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What Do We Really Need From an RTOS?
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Environment Communication Services
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Environment Trigger Services
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Software Communication Services
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Software Trigger Services
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Software Scheduling Services

© 2002 C. Kirsch -8-



Summary: RTOS Services

Service Implementation
Sensing/Actuating Device Drivers
Environment Triggering Interrupt Handlers
Software Communication Shared Variables
Software Triggering Signals
Software Scheduling Scheduler
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The Illusion of Concurrent Software
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Abstractions for Multiprogramming
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Behavioral Function Coroutine
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Function
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Definition:; Task

A task is a function from its input and state ports to
Its output and state ports

o A task runs to completion (cannot be killed)
o A task iIs preemptable

o A task does not use signals (except at completion)
o A task does not use semaphores (as a consequence)

* API (used by the RTOS):
einitialize {task: state ports}
e schedul e {task}
e di spat ch {task: function}
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So, what’s the difference between a task and a function?

e A task has an operational semantics:
o A task is implemented by a subroutine and a trigger

o A task is either environment- or software-triggered
e The completion of a task may trigger another task
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Task t, Preempts Task t,
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Who Tr

gers Task t,?
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Definition: Event and Signal

* An event IS a change of state In some environment ports
A signal is a change of state in some software ports

A synchronous signal is a change of state in some driver ports
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Definition: Trigger

A trigger is a predicate on environment, software, driver ports

e A trigger awaits events and/or signals
A trigger is enabled if its predicate evaluates to true
 Trigger evaluation is atomic (non-preemptable)

e A trigger can be activated by the RTOS
* A trigger can be cancelled by the RTOS
A trigger can be enabled by an event or a signal

e APl (used by the RTOS):
eact i vat e {trigger}
e cancel {trigger}
e eval uat e {trigger: predicate}
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My First RTOS

Otasks t: initialize(t);
[Jtriggers g: activate(q);

whi |l e (true) {
| f [active-trigger g. eval uate(g) == true t hen
execut e();
}

execute() {

scheduled-tasks : = [ triggered-tasks t: schedul e(t) ;
[1 scheduled-tasks t. di spat ch(t);

}
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RTOS Model: Reaction vs. Execution
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RTOS Model with Signals
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RTOS with Preemption

Otasks t: initialize(t);
[Jtriggers g: activate(Qg);
whil e (true) {

| f [active-trigger g. eval uate(g) == true t hen
execut e _concurrently();

}

execute concurrently() {

scheduled-tasks : = [ triggered-tasks t: schedul e(t) ;
[1 scheduled-tasks t. di spat ch(t);

}
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Corrected RTOS with Preemption

Otasks t: initialize(t);
[Jtriggers g: activate(Qg);
whil e (true) {

| f [active-trigger g. eval uate(g) == true t hen
execut e _concurrently();
}

execute concurrently() {
[Itriggers g: cancel (g);
scheduled-tasks : = [ triggered-tasks t: schedul e(t) ;
[Jtriggersg: activate(qg);

[1 scheduled-tasks t: di spat ch(t);
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Definition: Thread

A thread is a behavioral function (with a trace semantics)

A thread may be killed
» A thread is preemptable

A thread may use signals
A thread may use semaphores

o API (used by the RTOS or threads):
einitialize {thread: ports}
e schedul e {thread}
 di spat ch {thread: function}
e ki I I {thread}

© 2002 C. Kirsch -24-



So, what’s the difference between a thread and a task?

e A thread is a collection of tasks:

o A thread is implemented by a coroutine
o A thread requires signals
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Task t, Kills Task t,: Coroutine
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Signal API

A signal can be awaited by a thread
* A signal can be emitted by a thread
e Signal emission is atomic (non-preemptable)

* API (used by threads):
e wai t {signal}
eem t {signal}

e Literature:
e emit: send(signal)
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Definition: Semaphore

* A semaphore consists of a signal and a port

A semaphore can be locked by a thread
» A semaphore can be released by a thread
e Semaphore access Is atomic (non-preemptable)

* API (used by threads):
* | ock {semaphore}
* r el ease {semaphore}

e Literature:
e lock: P(semaphore)
e release: V(semaphore)
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Binary Semaphore (Signal)

| ock( semaphore) {
i f (semaphore.lock == true) then’

wal t ( semaphore.signal) ; | must be atomic

semaphore.lock : = true; )

}

r el ease( semaphore) {
semaphore.lock : = false;
em t ( semaphore.signal) ;

}
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Binary Semaphore (Busy Walit)

| ock( semaphore) {
whi | e ( semaphore.lock == true) do {}} each round
semaphore.lock : = true; must be atomic

}

r el ease( semaphore) {
semaphore.lock : = false;

}
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The Embedded Machine
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Proposal

i NG NN

Human: Programming in terms of environment time

Compiler: Implementation in terms of platform time
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Platform Time Is Platform Memory

i NG NN

e Programming as if there is enough platform time

 Implementation checks whether there is enough of it

—>

© 2002 C. Kirsch -33-



Portability
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e Programming in terms of environment time
yields platform-independent code
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Predictability

i NG NN

e Programming in terms of environment time
yields deterministic code
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The Task Model
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Preemptable...
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...but Atomic
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The Driver Model
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Non-preemptable, Synchronous
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A Trigger g
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An Embedded Machine Program
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Synchronous vs. Scheduled Computation




Synchronous vs. Scheduled Computation

IN VE

e Synchronous computation » Scheduled computation
» Kernel context « User context

* Trigger related interrupts disabled
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Environment-triggered Code
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Software-triggered Code
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Trigger g: Input-, Environment-Triggered
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Time Safety




Input-deterministic If Time Safe
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Environment-deterministic If Environment-triggered
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The Zurich Helicopter
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Helicopter Control Software
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Giotto Syntax (Functionality)

sensor gps type GPS uses ¢ gps device ;

actuator servo type Servo := c _servo Iinit
uses c_servo_device ;

output
ctr_type CtrOutput := c_ctr_init ;

nav_type NavOutput := c_nav_init ;

driver sensing (GPS) output (gps type gps)
{ c_gps_pre_processing ( GPS, gps) }

task Navigation (gps type gps) output (NavOutput)
{ c_matlab navigation code ( gps, NavOutput ) }
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Giotto Syntax (Timing)

mode Flight () period 10ms

{
H % actfreq 1 do Servo ( actuating ) ;

+H taskfreq 1 do Control ( input) ;
T > taskfreq 2 do Navigation ( sensing ) ;
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Environment Timeline

Oms 5ms 10ms
A A A
N\ N\ N\ >
a il a |
>0 | »® Control o0 | PO
N N \ _______________ i A
S S\ S

© &——® Navigation © 0—

Block of synchronous code
(nonpreemptable)

¥0 Navigation @

@0

T
N

Scheduled tasks

(preemptable)

© 2002 C. Kirsch -56-



E Code

Oms 5ms 10ps

N\ N\
- >

bl: call (a_ctuating)
cal | (s_ensing)
»® Control cal | (i_nput)

s schedul e( Control [ 10])
’ schedul e( Navigation[ 5] )

future(g, b2)

@ ©——0 Navigation © &——® Navigation J o —o

7 7
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E Code

Oms oms 10ms
/N N A N A R
>
b2: call (s _ensing) a |
schedul e( Navigation[ 5] ) 00 | »0
future(g, bl)
S S >
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Platform Timeline: EDF
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Time Safety
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Runtime Exceptions |

cal | (a_ctuating)
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Runtime Exceptions Il

cal II( s_ensling)
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Runtime Exceptions |
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An Exception Handler e
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How to Loose Determinism: Task Synchronization
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How to Loose Determinism: Termination
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Time Liveness: Infinite Traces
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Dynamic Linking

Functionality
E Code
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The Berkeley Helicopter
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Platform Timeline: Time-triggered Communication
TDMA Slot

HeliCtr
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Code Generation for HeliNav

b2: call (s _ensing)
schedul e( Navigation[ 2] )

schedul e( Connection[ (7, 10)])
future(g, bl)

HeliNav

1 | | >

t t t+5ms t+bms t+/ms t+10ms t+10ms
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Instructions
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