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Abstract. Real-time programming is a software engineering discipline
that has been around ever since the dawn of digital computing. The
dream of real-time programmers is to unlock the virtually unlimited po-
tential of software for embedded computer systems — digital computers
that are supposed to behave like analog devices. The perfect embedded
computer system is invisibly hybrid, it works according to the largely
unidentified laws of embedded software but acts according to the laws of
physics. The critical interface between embedded software and physics
is real-time and yet, while physical processes evolve in real-time, soft-
ware processes do not. Only the embedded computer system as a whole
— embedded software and hardware — determines a complex notion of
so-called soft-time to which the software processes adhere: mapping soft-
time to real-time is the art of real-time programming. We discuss various
real-time programming models that support the development of real-time
programs based on different abstractions of soft-time. We informally in-
troduce a real-time process model to study (1) the compositionality of
the real-time programming models and (2) the semantics of real-time
programs developed in these models.

1 Introduction

Figure 1 shows an example of a (distributed) software process that interacts
with a physical process. At some real-time instant, the software process takes
some input from the physical process. Some time later, when the software pro-
cess is finished processing the input it will return the result of its efforts to the
physical process. From the very beginning of taking the input until the very
end of returning the output, the software process evolves in soft-time. From
the perspective of the physical process, only at the real-time instants of input
and output, soft-time becomes real-time. In between input and output, soft-time
can be amazingly complex in relation to real-time when seen from the software
perspective. In the example, right after taking the input the software process
executes on some processor A. After a while the process is granted a semaphore
that controls the access to some shared resource. Handling the semaphore briefly
delays the software process. Unavailable semaphores may result in longer and
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sometimes even unbounded delays: soft-time is discontinuous, unlike real-time.
Then the software process continues to execute on processor A and computes
an intermediate result that is transmitted across a network to some processor B.
Just like semaphores, network access also contributes to the discontinuity of soft-
time. Before returning the output to the physical process, the software process
now runs on processor B. The real-time instant when it completes or, in other
words, the relation between soft-time and real-time depends on a whole vari-
ety of factors: hardware performance and utilization, scheduling strategy and
communication protocol, program and compiler optimizations. Improving any
of these factors does not necessarily speed up soft-time. In fact, it can even slow
soft-time down.

Software processes are not composable with respect to soft-time. For ex-
ample, composing a software process P with a software process Q that shares
some resources with P may result in a system with unbounded soft-time be-
cause of a deadlock although both processes run separately in bounded soft-
time: the system behavior depends on their relative execution speed — a race
condition on soft-time. An unrelated process U , which may unintentionally yet
non-deterministically delay P or Q, can make the difference between good and
bad. Programmers sometimes refer to U as “heavy load” under which the sys-
tem exhibits unexpected behavior. In the presence of real-time constraints this
scenario is known as the priority inversion phenomenon: a low-priority Q gains
access to a shared resource before a high-priority P asks for it giving a medium
priority U the chance to become the real winner by delaying Q and thus P .

Yet real-time programming requires compositional models: the physical world
is concurrent, so is embedded software; embedded hardware is distributed, so is
embedded software. Section 2 discusses real-time programming models that ad-
dress compositionality in different ways. Non-real-time, sequential programming
models typically support a notion of procedural, functional, or logical compo-
sition of programs that are compatible in some sense, e.g., type-safe. Valid im-
plementations are supposed to either compute reproducible results, or raise an
exception — in case the compatibility check was wrong —, or may not even ter-
minate. In Section 3, we follow this concept and introduce informally a real-time
process model that lifts program composition to process composition: processes
composed in that model compute, given a sequence of inputs, the same sequence
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of outputs (value-determinism) at the same time (time-determinism) provided
the composition preserves the process timing (time-invariant) and is schedulable
(time-safe), and the individual processes are value- and time-deterministic. In
Section 4, we use this process model to study the semantics of real-time programs
developed in the real-time programming models of Section 2.

2 Models for Real-Time Programming

This section presents three real-time programming models, compares their fun-
damental characteristics, and discusses typical application areas. We distinguish
the synchronous, scheduled, and timed programming models shown in Figure 2.
The selection is limited and by no means complete. Models for real-time pro-
gramming have also been discussed elsewhere, e.g., in [10] or [14].

Synchronous Model. The principle of synchronous programming is based on the
idea of zero time computation, see, e.g., [4]. The synchronous programmer as-
sumes that any computational activity of a synchronous program including com-
munication takes no time: soft-time in a synchronous program is always zero. A
synchronous program is executed in the context of some physical or computa-
tional process that generates events as stimulus for the program. Figure 2 shows
an example of an event timeline in the synchronous model. A synchronous pro-
gram reacts to events in zero time by computing instantaneously some output
(reaction) based on the input and control state of the program. A synchronous
program is deterministic if it computes at most one reaction for any event and
control state, and reactive if it computes at least one reaction for any event and
control state, i.e., if it terminates. The reactivity of a synchronous program, i.e.,
the instantaneous and deterministic reactions to some stimulus, is what concerns
the synchronous programmer. Synchronous programming is therefore often re-
ferred to as synchronous reactive programming. The problem of a compiler for
synchronous programs is to implement reactivity. Since cyclic language con-
structs are present in many synchronous programming languages, the compiler
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typically needs to prove the existence of finite fixed-points or, in other words,
the absence of infinite cycles in a synchronous program. Depending on the rep-
resentation of the control state of a synchronous program, proving reactivity is
complex — in languages with explicit control flow such as Esterel [1] — or less
difficult — in data-flow languages such as Lustre [5].

In the programmer’s mind mapping soft-time in the synchronous model to
real-time is simple. A synchronous and reactive program always runs at the
speed of its context and, if the program is deterministic, even its output is
determined by the behavior of its context. From the perspective of the (physical)
context the behavior of a deterministic and reactive program in the synchronous
model is perfect. Context and program are synchronous. An implementation of
a synchronous program may approximate synchrony by computing any reaction
to an event before the next event occurs while the exact time when a reaction
is completed may vary as shown in Figure 3. Thus a compiler for synchronous
programs ideally implements not only code generation but also a prover for
reactivity and synchrony. A difficult part of showing synchrony is to estimate
the (worst-case) execution times of program code [12].

Scheduled Model. The classical discipline of real-time programming [15] in lan-
guages such as Ada or, more recently, in Real-Time Java is based on the concept
of scheduled computation. A scheduled program typically consists of processes,
threads, or tasks. A scheduler determines which part of a scheduled program
runs at what time. Soft-time in the scheduled model is the time it takes for some
computational activity to complete. For example, the soft-time of a software
task is the response time of the task. Thus soft-time is not abstract as in the
synchronous model. Soft-time may vary depending on performance, utilization,
and scheduling scheme and is not a priori determined in the scheduled model.
Instead, soft-time in a scheduled program is constrained by real-time deadlines :
soft-time must be less or equal than real-time. Figure 2 shows for the sched-
uled model an event that triggers some scheduled computation, which completes
some time before its deadline. The exact time when it completes may vary in
the implementation as shown in Figure 3. A compiler for a scheduled program
typically implements only the functionality but not the scheduling, which is left



to the runtime system, i.e., the scheduler of a real-time operating system. The
schedulability of a scheduled program, i.e., the fact that all deadlines are met,
must be shown according to the scheduling scheme used in the real-time oper-
ating system. A schedulability analysis also requires the analysis of (worst-case)
execution times.

The deadlines in a scheduled program make the scheduled model a real-time
programming model. Hard real-time deadlines must be met under any circum-
stances whereas soft real-time deadlines leave scheduled computation some time
to complete after a deadline, which may result in degraded but still acceptable
performance. There are many soft real-time applications such as video and au-
dio processing. Application areas such as process control or embedded control
systems require hard deadlines and are often mission- or even safety-critical.
Hard and soft deadlines do not require different compilers but different sched-
ulers. Much work has been devoted to scheduling theory and practice as well
as, more recently, to the problem of hybrid schedulers for scheduled programs
with hard and soft deadlines [3]. In practice, however, designers of hard real-
time systems have mostly resisted to adopt complex schedulers and still rely
on well-understood scheduling schemes such as rate-monotonic scheduling [11].
Mechanisms like semaphores that can cause blocking — unbounded soft-time —
are often banned from hard real-time designs. Section 4 gives for more details.

Timed Model. The principle of timed programming is based on the idea of com-
putation and communication that logically takes a fixed, non-zero amount of
time no matter how much time it actually takes: soft-time in a timed program
is equal to real-time. Figure 2 shows for the timed model an event that triggers
some timed computation, which completes exactly at the specified time. The
timed programmer specifies the real-time it takes for a timed program to com-
pute some output assuming that enough soft-time is available, i.e., the timed
program is time-safe [7]. Time safety depends on performance, utilization, and
scheduling scheme. A compiler for timed programs checks time safety, i.e., if
enough soft-time is available and rejects programs if not. Checking time safety is
difficult [8] — it requires schedulability tests and execution time analyses — and
may not always be feasible at compile-time. If the timed program is indeed late,
a runtime exception may be thrown [7]. If the timed program finishes early, it de-
lays its output until the specified real-time has elapsed as shown in Figure 3. The
closer the implementation of the timed program outputs at the specified time,
the better the implementation approximates the timed model. A timed program
may run in the context of some physical or some other computational process.
Similar to the synchronous model, the behavior of a deterministic and time-safe
program in the timed model is perfect from the perspective of its context.

The timed model is well-suited for embedded control systems, which require
timing predictability, e.g., for precise, low jitter input and output. The timed
programming language Giotto [6] supports the development of embedded control
systems [9], in particular, on distributed hardware. The key element in Giotto
is a timed task that is periodic and deterministic with respect to its input and
state. The logical execution time of a Giotto task is the period of the task. For



example, a 10Hz Giotto task runs logically for 100ms before its output becomes
available and its input is updated for the next invocation. As a consequence of
the timed semantics, the behavior of a time-safe Giotto program is determined
by its (physical) context, not by performance, utilization, or scheduling scheme.
Since the parallel composition of timed programs does not change the timing
behavior of the individual programs in the timed model, Giotto is modular :
Giotto programs can be composed from smaller programs and Giotto programs
can be compiled separately and even incrementally.

3 A Real-Time Process Model

We introduce a real-time process model that captures the semantics of the pre-
viously discussed real-time programming models. In Section 4 we use the process
model to study the semantics of real-time programs developed in these models.

An embedded process P consists of program code and process variables X .
The program code implements the process actions A[P ] of the embedded pro-
cess P . Each process action p ∈ A[P ] operates on a subset X [p] of the process
variables X . Process actions may share process variables but no control state:
process actions compute or transport values of variables but do not invoke or
control other process actions. Process actions are either disabled, or else en-
abled to be scheduled for execution. Process actions can be enabled at any time
and then proceed according to any scheduling scheme. Enabling an already en-
abled process action leaves it enabled. Process actions complete voluntarily, they
cannot be disabled. Thus the process activity of an embedded process evolves
according to three orthogonal mechanisms: (1) a so-called reactor R that deter-
mines when a process action is enabled; (2) a scheduler S that determines which
enabled process actions execute; and (3) the process actions themselves, which
determine once enabled and scheduled when to complete and become disabled.
Reactor and scheduler are part of an embedded process.

We define the semantics of embedded processes in terms of process traces :
possibly infinite sequences c0, c1, c2, . . . of process states ci. The process states
C[P ] of an embedded process P consist of values for all process variables, an
abstract reactor and scheduler state, and the action states : enabled or disabled.
The sets of reactor and scheduler states are denoted by R[P ] and S[P ], respec-
tively. A process trace starts with initial values for all process variables and
initial action states in the process state c0. The successor state ci+1 of a process
state ci is constructed in three steps: (1) the scheduler S ⊆ C[P ]× A[P ] × S[P ]
chooses (non-deterministically) a process action p that is enabled in ci to exe-
cute its next step and a new scheduler state s. We require that S always chooses
well-defined actions and scheduler states. Let the intermediate process state
c be equal to ci except for the new scheduler state s; (2) the process action
p ⊆ X [p] × X [p] × {enabled, disabled} computes its next step, given the values
of its action variables X [p] in ci, resulting in new values for X [p] and its new ac-
tion state, i.e., still enabled or now disabled. We require that p always computes
well-defined values and action states. Let the intermediate process state c′ be



equal to c except for the new values of X [p] and the new action state of p; and
(3) the reactor R : C[P ] → 2A[P] ×R[P ] chooses, given the intermediate process
state c′, a subset E of all process actions to be enabled now and a new reactor
state r. Let the successor state ci+1 be equal to c′ except that the process ac-
tions in E are enabled in ci+1 in addition to the process actions that are already
enabled in c and except for the new reactor state r. This completes the definition
of the semantics of embedded processes. Note that the reactor is deterministic
whereas the scheduler and the process actions, in particular, their duration can
be non-deterministic. In order to model directly true concurrency in distributed
systems, we could but, for simplicity, have not defined a scheduler S′ to choose a
subset of enabled process actions to execute simultaneously rather than a single
enabled process action, cf., the definition of the reactor.

Process execution does not necessarily guarantee the atomicity of process
actions: a process action p may execute in multiple steps interleaved with the
execution of another process action that shares process variables with p. Guar-
anteeing atomicity is the problem of enabling process actions at the right time
but not too rapidly and of scheduling process actions at the right time and not
too late besides having process actions that complete fast enough. If we restrict
the reactor to enable at most a single process action at the same time and not
before any other process action completed, the scheduler disappears and we get
atomicity and what valid implementations in the synchronous model do: a pro-
cess trace is event-safe if in each state of the trace at most a single process action
is enabled. An embedded process is event-safe if all its process traces are event-
safe. Guaranteeing event safety requires the reactor not to enable process actions
too rapidly while process actions must complete fast enough. This corresponds to
proving reactivity and synchrony for implementations in the synchronous model.
The following definition gives the reactor more freedom but requires a scheduler:
a process trace is time-safe if a process action p never becomes enabled while
another process action that shares process variables with p is enabled. An em-
bedded process is time-safe if all its process traces are time-safe. Event safety
implies time safety but not conversely. Implementations in the timed model re-
quire time safety. An equivalent definition of time safety, from the perspective
of the scheduler and the process actions, is: a process trace is time-safe if each
enabled process action p completes before another process action that shares pro-
cess variables with p is enabled. In the following definition we put the burden
onto the scheduler: a process trace is space-safe if in each state of the trace the
scheduler never chooses an enabled process action to execute that shares process
variables with another enabled process action that has previously been scheduled
for execution but not yet completed. An embedded process is space-safe if all
its process traces are space-safe. Time safety implies space safety but not con-
versely. Programmers in the scheduled model use synchronization mechanisms
such as semaphores to ensure space safety.

Embedded processes can be composed to form an embedded system E , which
consists of the process actions of all processes, a reactor composed of the pro-
cess reactors, and a scheduler composed of the process schedulers. The process



actions of different processes may share process variables called system variables
of E but no control state. In an embedded system E , we distinguish reactions
and coactions of a process P : a reaction is a process action that operates on
process variables of P , including system variables; a coaction is a process ac-
tion that operates exclusively on process variables of P that are not system
variables. Coactions are a restricted form of reactions that can be enabled and
scheduled independently of the reactions of other processes without violating
space-safety. An embedded system is semantically a single embedded process
composed of multiple embedded processes but with a namespace for process
actions and variables that is syntactically structured according to the original
embedded processes. Suppose that an embedded system E is composed of two
embedded processes P and Q where P models a physical process and Q models
a software process. P consists of a coaction p that models the physical process
as well as a reaction s for sensing p and a reaction a for actuating p. Thus s and
a can be seen as device drivers that transport data between process variables of
p (physical world) and system variables (system memory). Similarly, Q consists
of a coaction t (software task) as well as a reaction i (task input) and a reac-
tion o (task output). i and o transport data between process variables of t (task
memory) and system variables. A typical execution order of the process actions
is s, i, t, o, a, s, . . . where p logically may run concurrently with i, t, and o.

The output behavior of Q is value-deterministic if the system variables of
E carry deterministic values at the instants when reactions of other processes
than Q, e.g., the reaction a, become enabled. Q must compute deterministic
values based on the values of its process variables and the system variables at
the instants when reactions of other processes than Q, e.g., the reaction s, com-
plete. Value-determinism means that Q computes, given the same sequence of
inputs, the same sequence of outputs but not necessarily at the same time. The
timing behavior of Q is time-deterministic if the reactions of Q are enabled and
complete at deterministic instants independently of the instants when reactions
of other processes than Q, e.g., the reaction s or a, are enabled or complete.
A weaker property than time-determinism is that the reactions of Q such as i
and o always eventually complete and thus enable the interaction of P with Q:
from the perspective of P , Q is time-live if the reactions of Q always even-
tually complete. We also say that Q is bounded time-live if there is an upper
bound on the time any reaction of Q is enabled. The composition of embedded
processes is order-preserving if the reactor of the composed system enables the
process actions deterministically in the same order as the reactors of the individ-
ual processes. The composition is time-invariant if the reactor of the composed
system also enables the process actions at the same instants as the reactors
of the individual processes. An embedded system composed of embedded pro-
cesses is value-deterministic (and time-deterministic) provided the composition
is order-preserving (and time-invariant) and event- or time-safe, and the individ-
ual processes are value-deterministic (and time-deterministic). This is not true
for space-safety since the composed scheduler may have to change the order in
which process actions that share variables are scheduled in the composed system.



4 Implementations of Real-Time Programs

In this section, we show how real-time programs developed in the synchronous,
scheduled, and timed model can be implemented as embedded processes. The
following table gives an overview of the model and process properties:

Synchronous Scheduled Timed

Model Composition value-deterministic – value-, time-deterministic

Model to Process event-safe space-safe time-safe

Process Composition order-preserving – order-preserving, time-invariant

Synchronous Implementation. A synchronous system is the implementation of a
synchronous program based on synchronous processes. A synchronous process re-
acts to the stimulus and input from other processes. For example, a synchronous
process Q is typically triggered by another process, e.g., a physical process P
that generates the input for Q. As soon as the synchronous process is triggered,
it takes the input and its internal state and computes some output and its next
internal state. The output is returned to the physical process as soon as the
synchronous computation is completed. Then the synchronous process waits for
the next input. Synchronous processes can be modeled by event-safe embedded
processes. Reactions model synchronous computation as well as input and out-
put transfers from and to a synchronous process. Coactions are not required.
Suppose that Q consists of a set R of reactions that implement Q, and suppose
that P consists of a reaction s to transfer input from P to Q and a reaction a to
transfer output from Q to P . The reactor enables s when P triggers Q. As soon
as s completes, the reactor enables, given the input and internal state of Q, a
reaction r ∈ R to compute (part of) the output and next state of Q. When r
completes, the reactor either enables another reaction in R, or else enables a to
return the output to P . The reactor is typically implemented by some form of
automaton. The job of the scheduler, on the other hand, is trivial since at any
time in an event-safe execution of a synchronous process at most a single reac-
tion is enabled. Non-trivial scheduling is only necessary if multiple synchronous
processes are composed in parallel where some scheduling decisions are left open
and not compiled into an automaton as, e.g., in communicating reactive processes
with Esterel [2] or in the presence of multiform time with Lustre [13].

The design of a synchronous system requires a proof of event safety: before
another input from P is available, the reactor must have stopped enabling reac-
tions in R (reactivity) and all reactions must have completed (synchrony). Event
safety implies time liveness if P always eventually generates new input for Q.
Thus event safety ensures that P can progress. Q is value-deterministic with
respect to P in an event-safe embedded system E if the reactor and all reactions
implement functions. The value-determinism of synchronous systems is impor-
tant and supports the development of mission- and safety-critical software in
the synchronous model. The synchronous model is compositional with respect to
value-determinism because an event-safe system composed of value-deterministic
synchronous processes is again value-deterministic (provided the composition of



the subsystem reactors is order-preserving). The composition of synchronous sys-
tems is an interesting research topic: if the subsystem reactors can be reused or
even distributed onto multiple processors, modular and distributed synchronous
programming as well as separate and incremental compilation may be possible.

Scheduled Implementation. A scheduled system is the implementation of a sched-
uled program based on scheduled processes. A scheduled process may run con-
currently with other processes. Process communication is typically handled by
semaphores that control the access to shared resources such as memory or I/O
devices. A POSIX process is an example of a scheduled process. Program code
that accesses a shared resource is called a critical section of a scheduled process.
In order to preserve data consistency, a critical section must not be preempted
by critical sections of other processes that access the same resource. Scheduled
processes can be modeled by space-safe embedded processes. Coactions model
non-critical program code whereas reactions correspond to critical sections. Thus
taking or giving a semaphore requires two process actions and a transition from
the process action that precedes the access to the semaphore to the process ac-
tion that succeeds the access. The reactor handles the transitions by enabling
succeeding process actions as soon as the preceding process actions complete.
The scheduler can choose an enabled reaction r (critical section) for execution
only if any other enabled reaction that shares system variables r has either com-
pleted or not yet started executing. The space-safe execution of the scheduled
system is thus up to the scheduler, provided the original scheduled processes use
the semaphores correctly.

The design of many scheduled systems is dominated by considerations on
space safety through complex scheduling where neither the process actions nor
the reactor have to worry about space safety. This is the strength and at the
same time the weakness of the scheduled model. All the know-how and the tools
for the development of complex but non-real-time systems is readily available
in the scheduled model with deadlines because scheduled processes are not re-
stricted in their control-flow and can be triggered to execute at any time. The
scheduler, on the other hand, is responsible to guarantee space safety under as
many circumstances as possible. This view has lead to an impressive amount
of research in real-time scheduling, see, e.g., [3]. The downside of the scheduled
model is that it is not compositional with respect to value- or time-determinism.
In general, the composition of scheduled processes results in real-time behavior
of the scheduled processes that is different from the real-time behavior of the
processes when running individually. The problem is that the processes and the
reactor can push the scheduler in situations such as priority inversion or dead-
lock that are hard or even impossible to handle. Traditionally, this problem has
been addressed but not solved by making the scheduler smarter using so-called
priority inheritance or priority ceiling protocols, see, e.g., [3].

An alternative approach is to shift the focus from space safety to time safety.
Recall that the reactor in a time-safe embedded system never enables a process
action p while another process action that shares variables with p is enabled.
Thus the scheduler in a time-safe embedded system is only concerned with com-



pleting process actions before the reactor enables others but not with any par-
ticular ordering of the process actions: priority inversion and deadlock are not
possible in a time-safe embedded system. Time safety requires the real-time
programmer to keep in mind that the completion of a process action does not
necessarily enable the next process action immediately. This means for a sched-
uled process that the process cannot simply try to take a semaphore but has to
accept and has to give up a semaphore in a timely fashion. In particular, at the
time when the process has to accept the semaphore the process must already be
waiting for the semaphore: the process must be time-safe. We call a semaphore
that must be accepted and released within some given time interval a timed
semaphore. The semantics of a timed semaphore may be relaxed in applications
where determinism is less important. For example, a scheduled process may be
allowed to anticipate or even reject a timed semaphore. However, scheduled sys-
tems are not value- or time-deterministic even when using timed semaphores.
Timed semaphores only prevent processes from delaying or blocking each other
and thus avoid the problem of priority inversion and deadlock.

Timed Implementation. A timed system is the implementation of a timed pro-
gram based on timed processes. A timed process consists of timed tasks that
may run concurrently with other timed tasks or processes. A timed task is a
sequential program with logically fixed execution time from invocation to com-
pletion. The invocation of timed tasks may be event- or time-triggered as well
as task-triggered, i.e., triggered by the completion of a task. A Giotto task is an
example of a timed process with a single timed task that is periodic and thus
time-triggered. The logical execution time of the timed task is the period of the
Giotto task. A timed task consists of a task for process computation and two
drivers for process communication: an input driver that transports data from
shared memory into task memory, the task that operates on task memory, and
an output driver that transports data from task memory to shared memory. The
execution of a timed task begins with the execution of the input driver followed
by the execution of the task. The output driver executes after the task com-
pletes. The execution of a timed task ends with the completion of the output
driver exactly at the time when the logical execution time of the timed task
elapsed. Thus process communication with a timed task is only possible before
and after but not during the execution of the timed task. Task memory may
only be shared by multiple timed tasks of the same timed process. Since timed
tasks have no means of synchronizing on task memory, timed tasks sharing task
memory must be invoked and scheduled without preempting each other.

Timed processes can be modeled by time-safe embedded processes. Coactions
model tasks whereas reactions correspond to drivers. The reaction that models
the input driver of a timed task is enabled by the reactor as soon as the timed
task is triggered. The coaction that models the task is enabled when the input
driver completes. The reaction that models the output driver is enabled when
the time is right to meet the specified completion time of the timed task. By
then the task must have completed, i.e., the task must be time-safe. In a system
with multiple timed processes, the reactor may enable multiple coactions (tasks)
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but only a single reaction (driver) at the same time. For example, if a timed
task T1 is invoked (completes) at the same time when a timed task T2 of a
different process is invoked (completes), the reactor enables the reactions that
model the input (output) drivers of T1 and T2 sequentially in some order. The
coactions that model the tasks of T1 and T2 may be enabled at the same time.
For a time-safe execution the scheduler is assumed to schedule reactions with
higher priority than coactions. Since at most a single reaction is enabled at the
same time, scheduling reactions is trivial. A coaction, on the other hand, must
be scheduled such that it completes before the reactor enables a reaction that
shares memory with the coaction. Thus the reactor is responsible for the precise
timing of inter-process communication while the scheduler takes care of process
computation.

The reactor for timed processes can be implemented by a virtual machine
called the Embedded Machine [7] (E machine for short). The E machine mediates
in real-time the interaction of physical processes and software processes as shown
in Figure 4. The E machine has already been used as a target machine for the
compilation of Giotto programs [8] to E code, the code interpreted by the E ma-
chine. Besides some auxiliary instructions, e.g., for control-flow, the E machine
has three key instructions: (1) the call(d) instruction enables a driver d and
blocks the E machine until d completes; (2) the schedule(t) instruction enables
a task t without blocking the E machine. t will not be scheduled for execution
before the E machine is finished executing E code; and (3) the future(g, b) in-
struction makes the E machine execute the E code at address b when the trigger
g becomes true. Triggers control the invocation of the E machine such as event-,
time- or task-triggered invocations. For example, g may be a time trigger that
becomes true when, say, 10ms elapsed after the execution of a future instruc-
tion with g. Then we say that the E code block is enabled. The E machine uses
a trigger queue to maintain the list of triggers that currently guard an E code
block. As soon as a trigger in the queue becomes true it is removed from the
queue and the guarded E code block is executed. The E code blocks that are en-
abled at the same instant are executed in the order of the triggers in the queue.
New triggers are appended to the queue. When all enabled E code blocks have



been executed, the E machine invokes a scheduler that takes care of scheduling
the enabled tasks.

As an example of E code that requires only a singleton trigger queue, con-
sider a timed process Q that invokes a timed task T periodically with a period
of 10ms. The timed process Q is composed in parallel with a physical process P .
The E code program in Figure 5 implements the composition of P and Q. The
E machine begins executing the E code block at address b by calling the output
driver o of the timed task T . Provided the task memory of T is initialized, o
transports well-defined values from task memory to shared memory. The subse-
quent execution of the actuator driver a transports values from shared memory
to the physical process P . Thus o and a implement process communication from
the timed to the physical process. The other direction is implemented by a sen-
sor driver s of the physical process P and the input driver i of the timed task T .
After calling the four drivers in the given order, the schedule(t) instruction en-
ables the task t of the timed task T for execution. The future(g, b) instruction
makes sure that the E machine wakes up after 10ms elapsed and executes the
same E code block at address b again. In the programming model of the E ma-
chine, E code execution including driver execution is synchronous computation
that takes no time. Since the actual execution of E code results in a delay of
the driver execution, the above E code block implements the timed process Q
correctly provided the E code execution is time-safe, i.e., task t always completes
within 10ms minus the delay of the E code block. Then, from the perspective of
the physical process P , the behavior of the timed process Q is value-deterministic
(provided the task and all drivers implement functions) and time-deterministic,
up to the delay (jitter) caused by the output driver o but independent of the
execution of task t. The E code can be further optimized such that the actuator
and sensor drivers are executed independently of the E code for Q. Optimizing
E code for timed processes typically means more and smaller E code blocks with
more precise timing rather than faster execution.

A sufficient criterion for value- and time-determinism with respect to the
physical processes is to make sure that all drivers and tasks implement functions
and all E code is event- or time-triggered. The composition of event- or time-
triggered E code is time-invariant. Under these restrictions the timed model and
thus Giotto is compositional with respect to value- and time-determinism. Notice
that separate compilation of individual processes into E code is also possible. The
following E code implements the same behavior as the E code of the previous
example but can be generated separately for each process:

b1: call(o) b2: call(a) b3: call(i) b4: future(g, b2)
future(true, b3) call(s) schedule(t)

future(true, b4) future(g, b1)

The E code blocks at b1 and b3 implement the timed process Q. The E code
blocks at b2 and b4 implement the interaction of the physical process P with Q.
Every 10ms the E code blocks will be executed in the order b1, b2, b3, and b4. The
E machine starts executing with the initial trigger queue 〈(0, b1), (0, b2)〉 where,



e.g., (0, b1) means that the E code block at b1 must be executed now. After the
E machine is finished executing the E code block at b1, the output driver o has
executed and the trigger queue is 〈(0, b2), (0, b3)〉. The future(true, b3) instruc-
tion uses an already true trigger to make the E machine execute the E code block
at b3 at the current instant but not before any other, already enabled E code
blocks have been executed. The next step of the E machine is to execute the
E code block at b2, which results in the trigger queue 〈(0, b3), (0, b4)〉. Then the
E code block at b3 is executed, resulting in the trigger queue 〈(0, b4), (10, b1)〉
where (10, b1) means that the E code block at b1 must be executed after 10ms
from now have elapsed. The E machine finishes executing E code at the cur-
rent instant with the trigger queue 〈(10, b1), (10, b2)〉 after executing the E code
block at b4. Thus every 10ms the E machine will repeat the above behavior.
Other timed and physical processes can now be added to the above system. For
example, a second timed process could be compiled into E code, e.g., with a
start address b5 and an entry (0, b5) in the initial trigger queue. Similarly, par-
tial Giotto programs can also be compiled separately into E code since Giotto
programs are a special case of timed systems.

In general, the composition of timed and physical processes works in three
steps: (1) compilation of each process into E code; (2) linking of E code; and
(3) validation of E code with respect to time safety. In the previous example,
E code is linked online through the trigger queue while executing the E code.
Online linking of E code simplifies E code generation but suffers from runtime
overhead for managing the trigger queue. On the other hand, E code could also
be linked offline, which requires more complex E code generation with additional
symbolic information but may result in linked E code that can be executed with
less runtime overhead. Offline linking of E code does not necessarily mean that
it has to be done at compile time. E code can be loaded and linked even dynam-
ically while the E machine is running. Although E code is a static description of
the timing behavior of real-time programs, linking E code has the potential to ex-
press dynamics that we know from traditional real-time operating systems while
maintaining, e.g., time-determined system behavior. For example, changing the
set of currently executing tasks in a real-time operating system corresponds to
loading and linking appropriate E code in the E machine. Linking E code is
therefore an interesting research topic. Validating E code with respect to time
safety, in particular, in the context of dynamically changing E code is another
interesting topic. The problem of checking time safety of embedded processes
can be formulated as a three player game between the reactor, the scheduler,
and the process actions. This approach has been demonstrated for the special
case of the E machine as a two player game in which the E machine teams up
with the environment (physical processes) against the scheduler [8].

5 Summary

The synchronous model supports the development of value-deterministic real-
time programs for mission- and safety-critical applications. The scheduled model



utilizes the experience and tools from the non-real-time world and is widely
used in practice. The timed model supports the development of value- and time-
deterministic real-time programs but has only been applied in the context of
embedded control systems. The synchronous and scheduled model are in some
sense more general than the timed model. In both models value- and time-
deterministic real-time programs can also be developed. The restrictions of the
timed model, however, can be exploited, e.g., in optimized code generation of
value- and time-deterministic real-time programs even for distributed hardware.
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