Embedded Software Engineering

3 Unit Course, Spring 2002
EECS Department, UC Berkeley

Chapter 1: RTOS Concepts

Christoph Kirsch

www.eecs.berkeley.edu/~fresco/giotto/course-2002

The Art of Embedded Programming

-
i NG NN

e
N

© 2002 C. Kirsch -2-

What Do We Really Need From an RTOS?

i NG NN

Environment Processes

Software Processes

© 2002 C. Kirsch -3-

Environment Communication Services

TN TN TN

Sensing

Memory

Actuating

v

© 2002 C. Kirsch -4-

Environment Trigger Services

© 2002 C. Kirsch -5-

Software Communication Services

Sending

Memory

Receiving

v

© 2002 C. Kirsch -6-

Software Trigger Services

© 2002 C. Kirsch -7-

Software Scheduling Services

© 2002 C. Kirsch -8-

Summary: RTOS Services

Service Implementation
Sensing/Actuating Device Drivers
Environment Triggering Interrupt Handlers
Software Communication Shared Variables
Software Triggering Signals
Software Scheduling Scheduler

© 2002 C. Kirsch -9-

The Illusion of Concurrent Software

© 2002 C. Kirsch -10-

Abstractions for Multiprogramming

4 A
Programming Abstraction Runtime Overhead

Process Coroutine/MMU

Thread

Task

Protected Behavioral Function

Behavioral Function Coroutine

Triggered Function Subroutine

Subroutine/Coroutine Stack/List

Function

© 2002 C. Kirsch -11-

Memory Model

>
reads actuates
v
. reads
Real-Time p
Operating System .
P g5y writes
A
reads updates

© 2002 C. Kirsch -12-

Definition:; Task

A task is a function from its input and state ports to
Its output and state ports

o A task runs to completion (cannot be killed)
o A task iIs preemptable

o A task does not use signals (except at completion)
o A task does not use semaphores (as a consequence)

* API (used by the RTOS):
einitialize {task: state ports}
e schedul e {task}
e di spat ch {task: function}

© 2002 C. Kirsch -13-

So, what’s the difference between a task and a function?

e A task has an operational semantics:
o A task is implemented by a subroutine and a trigger

o A task is either environment- or software-triggered
e The completion of a task may trigger another task

© 2002 C. Kirsch -14-

Task t, Preempts Task t,

© 2002 C. Kirsch -15-

Who Tr

gers Task t,?

f, =====m el e e -

© 2002 C. Kirsch -16-

Definition: Event and Signal

* An event IS a change of state In some environment ports
A signal is a change of state in some software ports

A synchronous signal is a change of state in some driver ports

© 2002 C. Kirsch -17-

Definition: Trigger

A trigger is a predicate on environment, software, driver ports

e A trigger awaits events and/or signals
A trigger is enabled if its predicate evaluates to true
 Trigger evaluation is atomic (non-preemptable)

e A trigger can be activated by the RTOS
* A trigger can be cancelled by the RTOS
A trigger can be enabled by an event or a signal

e APl (used by the RTOS):
eact i vat e {trigger}
e cancel {trigger}
e eval uat e {trigger: predicate}

© 2002 C. Kirsch -18-

My First RTOS

Otasks t: initialize(t);
[Jtriggers g: activate(q);

whi |l e (true) {
| f [active-trigger g. eval uate(g) == true t hen
execut e();
}

execute() {

scheduled-tasks : = [triggered-tasks t: schedul e(t) ;
[1 scheduled-tasks t. di spat ch(t);

}

© 2002 C. Kirsch -19-

RTOS Model: Reaction vs. Execution

I I I I ' I I —>

Events

v
react()

execute()

Tasks

I I I I I I I —>

© 2002 C. Kirsch -20-

RTOS Model with Signals

I ' I I I I I —>

Events

\ 4

react()

execute()

Tasks Signals

I I I I I I —>

© 2002 C. Kirsch -21-

RTOS with Preemption

Otasks t: initialize(t);
[Jtriggers g: activate(Qg);
whil e (true) {

| f [active-trigger g. eval uate(g) == true t hen
execut e _concurrently();

}

execute concurrently() {

scheduled-tasks : = [triggered-tasks t: schedul e(t) ;
[1 scheduled-tasks t. di spat ch(t);

}

© 2002 C. Kirsch -22-

Corrected RTOS with Preemption

Otasks t: initialize(t);
[Jtriggers g: activate(Qg);
whil e (true) {

| f [active-trigger g. eval uate(g) == true t hen
execut e _concurrently();
}

execute concurrently() {
[Itriggers g: cancel (g);
scheduled-tasks : = [triggered-tasks t: schedul e(t) ;
[Jtriggersg: activate(qg);

[1 scheduled-tasks t: di spat ch(t);

© 2002 C. Kirsch -23-

Definition: Thread

A thread is a behavioral function (with a trace semantics)

A thread may be killed
» A thread is preemptable

A thread may use signals
A thread may use semaphores

o API (used by the RTOS or threads):
einitialize {thread: ports}
e schedul e {thread}
 di spat ch {thread: function}
e ki I I {thread}

© 2002 C. Kirsch -24-

So, what’s the difference between a thread and a task?

e A thread is a collection of tasks:

o A thread is implemented by a coroutine
o A thread requires signals

© 2002 C. Kirsch -25-

Task t, Kills Task t,: Coroutine

© 2002 C. Kirsch -26-

Signal API

A signal can be awaited by a thread
* A signal can be emitted by a thread
e Signal emission is atomic (non-preemptable)

* API (used by threads):
e wai t {signal}
eem t {signal}

e Literature:
e emit: send(signal)

© 2002 C. Kirsch -27-

Definition: Semaphore

* A semaphore consists of a signal and a port

A semaphore can be locked by a thread
» A semaphore can be released by a thread
e Semaphore access Is atomic (non-preemptable)

* API (used by threads):
* | ock {semaphore}
* r el ease {semaphore}

e Literature:
e lock: P(semaphore)
e release: V(semaphore)

© 2002 C. Kirsch -28-

Binary Semaphore (Signal)

| ock(semaphore) {
i f (semaphore.lock == true) then’

wal t (semaphore.signal) ; | must be atomic

semaphore.lock : = true;)

}

r el ease(semaphore) {
semaphore.lock : = false;
em t (semaphore.signal) ;

}

© 2002 C. Kirsch -29-

Binary Semaphore (Busy Walit)

| ock(semaphore) {
whi | e (semaphore.lock == true) do {}} each round
semaphore.lock : = true; must be atomic

}

r el ease(semaphore) {
semaphore.lock : = false;

}

© 2002 C. Kirsch -30-

The Embedded Machine

I I I I ' I I —>

Events

v
react(): The Embedded Machine

execute(): The Scheduler and Dispatcher

Tasks

I I I I I I I —>

© 2002 C. Kirsch -31-

Proposal

i NG NN

Human: Programming in terms of environment time

Compiler: Implementation in terms of platform time

© 2002 C. Kirsch -32-

Platform Time Is Platform Memory

i NG NN

e Programming as if there is enough platform time

 Implementation checks whether there is enough of it

—>

© 2002 C. Kirsch -33-

Portability

i NG NN

e Programming in terms of environment time
yields platform-independent code

© 2002 C. Kirsch -34-

Predictability

i NG NN

e Programming in terms of environment time
yields deterministic code

© 2002 C. Kirsch -35-

The Task Model

Sense actuate

© 2002 C. Kirsch -36-

Preemptable...

Sense actuate

w
—t
QD
=
—

© 2002 C. Kirsch -37-

...but Atomic

© 2002 C. Kirsch -38-

The Driver Model

© 2002 C. Kirsch -39-

Non-preemptable, Synchronous

(@) - @

© 2002 C. Kirsch -40-

© 2002 C. Kirsch -41-

A Trigger g

g:C’ #cC

© 2002 C. Kirsch -42-

An Embedded Machine Program

b:

v

v

© 2002 C. Kirsch -43-

Synchronous vs. Scheduled Computation

Synchronous vs. Scheduled Computation

IN VE

e Synchronous computation » Scheduled computation
» Kernel context « User context

* Trigger related interrupts disabled

© 2002 C. Kirsch -45-

Environment-triggered Code

© 2002 C. Kirsch -46-

Software-triggered Code

© 2002 C. Kirsch -47-

Trigger g: Input-, Environment-Triggered

© 2002 C. Kirsch -48-

Time Safety

Input-deterministic If Time Safe

© 2002 C. Kirsch -50-

Environment-deterministic If Environment-triggered

© 2002 C. Kirsch -51-

The Zurich Helicopter

© 2002 C. Kirsch -52-

Helicopter Control Software

4

Sensor ‘ ‘ -

Clock

g:c’=c+5

© 2002 C. Kirsch -53-

Giotto Syntax (Functionality)

sensor gps type GPS uses ¢ gps device ;

actuator servo type Servo := c _servo Iinit
uses c_servo_device ;

output
ctr_type CtrOutput := c_ctr_init ;

nav_type NavOutput := c_nav_init ;

driver sensing (GPS) output (gps type gps)
{ c_gps_pre_processing (GPS, gps) }

task Navigation (gps type gps) output (NavOutput)
{ c_matlab navigation code (gps, NavOutput) }

© 2002 C. Kirsch -54-

Giotto Syntax (Timing)

mode Flight () period 10ms

{
H % actfreq 1 do Servo (actuating) ;

+H taskfreq 1 do Control (input) ;
T > taskfreq 2 do Navigation (sensing) ;

© 2002 C. Kirsch -55-

Environment Timeline

Oms 5ms 10ms
A A A
N\ N\ N\ >
a il a |
>0 | »® Control o0 | PO
N N \ _______________ i A
S S\ S

© &——® Navigation © 0—

Block of synchronous code
(nonpreemptable)

¥0 Navigation @

@0

T
N

Scheduled tasks

(preemptable)

© 2002 C. Kirsch -56-

E Code

Oms 5ms 10ps

N\ N\
- >

bl: call (a_ctuating)
cal | (s_ensing)
»® Control cal | (i_nput)

s schedul e(Control [10])
’ schedul e(Navigation[5])

future(g, b2)

@ ©——0 Navigation © &——® Navigation J o —o

7 7

© 2002 C. Kirsch -57-

E Code

Oms oms 10ms
/N N A N A R
>
b2: call (s _ensing) a |
schedul e(Navigation[5]) 00 | »0
future(g, bl)
S S >

@ ©——9 Navigation © @—

—® Navigation @ ——®

© 2002 C. Kirsch -58-

Platform Timeline: EDF

Oms 5ms 10ms
A A A
N\ N\ N\ >
a il a |
o*Q | >0 o»Q | >0
LA A
S S
© 00— © 6 0
Navigation >
2ms 2ms
Control >
3ms 5ms

© 2002 C. Kirsch -59-

Time Safety

© 2002 C. Kirsch -60-

Runtime Exceptions |

cal | (a_ctuating)

© 2002 C. Kirsch -61-

Runtime Exceptions Il

cal II(s_ensling)

© 2002 C. Kirsch -62-

Runtime Exceptions |

]
schedul e(1) :

P —

I
—

© 2002 C. Kirsch -63-

An Exception Handler e

T Ne N T N

] | —>

> 1 schedul e(t,e)
-

¢

O

v

© 2002 C. Kirsch -64-

How to Loose Determinism: Task Synchronization

Oms 5ms 10ms
A N A A N >
a |
OQ | »0O
S
Q@ 0
Navigation >
2ms 2ms
Control >
2ms 3ms 4ms

© 2002 C. Kirsch -65-

How to Loose Determinism: Termination

' j j i j —>

't er m nat e(1)

© 2002 C. Kirsch -66-

Time Liveness: Infinite Traces

© 2002 C. Kirsch -67-

Dynamic Linking

Functionality
E Code

© 2002 C. Kirsch -68-

The Berkeley Helicopter

© 2002 C. Kirsch -69-

Platform Timeline: Time-triggered Communication
TDMA Slot

HeliCtr

HeliNet

HeliNav ———> Q==

1 | | >

t t t+5ms t+bms t+/ms t+10ms t+10ms

© 2002 C. Kirsch -70-

Code Generation for HeliNav

b2: call (s _ensing)
schedul e(Navigation[2])

schedul e(Connection[(7, 10)])
future(g, bl)

HeliNav

1 | | >

t t t+5ms t+bms t+/ms t+10ms t+10ms

© 2002 C. Kirsch -71-

Instructions

-

Driver:

.

Synchronous e—

cal | (d)

N O

.—ﬂ Task:

NS

Scheduled .

~

schedul e(t) /

4 N
Triggering: \@/bi future(g, b)

_

g:C #¢C

/

© 2002 C. Kirsch -72-

