
publications).

Anyway, after a careful reading of Beck’s book [Beck 00]
and with the inspiration of various documents taken from web
sites on XP and the occasional interesting article like Mc-
Cormick’s [McCormick 01], I would like to share some of my
reflections with the readers.

2 Reflections on XP from a Software Engineering view-
point

One of the bases of XP is the technical promise which Beck
makes at the beginning of his book [Beck 00]. The problem lies
in the changes which have to be made in a software develop-
ment. XP aims to minimise changes by concentrating only on
those changes which simplify code (which should be as simple
as possibles) or which will facilitate the rest of the code.
Consequently, it is important to design without having to
complicate the design in an attempt to cater for possible future
expansions or increased functionality or performance. From
my point of view, this concern about change is laudable, though
I am not so sure that it is always a good idea to ignore future
extensions for the sake of simplifying the design as much as
possible. In this respect, the reasoning behind the approach to
projects is based on three variables: the scope of the project, the
quality and the cost. Beck’s rationale lays emphasis on the
maximum reduction of the scope of the project (that is, concen-

4. At the end of the day, I am influenced by my work on software
measurement which led up to my doctoral thesis (as well as an
extraordinary mention for my doctoral thesis), and to the publi-
shing of the first book in Spain on this subject, with the collabora-
tion of the outstanding researcher and professor Javier Dolado
(my thesis director), together with other eminent researchers from
Spain and Great Britain, [Dolado/Ferndndez 00].

5. Although as Einstein once said, “it should be as simple as possible
but no simpler”.

24 UPGRADE vol. Iit, No. 2, April 2002

trating only on functionality and the features which are strictly
necessary) to gain advantages in the other two variables.

Once the ground rules have been established for action, a
great deal of what the developers do should be aimed at simpli-
fying the design (without making any extra effort with an eye
to the future), performing automated tests and accumulating a
lot of practice in the modification of designs so as to lose the
fear of making changes. In fact, a phrase has been coined which
uses an analogy to sum up XP’s philosophy: “Driving is not
about getting the car going in the right direction. Driving is
about constantly paying attention”. In this case, the driver is the
customer with whom we should have a constant interaction. To
achieve this the customers’ directors have to be convinced that,
if they can’t free a person to attend to the developers constantly,
maybe their bet on the system under construction is not worth
making.

From my point of view, it is especially satisfying that soft-
ware tests (always the most hated and neglected part of a devel-
opment) are being given more importance and, it is also worth
underlining that productivity in this area (and in others such as
coding) depend on the introduction of automated environ-
ments. In my experience, generally speaking there tends to be
practically no use of support tools in automated tests by organ-
isations developing conventional software®. However, I am not
sure if XP’s strategy concerning changes and design will
always be appropriate. What I do like is the fact that emphasis
is put on simplicity achieved through good design, since I
believe that all too often developers opt for code which “more
or less works” and take little time to consider what might be the
simplest and most understandable code to implement a func-
tionality.

XP also promotes certain interesting values of human team
and project management (as well as some technical aspects):
communication, simplicity, feedback with the customer and
courage when tackling the problems and challenges thrown up
by design. But, above all, what it proposes is a life cycle or
process which is “lightweight” (as McCormick says [McCor-
mick 01]) or agile. This fast process, which is a successor to the
RAD concept and evolutionary prototyping, involves very fast
iterations (releasing versions, builds or whatever we want to
call them) run at very frequent intervals: one a day or even
every few hours. This requires the tests to be very agile and
highly organised, which is only possible if they can benefit
from efficient and well organised automation.

Each XP iteration involves:
¢ A coding phase: code is the essential building block and the

primordial aim of XP as a concise and precise communica-

tion vehicle, regardless of whether we work with visual
environments or text editors or code generators.

* An indispensable automated test phase. Personally I find it
very satisfying to see how in XP tests are not a torture but
rather something which is more fun than programming.

6. In several surveys when giving training courses on software tests,
a significant percentage of the attendees admitted a very poor
level of automation and support environments, and also of test
organisation and procedure.

© Novética and Informatik/Informatique

eXtreme Programming

They also help to lengthen software’s life span since they are
an aid to efficient change management. The danger lies in
lowering the stringency level of the tests without establish-
ing a clear tolerable error rate. One direct consequence of
this is the incorporation of test measurements: of code
coverage and the like. This is a cause of some satisfaction for
me given the current dearth of software development organ-
isations which implement software measurement.

* A phase of active listening with the customer. As I said
earlier, this requires the almost full time dedication of one of
the customer’s employees to manage and check customer
requirements.

* A design phase to simplify and correct anything which isn’t
appropriate.

While this simple review does not aim to match the detailed
descriptions to be found in other articles in this issue, perhaps
it may serve to comment on certain features of XP in relation
to software engineering philosophy. However, there are a
number of general considerations concerning XP’s applicabili-
ty which I would like to include.

Some of my general reflections about XP

In Beck’s book he advocates multi-disciplinarity in IT
personal. He proposes that we should forget distinctions
between analysts, programmers and test personnel since XP’s
application requires development personnel to play various
roles and be equipped to carry them out efficiently: everyone
should take part in analysis, design, programming and tests.
From my point of view, this idea is very attractive to say the
least. The rigid division of work often leads to a loss of effec-
tiveness and efficiency in software development, regardless of
any efforts made to improve teamwork.

However, there is currently a very serious lack of profession-
als in information technologies, and for software development
in particular, in spite of the effect of the economic downturn on
employment. In fact, there are studies by organisations such as
Forrester Research [Forrester 01] which are already predicting
arecovery of the IT business for 2003, based on forecasts of ex-
penses made by corporate managers.

It would, however, be easier to get trained personnel to turn
their hand to the agile processes of XP if a serious attempt were
made to introduce the qualification or profession of software
engineer [Dolado 00], instead of just having a qualification in
computer science or, of course, just revamping other qualifica-
tions centred exclusively on the knowledge of programming
languages without a solid grounding in analysis, design and
software testing. By this I do not mean that those who don’t
have a solid training in software engineering cannot contribute
their intelligence towards the correct application of the XP
philosophy. Of course, it is possible to train and coach people
in the use of XP but I find it hard to believe that this training
could be successful with people who lack a solid grounding in
software development.

Another of the fears I harbour regarding XP is that it will
provide a great excuse for those who like to work in the devel-
opment process in a state of pure chaos. XP, as its own expo-
nents say, does not consist of relinquishing the notion of a

© Novética and Informatik/Informatique

controlled process but rather it is merely the adoption of a strat-
egy of simplification and agility in development work. In spite
of the fact that, on occasions, work on models to improve proc-
esses have fallen into the error of establishing heavyweight and
somewhat rigid processes, the intellectual contributions made
by CMM [Paulk et al. 93], SPICE [ISO 98], etc. have been
fundamental in bringing about a clear awareness that it is
necessary to organise the way we work, and that chaos can only
end in tears. It is vital that we do not lose what we have
achieved: the awareness (although the we may sometimes fail
to put it into practice) that a development process which is well
designed and well suited to the problem is fundamental if we
want to prevent our projects from failing.

Finally, although XP lays stress on effective communication,
I can see a problem in the fact that it always insists on face to
face conversation. While a constant and face to face exchange
of opinions on a project is a rare commodity in most conven-
tional projects, it is nonetheless true that documentation is also
an important asset in the control of the project. In XP I under-
stand that its orientation towards small projects with volatile
requirements encourages agility in personal verbal communi-
cation. However, what happens in the case of personnel turno-
ver? Or with problems of absences due to sickness or for other
reasons? It is true that XP’s idea of collective ownership of
code (everyone can know and change any part of an applica-
tion) means greater ease in handling personnel turnover but I
believe that we should never pass up the chance to have good
documentation so as to be able to understand and maintain an
application. Later we can try to remember the content and
format of the documentation we think will be suitable for a
project or an application (or we can even use automated docu-
mentation tools). But, at the end of the day, documentation is
necessary, as well as code (the real instrument of communica-
tion for exponents of XP).

In this article, I hope I have been able to convey, to the limits
of my knowledge of it (and having never attempted to apply it
in real projects), the idea that I have of XP. Naturally I am open
to any comments on my opinions.

References

[Beck 00]
K. Beck, EXtreme Programming explained. Embrace change,
Addison-Wesley, 2000.

[Dolado 00]
J.J.Dolado, “El cuerpo de conocimiento de la Ingenieria del soft-
ware” (Body of software engineering knowledge), Novatica, no.
148, November-December, 2000, pp56-59.

[Dolado/Fernandez 00]
J. J. Dolado and L. Fernandez (eds.), “Medicién para la gestion
en la ingenieria del software” (Measurement for software engi-
neering management), Ra-Ma, 2000.

[Forrester 01]
Forrester Research, “End Predicted for IT Sector Slump”, 2001.

[ISO 98]
ISO, ISO/IEC TR 15504-1998. Information technology. Soft-
ware process assessment. Parts 1-9, International Organization
for Standardization, 1998.

[McCormick 01]
M. McCormick, “Programming extremism”, Communications of
the ACM, Vol. 44, no. 6 June, 2001, pp199-201.

UPGRADE vol. iil, No. 2, April 2002 25

eXtreme Programming

[Paulk et al. 93] http://c2.com/cgi/wiki
M. Paulk et al., Capability maturity model for software. Version http://www.xpdeveloper.com/
1.1. Technical Report CMU/SEI-93-TR024, Software Engineer- http://www.junit.org/

ing Institute, February, 1993. http://www.armaties.com/extreme.htm
http://www.xp2001 .org/:
Some web resources on XP the XP2002 conference is currently accepting submissions
http://www.xprogramming.com/ http://pairprogramming.com/
http://www.extremeprogramming.org/ http://xp123.com/

26 UPGRADE vol. Iit, No. 2, April 2002 © Novatica and Informatik/informatique

eXtreme Programming

XP in Complex Project Settings: Some Extensions

Martin Lippert, Stefan Roock, Henning Wolf and Heinz Ziillighoven

XP has one weakness when it comes to complex application domains or difficult situations at the customer’s
organization: the customer role does not reflect the different interests, skills and forces with which we are
confronted in development projects. We propose splitting the customer role into a user and a client role. The
user role is concerned with domain knowledge; the client role defines the strategic or business goals of a
development project and controls its financial resources. It is the developers’ task to integrate users and
clients into a project that builds a system according to the users’ requirements, while at the same time attain
the goals set by the client. We present document types from the Tools & Materials approach
[Lilienthal/Ziillighoven 97] which help developers to integrate users and clients into a software project. All
document types have been used successfully in a number of industrial projects together with the well-known

XP practices.

Keywords: XP, Management, Participation, User, Client,
Roles

1 Context and Motivation

It was reported that one of the major problems of the C3
project was the mismatch between the goal donor and the gold
owner [Jeffries 00], [Fowler 00]. While the goal donor — the
customer in the XP team — was satisfied with the project’s
results, the gold owner — the management of the customer’s
organization — was not. It is our thesis that XP, in its current
form, fails to address the actual situation at the client’s organi-
zation in a suitable way. The main stakeholder, i.e. the users

Martin Lippert is a research assistant at the University of Ham-
burg and a professional software architect and consultant at APCON
Workplace Solutions. He has several years' experience with XP
techniques and XP project coaching for various domains and has
given a number of talks, tutorials and demonstrations (e.g. ICSE,
XP,O0PSLA, ECOOP, HICSS, ICSTest and OOP). He is a member
of the XP 2002 program committee. Among his publications are ar-
ticles for “Extreme Programming Examined” and “Extreme Pro-
gramming Perspectives” and he co-authored the book “Extreme
Programming in Action”, which is due to be published by Wiley in
July 2002. <lippert@jwam.org>

Stefan Roock is software architect and consultant at APCON
Workplace Solutions. He has solid project experiences with object-
oriented technologies, architectures and frameworks as well as with
XP. Among his current interests are evolution of frameworks and
migration of applications, eXtreme Programming, large refactor-
ings and suitable organizational structures for cooperating XP
teams. Stefan Roock has given a number of talks, tutorials and dem-
onstrations (e.g. XP Conference, ECOOP, OOP and ICSTest) and
co-organizes the XP 2002 workshop on testing techniques. Among
his publications are articles for “Extreme Programming Examined”
and “Extreme Programming Perspectives” and he is co-author of
the book “Extreme Programming in Action”, which is due to be

© Novética and Informatik/Informatique

and their management, are merged into a single role: the
customer. This one role cannot address the different forces in a
development project. The users of the future system know their
application domain in terms of tasks and concepts, but they
rarely have an idea of what can be implemented using current
technologies. Moreover, it is often misleading to view the users
of the future system as the goal donor. They are unfamiliar with
the strategic and business goals related to a project and, more
important, they do not control the money.

Therefore we make a distinction between the role of the user
and the role of the client. The users have all the domain knowl-
edge and therefore are the primary source for the application

published by Wiley in July 2002. He can be contacted at
roock@jwam.org.

Henning Wolf is software architect at APCON Workplace Solu-
tions in Hamburg.He is one of the original architects of the Java
framework JWAM, supporting the tools & materials approach. His
current interests are eXtreme Programming, architectures for multi-
channelling applications and object-oriented technologies. Besides
publications on various software engineering topics he is co-author
of the book “Extreme Programming in Action”, which is due to be
published by Wiley in July 2002. He can be contacted at hen-
ning.wolf@itelligence.de.

Heinz Ziillighoven, graduated in Mathematics and German Lan-
guage and Literature, holds a PhD in Computer Science. He is pro-
fessor at the Computer Science Department of the University of
Hamburg and CEO of APCON Workplace Solutions Ltd. He is con-
sulting industrial software development projects in the area of ob-
ject-oriented design, among which are several major banks. Heinz
Ziillighoven is one of the leading authors of the object-oriented
Tools & Materials Approach. A Tools & Materials construction
handbook will be published by Morgan Kaufmann end of 2002.
Among his current research interests are object-oriented develop-
ment strategies and the architecture of large industrial interactive
software systems. <zuellighoven@jwam.org>

UPGRADE vol. iil, No. 2, April 2002 27

eXtreme Programming

requirements. The client sets the goals of the development
project from a business point of view. The client will only pay
for a development project if these goals are met to a certain
degree.

We begin with a discussion of the roles in an XP project as
defined by Kent Beck. We then split up the customer role into
the user and the client role. These two roles change the situation
of XP projects. While the user can be seen in a similar way to
the XP customer, the client role requires more attention. We
address the new project situation by using two document types
geared to the client role: base lines and projects stages. We
show when and how to use these document types and discuss
their relation to story cards and the Unified Process (UP).

2 Rolesin XP
XP defines the following roles for a software develop-

ment process [Beck 99]:

* Programmer: The programmer writes source code for the
software system under development. This role is at the tech-
nical heart of every XP project because it is responsible for
the main outcome of the project: the application system.

* Customer: The customer writes user stories which tell the
programmer what to program. “The programmer knows
how to program. The customer knows what to program”
([Beck 99], pp. 142f).

o Tester: The tester is responsible for helping customers select
and write functional tests. On the other side, the tester runs
all the tests again and again in order to create an updated
picture of the project state.

* Tracker: The tracker keeps track of all the numbers in a
project. This role is familiar with the estimation reliability of
the team. Whoever plays this role knows the facts and
records of the project and should be able to tell the team if
they will finish the next iteration as planned or not.

* Coach: The coach is responsible for the development proc-
ess as a whole. The coach notices when the team is getting
“off track™ and puts it “back on track”. To do this, the coach
must have a very profound knowledge and experience of XP.

* Consultant: Whenever the XP team needs additional special
knowledge they “hire” a consultant in possession of this
knowledge. The consultant transfers this knowledge to the
team members, enabling the team to solve the problem on
their own.

* Big Boss: The big boss is the manager of the XP project and
provides the resources for it. The big boss needs to have the
general picture of the project, be familiar with the current
project state and know if any interventions are needed to
ensure the project’s success.

While XP addresses management of the software develop-
ment aspects with the Big Boss role, it neglects the equivalent
of this role on the customer side. XP merges all customer roles
into the customer role. We suggest splitting up the customer
role into two roles: user and client.

3 The New User and Client Roles

The user is the domain expert which the XP team has to
support with the software system under development. The user

28 UPGRADE vol. Iit, No. 2, April 2002

is therefore the first source of information when it comes to
functional requirements.

The client role is not concerned with detailed domain knowl-
edge or functional requirements. The client focuses on business
needs, like reducing the organizational overhead of a depart-
ment by 100,000 USD a year. Given this strategic background,
the client defines the goals of the software development project
(“Reduce the organizational overhead of the loan department
by 100,000 USD per year”) and supplies the money for the
project. The client is thus the so-called goal donor and the gold
owner.

It is often not easy to reconcile the needs of users and clients
at the same time. What the users want may not be compatible
with the goals of the client. What we need, then, are dedicated
instruments to deal with both roles.

4 Story Cards and the Planning Game

We use story cards for the planning game, but we use
them in a different way than in the “original” XP, and our
planning game differs in some aspects, too. In our projects,
users or clients rarely write story cards themselves. They do not
normally have the skills or the required “process knowledge” to
do so. Typically, we as developers write story cards based on
interviews with users and observations of their actual work
situation. These story cards are reviewed by the users and the
client. The users must assess whether the implementation of the
story cards will support them. They thus review the developers’
understanding of the application domain. The client decides
which story cards to implement in the next development itera-
tion, and with which priority. To avoid severe mismatches
between the interests of the users and client both parties are
involved in the planning game. This means that users can artic-
ulate their interests and discuss with the client the priorities of
the story cards.

Our experience here is clear: users and client will normally
reach a compromise on their mutual interests. But whatever the
outcome of the planning game is, the decision about what is to
be implemented next is made not by developers but by the
client.

If a project is complex, there will be an abundance of story
cards. In this case it is difficult for users, clients and developers
to get the overall picture from the story cards. For this type of
project, we use two additional document types: project stages
and base lines. These are described in the next section.

Subgoal Realization When
Prototype with Web frontend | Presentation of prototype for | 31/3/00
is running users
Prototype supports both Presentation of extended 16/5/00
Web and GUI frontend. prototype for users and client
First running system Pilot Web users use Web 30/8/00
installed frontend.

Figure 1: Example project stages

© Novética and Informatik/Informatique

eXtreme Programming

Who does what with What for How to check
whom/ what
Roock Preparation of Interviews E-mail interview
interview guideline to team
guideline
Wolf, Lippert, | Interview users First Interview protocols
atpilotcustomer | understanding of | on the project server
application
domain
Roock Implement GUI | Get feedback on Prototype
prototype the general acceptance tests are
handlingfromthe | OK; executable
users prototype is on
project server

Figure 2: Examples of base lines

5 Project Stages and Base Lines

In projects with complex domains or large application
systems, story cards may not be sufficient as a discussion basis
for the planning game. In such cases, we need additional tech-
niques to get the overall picture — especially for the contingen-
cies between the story cards. If one story cannot be developed
in the estimated period of time, it may be necessary to resched-
ule dependent stories. We may also need to divide the bulk of
story cards in handy portions and make our planning more
transparent to the users and the client. We have therefore
enhanced the planning game by selected document types of the
Tools & Material approach [Roock et al. 98]: base lines and
project stages.

We use project stages and base lines for project management
and scheduling. A project stage defines which consistent and
comprehensive components of the system should be available
at what time covering which subgoal of the overall project.
Project stages are an important document type for communicat-
ing with users and clients. We use them to make development
progress more transparent by discussing the development plan
and rescheduling it to meet users’ and client’s needs. Figure 2
shows an example of three project stages (taken from the
JWAM framework development project). We specify at what
time we wish to reach which goal and what we have to do to
attain this goal. Typically, the project stages are scheduled
backwards from the estimated project end to its beginning,
most important external events and deadlines (vacations, train-

ing programs, exhibitions, project reviews and marketing
presentations) being fixed when projects are established.

Unlike the increments produced during an XP iteration, the
result of a project stage is not necessarily an installed system.
We always try to develop a system that can be installed and
used as the result of every project stage, but we know that this
is not always feasible. In large projects or complex application
domains, developers need time to understand the application
domain. During this period, developers may implement proto-
types but rarely operative systems. We thus often have proto-
types as the result of early project stages. Another example here
is the stepwise replacement of legacy systems. It is often appro-
priate to integrate the new solution with the legacy system for
reasons of risk management. Project stages then produce sys-
tems that can and will be used by users. But the project team
may also decide not to integrate the new solution with the leg-
acy system, perhaps because of the considerable effort required
for legacy integration. In such cases, the project team will also
produce installable increments, but it is clear that the incre-
ments will not be used in practice. Users are often reluctant to
use new systems until they offer at least the functionality of the
old system.

Base lines are used to plan one project stage in detail. They
do not focus on dates but rather define what has to be done, who
will do it and who will control the outcome in what way. Unlike
project stages, base lines are scheduled from the beginning to
the end of the stage.

In the base-lines table (for example, in Figure 2), we specify,
who is responsible for what base line and what it is good for.
The last column contains a remark on how to check the result
of the base line. The base-lines table helps us to identify
dependencies between different steps of the framework devel-
opment (see “What-for” column). The last three columns are
the most important ones for us. The first column is not that
important because everybody can, in principle, do everything
(as with story cards). However, it is important for us to know
how to check the results in order to get a good impression of the
project’s progress. The second and third columns contain indi-
cators for potential re-scheduling between the base lines and
also helps us to sort the story cards that are on a finer-grained
level.

The rows of the base-line table are often similar to story
cards, but base lines also include tasks to be done without story
cards. Examples are: organize a meeting, interview a user, etc.

The way project stages and base lines are actually used

depends on the type of development project
in hand. For small to medium-size projects,

Extension level 5 ‘ Display (passive) ‘

Report System

we often use project stages, but no explicit
h base lines. In these cases, we simply use the

Extension level 4 ‘ Model Conmputation

story cards of the current project stage,

Extension level 3

‘Model Control‘ Measured Value Processing ‘ Material Tracking D

complementing them by additional task
cards. If the project is more complex (more

Extension level 2

‘ Configuration ‘ Primary Data Handler ‘Simulator ‘ Set Point Server

developers, developers at different sites,

Extension level 1 ‘ Logging ‘

Telegram Handler

etc.), we use explicit base lines in addition to

story cards. If the project is long-term we do

Figure 3: Example core system with extension levels

© Novética and Informatik/Informatique

not define base lines for all project stages up
front, but rather identify base lines for the

UPGRADE vol. iil, No. 2, April 2002 29

eXtreme Programming

Protocol
System %

Plausibility Core System ConFroI
(Signals) Demonstrator Station
Interface

Model Adaptation
(Machine Learning)

Figure 4: Example core system with specialized systems

current and the next project stage. Since a project stage should
not be longer than three months, we work on a detailed
planning horizon of from three to six months.

It is often a good idea to sketch the entire system as guideline
for the project stages. We describe the concept of core system
and specialized systems in the next section in order to provide
an application-oriented view of the system architecture.

6 System Architecture

In line with the project stages, we divide the software
system into a core system with extension levels [Krabbel et al.
96]. The core system is an operative part of the overall software
system which addresses important domain-related needs. It is
developed first and put into operation. Since the core system is
usually still quite complex, it is subdivided into extension
levels which are built successively. An example of a core
system with extension levels is shown in Figure 3 (taken from
the domain of hot rolling mills). The upper extension levels use
the functionality of the lower extension levels. This way, we get
an application-oriented structure that is useful for planning and
scheduling. It is obvious that the lowest extension level must be
created first, followed by the next-higher one, and so on.

Specialized systems are separated from the core system.
They add well-defined functionality. An example of a core
system with specialized systems is shown in Figure 4 (again
taken from the domain of hot rolling mills). The specialized
systems are drawn as circles.

Since specialized systems only depend on the core and not
vice versa, we can deliver an operative and useful core system
very early on and get feedback from the users. In parallel,
different software teams can build specialized systems. Adher-
ing to the one-way dependency of specialized systems, we
achieve a maximum of independence among the special
systems. They can be created in any order or even in parallel.
Obviously, the core system has to provide the basic functional-
ity for the whole system because it is the only way for the
specialized systems to exchange information. The core system
will usually provide a set of basic communication mechanisms
allowing information transfer between different parts of the
overall system.

The concept of core system and specialized systems can
easily be used in the planning game. Users and client get an

30 UPGRADE vol. Iii, No. 2, April 2002

impression of the whole system and can negotiate on the differ-
ent values and priorities (users’ needs, client’s goals, technical
constraints) in order to reach a compromise on the project’s
development schedule.

In addition, project stages are used to control the project’s
progress and timelines relating to the overall plan.

7 Conclusion

We have discussed the roles in a XP project as defined by
Kent Beck. Based on our experience, we split the XP customer
role into two roles: user and client. The user is the source of
application knowledge, while the client defines the project
goals and supplies the money for the project. Both parties must
be integrated into the development project. We have shown
how this can be done with the help of modified story cards,
projects stages, base lines and an adapted planning game.

We do not suggest using all the presented new instruments
for every project. They should be used as part of an inventory
or toolbox, together with the familiar techniques defined by XP.
We then use the instruments required for the project in hand. If
the project situation is not complex, we will not burden the
project with the additional roles and document types. But if the
application domain or the project is highly complex, the
sketched extensions to XP will be worth while.

Selection of the proper instruments from the toolbox may be
difficult for the project team because we are not yet able to
provide detailed guidelines. Evaluating project experience to
provide such guidelines for tool selection will be one of our
future tasks.

References

[Beck 99]
Kent Beck: eXtreme Programming Explained — Embrace
Change. Addison-Wesley. 1999.

[Fowler 00]

Martin Fowler: The XP2000 conference.
<http://www.martinfowler.com/articles/xp2000.htmI>. 2000.

[Jeffries 00]
Ron Jeffries: Extreme Programming — An Open Approach to
Enterprise Development.
<http://www.xprogramming.com/xpmag/>. 2000.

[JTWAM]
The JWAM framework. <http://www.jwam.org/>

[Krabbel et al. 96]
A.Krabbel, S. Ratuski, I. Wetzel: Requirements Analysis of Joint
Tasks in Hospitals, Information systems Research seminar. In
Scandinavia: IRIS 19; proceedings, Lokeberg, Sweden, 10-13
August, 1996. Bo Dahlbom et al. (eds.). — Gothenburg: Studies in
Informatics, Report 8, 1996. S. 733-750, 1996

[Lilienthal/Ziillighoven 97]
C. Lilienthal and H. Ziillighoven: Application-Oriented Usage
Quality, The Tools and Materials Approach, Interactions Maga-
zine, CACM, October 1997

[Roock et al. 98]
Roock, S., Wolf, H., Ziillighoven, H., Frameworking, In: Niels
Jakob Buch, Jan Damsgaard, Lars Bo Eriksen, Jakob H. Iversen,
Peter Axel Nielsen (Eds.): IRIS 21 “Information Systems
Research in Collaboration with Industry”, Proceedings of the
21st Information Systems Research Seminar in Scandinavia,
811 August 1998 at Saeby Soebad, Denmark, pp. 743-758,
1998

© Novética and Informatik/Informatique

