
W e present a methodology for con-
trol software development based
on Giotto [2], a domain-specific
high-level programming lan-
guage for control applications. A
Giotto program explicitly speci-

fies the exact real-time interaction of software components
with the physical world. The Giotto
compiler automatically generates
timing code that ensures the speci-
fied behavior on a given platform.
This article illustrates the Giotto
methodology by reimplementing
the controller for an autonomously
flying model helicopter originally
developed at the Swiss Federal In-
stitute of Technology (ETH) Zürich
[3]. We demonstrate that Giotto introduces a negligible
overhead and at the same time increases the reliability and
reusability of the control software.

The article begins with a conceptual overview of the
Giotto methodology. We explain how Giotto helps to auto-
mate the control software development process and to im-
prove the quality of the resulting code. We then report on
the Giotto helicopter project. We use the autopilot software
for the helicopter to guide an informal presentation of the
Giotto language and of the Simulink/Giotto (S/G) translator,
which extracts a Giotto program from a Giotto control
model specified in Simulink. This is followed by a brief dis-

cussion of the compilation and execution of the Giotto-
based control system. The article concludes with a sum-
mary of available Giotto implementations and pointers to
related work.

The Giotto Methodology
The Giotto methodology presents a systematic attempt to de-

compose the difficult task of con-
trol systems development: domain-
specific (control) concerns are sep-
arated from platform-specific (im-
plementation) concerns, and
time-related concerns are sepa-
rated from data-related (functional-
ity) concerns.

Separating Reactivity from Scheduling
Traditionally, a control system is designed using tools for
mathematical modeling and simulation, such as
MathWorks’ Simulink. The control model is implemented
manually or automatically, and the code is then tested and
optimized for the given platform until it exhibits satisfac-
tory timing behavior. In the process, the tight correspon-
dence between model and code is often lost. The resulting

50 IEEE Control Systems Magazine February 2003

1053-5888/03/$17.00©2003IEEE

More details on Giotto, as well as a distribution of the
Giotto software tools used in this article, can be found at
http://www.eecs.berkeley.edu/~fresco/giotto.

Sanvido (msanvido@eecs.berkeley.edu), Henzinger, and Kirsch are with the Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, 94720, U.S.A. Pree is with the Software Research Laboratory, University of Salzburg, Austria.

By Thomas A. Henzinger,
Christoph M. Kirsch,

Marco A.A. Sanvido, and
Wolfgang Pree


JE

N
E

N
E

LS
O

N
AT

C
N

G
R

A
P

H
IC

S
IN

C
.

software is brittle, difficult to reuse on a different platform,
and difficult to enhance with additional functionality.

Giotto addresses this problem by offering an intermedi-
ate layer of abstraction between the mathematical model
and the code. We call this layer an embedded software
model. An embedded software model specifies a solution to
a given control problem independent of an execution plat-
form (i.e., operating system and hardware), but it is closer
to executable code than a mathematical model. Whereas
the entities of a mathematical model are typically matrices,
equations, and perhaps state diagrams, the entities of a soft-
ware model are data structures and procedures. For exam-
ple, a software model may specify
the representation for storing a ma-
trix and the algorithm and precision
for evaluating an equation.

Common software models are
high-level programming languages,
but for embedded software, the model needs to include con-
structs for expressing concurrency and timing. An embed-
ded software model specifies the logical concurrency and
interaction of software processes, as well as the timing of
process interactions with the physical environment. How-
ever, an embedded software model must not specify the
physical distribution of the software processes, or a sched-
uling mechanism, both of which require knowledge about
the platform. In Giotto, we specify when a sensor is read,
which sensor reading is used for computing an actuator
value, and when the actuator is set, without specifying a
CPU or a priority for the computation.

In short, an embedded software model separates the plat-
form-independent from the platform-dependent issues in
embedded software development. This facilitates code gen-
eration by partitioning the task into two steps. In the first
step, called program generation, a given mathematical
model is transformed into an embedded software model
(i.e., a high-level embedded program). This step is entirely
independent of any execution platform; it specifies only the
reactivity (i.e., real-time response) of the system relative to a
physical environment. In the second step, called compila-
tion, the software model is transformed into executable
code for a target platform. This step must ensure the
schedulability (i.e., real-time execution) of the system in a
specific execution environment. While program generation
provides a fully specified algorithmic solution to the control
problem at hand, compilation is usually concerned also
with nonreactive properties of the solution, such as re-
source utilization and fault tolerance.

The explicit use of a software model during code genera-
tion offers improved flexibility in the verification, optimiza-
tion, integration, and reuse of embedded components. All of
these activities are easier to carry out at the level of an em-
bedded software model, rather than at the level of plat-
form-specific code.

Separating Timing from Functionality
Giotto provides an embedded software model for control
applications. Consequently, a Giotto-based systems devel-
opment methodology can separate high-level control con-
cerns, such as sampling rates and control laws, which
depend on the given control problem, from low-level imple-
mentation concerns, such as output jitter and device driv-
ers, which depend on the chosen platform. In addition, the
Giotto methodology also separates timing concerns, such
as sampling rates and output jitter, from functionality con-
cerns, such as control laws and device drivers. A Giotto pro-
gram supervises the interaction between software

processes and the physical world but does not itself trans-
form data. All computation is encapsulated inside the su-
pervised software processes, which can be written in any
nonembedded programming language, such as C. We refer
to a Giotto program as a timing program and to the super-
vised processes called by the Giotto program as functional-
ity programs.

In this way, Giotto enforces a programming discipline,
the strict separation of timing and functionality, that is of-
ten violated in real-time programs, especially when the
programs are hand-optimized to meet timing constraints.
This programming discipline offers additional benefits in
the verification, optimization, integration, and reuse of em-
bedded components. All of these activities are easier to
carry out independently for timing and functionality pro-
grams. Similarly, the separation of timing and functionality
further facilitates code generation: the timing (Giotto) pro-
gram can be compiled into executable timing code, inde-
pendent of the compilation of the functionality (e.g., C)
programs into executable pieces of functionality code. Af-
ter linking, the timing code supervises the execution of the
functionality code.

It is important to note that this scheme offers great flexi-
bility for the compiler. A Giotto program specifies only the
reactivity of the functionality programs; i.e., when they are
invoked and when their outputs are read, but not their
scheduling. Hence, on the level of the Giotto software
model, all functionality programs are atomic execution
units, without priorities or internal synchronization points.
In other words, the software processes supervised by a
Giotto program are subroutines (functions) rather than
coroutines (threads) [4]. This makes the Giotto software
model transparent and particularly attractive for verifica-
tion [5]. The Giotto compiler, on the other hand, is free to
produce timing code that preempts functionality code and
will generally do so for scheduling and optimization pur-
poses. Thus, on the level of platform code, the pieces of

February 2003 IEEE Control Systems Magazine 51

Giotto is a high-level programming
language for control applications.

functionality code that are supervised by the timing code
are indeed coroutines, not subroutines. This illustrates
strikingly the main property of a good software model: the
software model should emphasize transparency (simplic-
ity), and thus improve reliability and enable reuse, whereas
the compiler should emphasize performance.

The Giotto Tool Chain
Figure 1 shows the control systems development process
without an embedded software model that separates timing
from functionality; Figure 2 shows how the process changes
if Giotto is used. The Giotto methodology partitions the
code generation from control models into four independent
phases. The four phases are supported by four different
tools with the following outputs:

1) From a given Simulink model, the Simulink code gener-
ation facilities, e.g., MathWorks’ Real-Time Workshop
(RTW) Embedded Coder, generate C programs for the
functional entities of the design, such as control law
computations. Other C programs that implement
functional units, such as device drivers, may be taken
from libraries. The individual functionality programs
are sequential and independent, and their execution
needs to be supervised by a timing program.

2) From the Simulink model, the S/G translator generates
a Giotto program, which specifies the timing behavior
of a control system in a platform-independent way.
The Giotto program supervises the execution of the
functionality programs in response to the behavior of
the physical environment.

3) From the functionality programs, the C compiler gen-
erates executable pieces of code for a chosen plat-
form.

4) From the Giotto program, the Giotto compiler gener-
ates platform code that, after linking, supervises the
execution of functionality code in a way that guaran-
tees the real-time behavior specified by the Giotto
program. To generate code with this property, the
Giotto compiler needs to perform a schedulability
analysis and reject a Giotto program if its timing con-
straints cannot be met on the target platform.

In this code-generation tool chain, there are two Giotto-
specific tools, namely, the S/G translator and the Giotto
compiler.

In addition, Giotto offers a simulation tool, the S/G simu-
lator, which allows the simulation of Giotto models that are
specified in Simulink. The benefits of using the S/G simula-
tor rather than Simulink’s own simulation facilities is that

52 IEEE Control Systems Magazine February 2003

S
im

ul
at

io
n/

V
al

id
at

io
n

O
pt

im
iz

at
io

n/
D

eb
ug

gi
ng

Application

Modeling Tools

Implementation Tools

Embedded System

Control Problem

Mathematical Model
(Simulink)

Program Generation RTW Embedded Coder

Combined Timing + Functionality
Program

(C)

Compilation/Linking C Compiler

Real-Time Code

Figure 1. The traditional control systems development process.

S
/G

S
im

ul
at

or

Application

Modeling Tools

Implementation Tools

Embedded System

Control Problem

Mathematical Model
(Simulink)

Program Generation

RTW Embedded Coder

Giotto Compiler C Compiler

Real-Time Code

S/G Translator

Compilation/Linking

Timing
Program
(Giotto)

Functionality
Program

(C)

Embedded Software Model

Figure 2. The Giotto-based control systems development process.

the Giotto tool chain guarantees that the real-time and func-
tional behavior of the generated code matches exactly the
result of S/G simulation. The S/G simulator supports the
rapid prototyping and validation of Giotto control systems
in Simulink, because the Giotto code-generation tools are
fully compliant with the S/G simulation semantics.

A Giotto-Based Autonomous
Helicopter System
We illustrate the Giotto methodology by reengineering an
existing complex control system: the autopilot software of
an autonomously flying model helicopter. We started from a
system that already met the desired objectives: a fully work-
ing system with a well-modularized software architecture.
This made it easy to isolate the functional components from
the existing code. A similar reengineering approach has
been used to assess the feasibility of other methodologies,
such as MetaH, in the context of embedded missile control
systems [6].

The Helicopter System
The original helicopter control system [3] was developed at
ETH Zürich as part of an interdisciplinary project to build an
autonomously flying model helicopter for research pur-
poses. The control system hardware is a custom-crafted
computer board with a single 200-MHz StrongARM proces-
sor and specialized I/O devices. All functional components
are implemented in the programming language Oberon [7],
[8] on top of the custom-designed real-time operating sys-
tem HelyOS [9]. The control system (hardware, HelyOS, and
autopilot software) is called OLGA, which stands for Oberon
Language Goes Airborne. OLGA is now sold by weControl, a
spin-off company of ETH Zürich, under the name of
wePilot1000 [10].

The complete helicopter system consists of an aircraft
(i.e., the model helicopter), the OLGA control system, and a
ground system. Figure 3 shows a picture of the helicopter,
and Figure 4 shows the system structure. The ground sys-
tem (bottom of Figure 4) supports mission planning, flight
command activation, and flight monitoring. Since the
ground system is not relevant for the reimplementation of
the OLGA autopilot software, it is not discussed here. All
sensors and computational resources used for flight control
and navigation are airborne (with the exception of a second-
ary GPS receiver used for the differential GPS). The sensors
used on the helicopter are a GPS receiver, a compass, a revo-
lution sensor, a laser altimeter, three accelerometers, three
gyroscopes, and a temperature sensor. The actuators are six
servos that control the main and tail rotor blades as well as
the throttle of the two-stroke combustion engine. The OLGA
control system generates pulse-width-modulated (PWM)
servo commands. Takeoff and landing are under control of a
human pilot. The transition from manual to autonomous
flight is done when the helicopter is hovering. To allow a
smooth transition, OLGA tracks the commands from the hu-

man pilot and, upon transition, uses them as the initial oper-
ating point of the controller. In case of an emergency, the hu-
man pilot is able to bypass OLGA at any time during flight.

The complexity of helicopter flight control results from
the number of different sensors and actuators the control sys-
tem has to handle concurrently, the difficulty of flying a heli-
copter, and the physical limitations of the control system
(electrical consumption, limited computational resources, vi-
brations, jitter, etc.). Since the helicopter is a dangerous and
expensive platform, a trial-and-error approach cannot be
used. The control and navigation algorithms are based on
hard real-time assumptions that have to be guaranteed under
all circumstances by the implementation. In the OLGA control
system, the controller runs at 40 Hz and data fusion (sensing)
at 200 Hz. The worst-case execution time of the controller and
data fusion implementation is 12 ms within a single control cy-
cle of 25 ms, which results in a CPU utilization of more then
45%, leaving little room for other activities such as bookkeep-
ing and monitoring.

Research efforts in unmanned aerial vehicles (UAVs),
and more specifically in autonomous helicopters, have pro-

February 2003 IEEE Control Systems Magazine 53

Figure 3. The model helicopter and the OLGA control system
(aluminum box).

Helicopter System

Revolution Compass Altimeter Servos

Multiplex

Receiver

Remote Control

Human Pilot

Ground Computer
(PC)

Datalink

GPS

Joystick

Ground System

Acc. Sensors

Gyroscopes

Temperature

GPS

Computer
(StrongARM)

Datalink

Bypass

Figure 4. The OLGA control system hardware structure.

gressively shifted focus from a pure control problem to an
interdisciplinary problem, where the software perfor-
mance, reliability, and quality have become major critical
factors. This is demonstrated by the academic helicopter
projects [11]-[18]. In [19] an overview of other autonomous
model helicopter projects is given.

The Structure of the Autopilot Software
The autopilot software has six different modes of operation
(see Figure 5). In each mode, Init, Idle, Motor, Take-

Off, ControlOff, and ControlOn, different tasks are ac-
tive. In all modes except for the ControlOn mode, the
human pilot controls the rotor blades, whereas the rotor
speed is always controlled by OLGA. The first three modes
are needed to handle the initialization procedure correctly.
In particular, the Motormode handles the transition from a
0 rpm rotor speed to a safe speed of 300 rpm. At this speed,
the helicopter is guaranteed not to take off, and only an ac-
tive command from the ground station allows the transition
to mode TakeOff. When the takeoff procedure is finished,
the helicopter is in mode ControlOff. In this mode, the ro-
tor is at a nominal speed of 1200 rpm and the pilot has full
control over the rotor blades. At this point, the pilot is able
to switch, at any time, to the ControlOn mode, activating
the autopilot. For simplicity, we will henceforth focus only
on the ControlOff and ControlOn modes.

In the ControlOff mode, the autopilot software reads
the commands from the human pilot received via the wire-
less link and forwards them to the servos. TheControlOff
mode consists of the 200-Hz task ADFilter and the 40-Hz
task NavPilot. The ADFilter task decodes and
preprocesses sensor values (data fusion). The NavPilot

task keeps track of the position and velocity of the helicop-
ter using the preprocessed data from the ADFilter task
and forwards the pilot commands to the servos. The
ControlOffmode switches to the ControlOnmode if the
pilot pushes a button on the remote control. In addition to
the 200-Hz task ADFilter, the ControlOn mode has the
40-Hz task NavControl, which replaces the NavPilot

task. Besides keeping track of position and velocity, this
task implements the controller that stabilizes the helicopter
autonomously. The ControlOn mode switches back to the

ControlOffmode if the pilot pushes a take-over button on
the remote control.

The Giotto Model of the Autopilot
Software in Simulink
A Giotto model specifies the real-time interaction of a set of
components with the physical world, as well as the real-time
interaction between the components. All components of a
Giotto model execute periodically. For this purpose, a
Giotto model has a parameter called hyper-period, which is
the least common multiple of all component periods. Figure
6 shows the Simulink specification of a Giotto model called
helicopter controller, which is connected to a contin-
uous-time model of the helicopter dynamics. The dynamics
block contains only standard continuous-time Simulink
blocks. The controller block is a so-called Giotto model
block, which exhibits a special semantics described below.
The helicopter controller has a hyper-period of 25 ms.

Figure 7 shows the contents of the helicopter con-

trollerblock. The block labeledADFilter is a Giotto task
block, which represents a single Giotto task. A Giotto task is
a periodically executed function. The ADFilter block con-
tains only standard discrete-time Simulink blocks that im-
plement the decoding and preprocessing of sensor values.
The functionality program associated with a Giotto task
block might be obtained in a number of ways. In our case
study, the functionality program is written in Oberon and
taken from the legacy OLGA software. Alternatively, func-
tionality programs that implement Giotto task blocks might
be handwritten or automatically generated using Simulink’s
code-generation facilities.

The second block in the Giotto model is an example of a
Giotto case block, which may contain multiple Giotto tasks.
Like a task block, a Giotto case block is invoked periodically.
Upon each invocation, the case block selects one of its tasks
for execution. In the example, the case block contains the
Giotto task blocks NavPilot and NavControl. The
NavPilot task computes the helicopter position and veloc-
ity and reads pilot commands from which it produces the
correct servo values. Thus, every time the NavPilot task
executes, the human pilot has full control of the helicopter.
The NavControl task, by contrast, implements autono-

mous flight; it produces the servo val-
ues based on a control law
computation. Each Giotto case block
has a frequency, which is given as an
integer value relative to the hyper-pe-
riod of the Giotto model. The case
block of the example has the frequency
1; that is, it is invoked with a period of
25 ms. Both tasks in the case block in-
herit the frequency. Note that the
ADFilter task block of the Giotto
model is actually an abbreviation for a
case block containing a single task. In

54 IEEE Control Systems Magazine February 2003

Mode 1: Init

isInitDone

Mode 2: Idle Mode 3: Motor

ADFilter 200 Hz

NavInit 40 Hz

ADFilter ADFilter

ADFilter ADFilter ADFilter

isStartMotor

isStopMotor
200 Hz 200 Hz

200 Hz 200 Hz 200 Hz

NavPilot 40 Hz 40 Hz

40 Hz 40 Hz 40 HzNavPilotNavControl NavTakeOff

NavRotorUp

isS
to

pM
ot

or

isStopMotor

isStopM
otor

isRotorUp&
TakeOff

isControlOn

isControlOff
isEndTakeOff

Mode 6: ControlOn Mode 5: ControlOff Mode 4: TakeOff

Figure 5. The operating modes of the helicopter controller.

fact, Giotto model blocks contain only case blocks. The vir-
tual case block around the ADFilter task has the fre-
quency 5, which means that the task runs five times per 25
ms (i.e., with a period of 5 ms).

Figure 8 shows the contents of the case block. Besides
the two task blocks, there is a Giotto switch block, labeled
isControlOff/On. A Giotto switch block may contain any
standard discrete-time Simulink blocks to select, based on
its input values, at most one of the tasks for execution. If no
task is chosen for execution, then all previous output values
are held. TheisControlOff/Onblock reads the pilot com-
mand to switch from manual to autonomous mode and back
and accordingly chooses between the NavPilot task and
the NavControl task. The switch block is evaluated once
for each invocation of the surrounding case block at the be-
ginning of its period. Thus, it is evaluated once every 25 ms.
The block labeled OutputPort is necessary only for
multiplexing the outputs of the two tasks into a single out-
put. The tasks and the switch block in a case block may only
read from the inputs of the case block but not from any task
outputs within that block. To do this, it is necessary to es-
tablish a feedback link outside of the case block from an out-
put to an input.

Generally, a Giotto model may consist of multiple case
blocks that all run concurrently. More precisely, a set of
tasks—at most one per case block—run concurrently, and
each such combination of tasks is called a Giotto mode. For
example, the ADFilter and NavPilot tasks implement
the ControlOff mode of the helicopter system, whereas
the ADFilter and NavControl tasks implement the
ControlOn mode. Thus, any case switching during execu-
tion implements a Giotto mode switch.

Giotto Semantics
The key property of the Giotto semantics is the fixed logical
execution time (FLET) assumption, which assumes that the
execution times associated with all computation and com-
munication activities are fixed and determined by the
model, not the platform. In Giotto, the logical execution time
of a task is always exactly the period of the task (i.e., the pe-
riod of the surrounding case block), and the logical execu-
tion times of all other activities (switch blocks, data transfer
across links, etc.) are always zero [2]. Note that the FLET as-
sumption has all concurrent task executions within a Giotto
mode run logically in parallel.

The logical execution time of a task is an abstract notion
that is possibly very different from the actual, physical exe-
cution time of the task on a particular CPU, which may vary
from task invocation to task invocation. The power of the
FLET assumption stems from the fact that logical, not phys-
ical, execution times determine when sensors are read,
when actuators are written, and when data travels across
links. For example, the ADFilter task logically executes
for 5 ms, which implies that 1) it reads its input at the begin-
ning of its period, and 2) its output is not available to other

tasks before 5 ms, even if the actual execution of the task on
the CPU finishes earlier. Similarly, the case block with the
two tasks NavPilot and NavControl logically executes
for exactly 25 ms.

The FLET has two important consequences. First, sen-
sors are read only at the beginning of a task’s period and ac-
tuators are updated only at the end of a task’s period. This
minimizes jitter. In the example, the sensors are sampled by
the ADFilter task at a frequency of 200 Hz and the servos
are updated by the case block at a frequency of 40 Hz, pre-
cisely at the end of each hyper-period. Second, all intertask
communication happens at period boundaries. This elimi-
nates race conditions between tasks. In the example, the
case block can only read the output from theADFilter task
invocation at the end of the previous hyper-period, but not
from any ADFilter invocation during the current hy-
per-period. Consequently, although the NavControl task
does not always use the latest available data from
ADFilter, the data used is independent of varying execu-
tion times of ADFilter invocations and independent of the
scheduling scheme that chooses between the NavControl
and ADFilter tasks when both are ready to be executed on
the same CPU. We have not encountered a “stale data” prob-
lem in the helicopter control system; on the contrary, this
small penalty incurred by the use of Giotto is more than
compensated by the improved predictability of the overall
system. In particular, as a consequence of the FLET assump-
tion, a Giotto model is environment determined [20]: for any
given behavior of the physical world seen through the sen-
sors, the model computes a unique trace; that is, predict-
able actuator values at predictable time instants. In other

February 2003 IEEE Control Systems Magazine 55

In1 Out1 In1 Out1

Helicopter Dynamics Helicopter Controller

Figure 6. The helicopter model in Simulink.

1

In1

In1

In1

Out1

1

NavPilot OR NavControl

ADFilter

Out1

Out1

Figure 7. The Giotto helicopter controller in Simulink.

words, the only source of nondeterminism in a Giotto sys-
tem is the physical environment. This makes the validation
of the system considerably easier.

Simulating Giotto Models in Simulink
To simulate Giotto models in Simulink, we have developed
the S/G simulator, which implements the Giotto semantics.
In practice, the S/G simulator reads a Simulink specification
of a Giotto model and transforms it into a standard dis-
crete-time multirate Simulink model that makes the Giotto
semantics (i.e., the FLET assumption) explicit in Simulink.
Then the S/G simulator uses Simulink’s simulation facilities
to simulate the transformed model. We refer to simulation of
the transformed model as S/G simulation of the original
Giotto model.

Figure 9 shows the result of S/G simulating a stripped-
down version of the helicopter controller for a duration of
140 ms with mode switches at the 50- and 100-ms time in-
stants. The simulation illustrates only the timing of the
intertask communication of the autopilot Giotto model on
trivial data. For simplicity, we have replaced the implemen-
tation of the ADFilter task with a pulse generator that tog-
gles the output of the task between 0 and 1. The simplified
implementation of theNavPilot task reads that output and
adds 1; the simplified NavControl task instead adds 3. All
task outputs are initially 0. In this simplified example, where
no sensor values are read, environment determinedness en-
sures that there is a unique (infinite) trace of the program
(i.e., there are no race conditions between the two tasks).

Figure 9 shows the prefix of the trace up to 140 ms. At the
5-ms time instant, the first invocation of the ADFilter task
is finished, and thus the output of the task changes from 0 to
1. At the 10-ms instant, the second invocation is finished and
the output changes back to 0, and so on. Note that the pulse
generator inside theADFilter task implements a 0/1 toggle
independent of any physical execution times: it is the task
block frequency that makes it a 5-ms pulse generator. At the
25-ms instant, the first invocation of the NavPilot task is

finished. This task was chosen by the surrounding case
block to execute at the 0-ms instant. As it read its input also
at the 0 ms instant, its input was the initial output value 0
from the ADFilter task. Thus, the output of the NavPilot
task at the 25-ms instant is 0+1 (i.e., 1). The second invoca-
tion reads 1 from the ADFilter task and thus outputs 2 at
the 50-ms instant. Now the case block chooses the
NavControl task to execute, which reads 0 from the
ADFilter task. The NavControl task outputs 0+3 (i.e., 3)
at the 75-ms instant. For its second invocation, the task
reads 1 from the ADFilter task and thus outputs 4 at the
100-ms instant. Now the case block again chooses the
NavPilot task to execute, which reads 0 from the
ADFilter task. Hence its output is 1, which is available at
the 125 ms instant.

The time-triggered semantics of Giotto enables efficient
reasoning about the timing behavior of a Giotto model, in
particular, whether it conforms to the timing requirements
of the control design. Moreover, Giotto models are
compositional in the sense that any number of Giotto mod-
els may be added side by side without changing their indi-
vidual semantics. For example, additional functionality can
be added to the helicopter controller without changing the
real-time behavior of the tasks that presently make up the
controller. This, of course, assumes the provision of suffi-
cient computational resources, which is checked by the
Giotto compiler for a specified platform (see below).

From Giotto Models to Giotto Programs
The code generation from Giotto models proceeds in sev-
eral steps (recall Figure 2). First, the S/G translator takes a
Giotto model block specified in Simulink and generates the
corresponding Giotto program in textual form, which is then
processed by the Giotto compiler for schedulability analy-
sis and to generate timing code. Here we discuss the Giotto
program that results from S/G translating a given Giotto
model in Simulink; the Giotto compiler will be discussed in
the next section.

A Giotto program defines the exact
timing and communication between
Giotto tasks and between the program
and the physical environment. All com-
munication happens explicitly across
links that connect the blocks in a
Giotto model. The sources and desti-
nations of these links are implemented
as Giotto ports, which are locations in a
global name space that carry values.
The Giotto ports are partitioned into
task input and task output ports, sen-
sor ports, and actuator ports. In Figure
7, the ADFilter task block has an in-
coming link from sensor ports to the
task input ports and an outgoing link
from the task output ports to task in-

56 IEEE Control Systems Magazine February 2003

In1

In1

In1

NavPilot

Out1

Action

NavPilot
Sel

NavControl

In1
Sel
In2

Out1 1

Out1
OutputPort

NavControl

Out1In1

isControlOff/On

Action

1

Figure 8. The Giotto case block in Simulink.

put ports within the case block; the case block has an outgo-
ing link from task output ports to actuator ports. Sensor
ports are written outside of the Giotto model and read in-
side; actuator ports are written inside of the Giotto model
and read outside. In particular, from the perspective of the
Giotto model, it makes no difference if a sensor port obtains
its value from the physical environment or from software
outside of the Giotto model.

A Giotto program needs to make explicit details that are
left implicit or unspecified in the Simulink specification of a
Giotto model, such as port declarations and declarations of
functionality programs for reading and writing port values.
To transport values between ports and to interface with the
hardware, Giotto uses the concept of drivers. We distin-
guish between Giotto link drivers and Giotto device drivers.
(There are also initialization and port drivers, which will be
discussed later.) The Giotto link drivers implement the
switch blocks and data links in the Simulink specification of
a Giotto model; they can be further partitioned into task, ac-
tuator, and mode drivers. The purpose of task and actuator
drivers is to transport values from sensor ports and task
output ports to task input ports and actuator ports, re-
spectively; a mode driver evaluates a mode-switch condi-
tion and, if it evaluates to true, transports initial values to
task output ports of the target mode. A Giotto device driver
transports values from a hardware device or a non-Giotto
task to a Giotto port, or vice versa. For example, a device
driver may read sensor values and write the results to a
sensor port of the Giotto model; it may write values pro-
duced by an asynchronous (event-triggered) task to a sen-
sor port of the Giotto model; or it may update an actuator
setting using the value of an actuator port of the Giotto
model. In addition to transporting data, drivers may per-
form some preprocessing of the data, such as type conver-
sion. In the Simulink specification of a Giotto model, task
and actuator drivers exist only implicitly as links, mode
drivers correspond to switch blocks, and device drivers
are absent entirely.

The Giotto Program for the
Autopilot Software
From a Giotto model block in Simulink, the S/G translator
generates a Giotto program, which is a collection of Giotto
modes. Each Giotto mode has a hyper-period, a set of task
invocations with specified frequencies, a set of actuator up-
dates with specified frequencies, and a set of mode switches
with specified frequencies. A task invocation executes the
task driver followed by the task, an actuator update exe-
cutes the actuator driver, and a mode switch evaluates a
mode driver, possibly followed by a switch to the target
mode. The following example shows the Giotto program
helicopter controller , which specif ies the
ControlOff andControlOnmodes of the control system:

mode ControlOff() period 25 {

actfreq 1 do ServoUpdate;

actfreq 1 do DataPoolUpdate;

exitfreq 1 when SwitchOn do ControlOn;

taskfreq 5 do ADFilter;

taskfreq 1 do NavPilot;}

mode ControlOn() period 25 {

actfreq 1 do ServoUpdate;

actfreq 1 do DataPoolUpdate;

exitfreq 1 when SwitchOff do ControlOff;

taskfreq 5 do ADFilter;

taskfreq 1 do NavControl;}

The hyper-period of both modes is 25 ms. The frequencies
of the task invocations, actuator updates, and mode
switches are specified relative to this period using the
keywords taskfreq, actfreq, and exitfreq, respec-
tively. For example, the ADFilter task runs in both modes
five times per 25 ms (i.e., at 200 Hz). The helicopter servos
and the datapool, which contains messages that are sent to
the ground station, are updated once every 25 ms by invok-
ing the actuator drivers ServoUpdate and
DataPoolUpdate, respectively. In mode ControlOff, a
switch to modeControlOn is contemplated every 25 ms by
executing the mode driver SwitchOn, which evaluates a
mode-switch condition.

Figure 10 shows the logical execution of a single hy-
per-period of the ControlOnmode (a possible physical ex-
ecution is shown in Figure 13 and will be discussed later).
The logical execution satisfies the FLET assumption: the
ADFilter task runs five times exactly for 5 ms, whereas the
NavControl task runs once exactly for 25 ms. Both tasks
run logically in parallel. All Giotto link and device drivers are
executed in logical zero time. In practice, link and device
drivers are bounded code that satisfies the synchrony as-

February 2003 IEEE Control Systems Magazine 57

Figure 9. A trace of the simplified Giotto helicopter controller
with mode switching at 50 and 100 ms.

sumption [21] (as drivers cannot depend on each other, no
issues of fixed-point semantics arise in Giotto).

Intertask communication, as well as communication with
the environment of the Giotto program, works through
Giotto ports. In the Giotto program we declare all sensor
ports globally as follows:

sensor

GPSPort gps uses GPSGet;

LaserPort laser uses LaserGet;

CompassPort compass uses CompassGet;

RPMPort rpm uses RotorGet;

ServoPort pilot uses ServoGet;

AnalogPort accelerometers uses AccGet;

AnalogPort gyroscopes uses GyrosGet;

AnalogPort temperature uses TempGet;

BoolPort startswitch uses StartSwitchGet;

BoolPort stopswitch uses StopSwitchGet;

Besides a type name, we declare a Giotto device driver for
each sensor port. For example, the sensor port gps has the
type GPSPort and uses the Giotto device driver GPSGet to
get new sensor values from the GPS device. Types and de-
vice drivers are implemented externally to Giotto. Here they
are Oberon types and procedures. In Figure 10, at the 0-ms
instant, the first action is to read the latest sensor values by
calling the Giotto device drivers for all Giotto sensor ports.
Subsequently, every 5 ms until the end of the hyper-period,
the device drivers are called only for the sensor ports that
are read by the ADFilter task. Giotto device drivers are al-
ways called in a time-triggered fashion. However, some de-

vices require immediate attention using an asynchronous
(interrupt-driven) task. For example, the GPSGet device
driver does not access the GPS device directly but reads a
buffer into which the asynchronous task (interrupt handler)
that is bound to the GPS device places the latest GPS read-
ings. The asynchronous task is external to the Giotto pro-
gram. The opposite direction for communication from a
port to a device is done in a similar way and will be dis-
cussed below.

At the 0-ms instant, right after executing the Giotto de-
vice drivers for the sensor ports, the mode driver
SwitchOff is called to determine whether or not to switch
into the ControlOffmode. The mode driver is declared as
follows:

driver SwitchOff(stopswitch) output () {

switch isControlOff(stopswitch)}

The driver has a single input, stopswitch, that is a sensor
port whose Giotto device driver StopSwitchGet has just
been called. The device driver reads the value of a variable
that represents the take-over button, whose value is trans-
mitted asynchronously (i.e., externally to Giotto) via the
wireless link from the remote control to the airborne control
system. Based on the value of the stopswitch port, the
Oberon implementation of theisControlOffpredicate re-
turns true or false, determining whether or not to switch to
the ControlOff mode.

Suppose that we stay in the ControlOn mode. The next
step is to load the task input ports of the ADFilter and
NavControl tasks with the latest values of the sensor and

58 IEEE Control Systems Magazine February 2003

Tasks/Drivers

Filter

Accelerometers
Gyroscopes
Temperature

Data

GPS
Laser

Compass
Pilot

RPM

Giotto Tasks

ADFilter

NavControl

Giotto Drivers

Sensor Reading

Mode Switch

Time (ms)250 5 10 15 20

Filter

Data

Control

Task Input

Actuator Update

Figure 10. The logical execution of the Giotto autopilot program in the ControlOn mode.

task output ports to which the tasks are connected, as speci-
fied in the task declarations below. Before declaring the
tasks, all task output ports are declared globally as follows:

output

AnalogPort filter := FilterInit;

ServoPort control := ServoInit;

DataPoolPort data := DataPoolInit;

The filter port will be the only task output port of the
ADFilter task; thecontrol anddataports will be used as
task output ports by the NavControl task. For each task
output port, in addition to a type name, an initialization
driver is specified, which is invoked once at start-up time to
initialize the port. For example, the task output portfilter
has the type AnalogPort and is initialized by the driver
FilterInit. As usual, the initialization drivers are imple-
mented externally to Giotto, here as Oberon procedures. Ini-
tial values for all task output ports sufficiently describe a
unique start configuration of a Giotto program. The
ADFilter and NavControl tasks are declared as follows:

task ADFilter(accelerometers, gyroscopes,

temperature, filter)

output (filter) {

schedule ADFilterImplementation

(accelerometers, gyroscopes,

temperature, filter, filter)}

task NavControl(gps, laser, compass, filter,

rpm, pilot, data)

output (control, data) {

schedule NavControlImplementation(gps,

laser, compass, filter, rpm, pilot,

control, data)}

The ADFilter task reads from the accelerometers, gy-
roscopes, temperature, and filter ports. The filter
port is also a task output port, which makes the port a state
variable of the task. Prior to the invocation of the task, the
values of all four ports are copied by the task driver for
ADFilter to some local memory, which is only accessible
to the task itself. The task driver does not have to be de-
clared explicitly in Giotto. The procedure ADFilterIm-

plementation, which implements the functionality of the
ADFilter task, is external to Giotto. In our case, it is an
Oberon procedure that is taken directly from the original
OLGA control software. TheNavControl task is declared in
a similar way. Now the Giotto program is ready to invoke the
ADFilter and NavControl tasks. The NavControl task
runs logically for 25 ms; the ADFilter task runs logically
concurrently and finishes after 5 ms. In practice, the output
of ADFilterImplementation is kept in local memory
when it becomes available and loaded into the task output
portfilter at the 5-ms instant. This is accomplished by an
(undeclared) port driver for filter. Port drivers are used

to maintain the FLET assumption by making task outputs
visible in task output ports only at the end of logical task ex-
ecution, which may be later than the end of physical task ex-
ecution. Then, still at 5 ms, new sensor values are read and
the task input ports of theADFilter task are loaded, before
invoking the task again.

This process repeats until the 25-ms time instant is
reached. At that time, new values in the control and data
output ports of theNavControl task are available. The new
values are now transferred by the actuator drivers
ServoUpdate and DataPoolUpdate to the servos and
datapool actuator ports, respectively. Before declaring
the actuator drivers, we first need to declare the actuator
ports globally as follows:

actuator

ServoPort servos uses ServoPut;

DataPoolPort datapool uses DataPoolPut;

Besides a type name, we declare a Giotto device driver for
each actuator port. For example, the actuator port servos
has the type ServoPort and uses the Giotto device driver
ServoPut to transfer new actuator values to the helicopter
servos. Again, types and device drivers are implemented ex-
ternally to Giotto. Before the device drivers are called, the
actuator drivers ServoUpdate and DataPoolUpdate are
executed. The actuator drivers are declared as follows:

driver ServoUpdate(control) output (servos) {

call ServoUpdateImplementation(control,

servos)}

driver DataPoolUpdate(data) output (datapool) {

call DataPoolUpdateImplementation(data,

datapool)}

In Figure 10, at the 25-ms instant after the NavControl task
finishes, the helicopter servos and datapool are updated
by first executing the Oberon ServoUpdateImplementa-
tion and DataPoolUpdateImplementation, which
transport the values from the control and data ports to
the servos and datapool actuator ports, respectively.
Then the ServoPut device driver is called, which takes the
new value from the servos port and updates the servo de-
vices. The DataPoolPut device driver is also called, but in-
stead of accessing a device, it puts the value from the
datapool port into a buffer, which gets transmitted over
the wireless link as soon as the Giotto system becomes idle.
The actual transmission is done by a background
(non-time-critical) task of the original OLGA control soft-
ware. The background task is external to the Giotto pro-
gram. The 25-ms hyper-period is now finished.

Giotto Compilation and Execution
Before we discuss the compilation and execution of the
Giotto autopilot program on the OLGA hardware, we con-

February 2003 IEEE Control Systems Magazine 59

sider the Giotto tool chain in slightly greater detail, as
shown in Figure 11. From a given Simulink model that con-
tains Giotto model blocks, the S/G translator generates a
timing (Giotto) program for the Giotto model blocks,
whereas we may use MathWorks’ Real-Time Workshop Em-
bedded Coder to generate the functionality (C) programs
that implement the Giotto task and switch blocks inside the
Giotto model blocks. Functionality (C) programs that imple-
ment the Giotto drivers need to be provided as well, typi-
cally from driver libraries. In the next step, the Giotto
compiler generates timing code from the Giotto program
and a C compiler generates functionality code from the C
programs. The Giotto compiler targets a virtual machine
called the Embedded Machine [20]. The compiler generates
so-called E code, which is interpreted by the Embedded Ma-
chine in real time. There are E code instructions to call or
schedule the functionality code and to invoke the Em-
bedded Machine at specific time instants or occurrences of
events. In the last step, before E code can be executed, it is
linked through a common symbol table with the functional-
ity code generated by the C compiler from the functionality
programs. The execution environment for Giotto consists of
an implementation of the Embedded Machine and a plat-
form (i.e., operating system and hardware), which includes
a scheduler for functionality code.

The Giotto Compiler
The main task of the Giotto compiler is to produce timing (E)
code that is consistent with the FLET assumption of the
Giotto program. To this end, the generated E code must be
shown to be time safe [20] on the chosen platform, which in-
tuitively means that all tasks meet the logical deadlines pro-
vided by the Giotto semantics. If the E code is time safe, then
the execution behavior of the Giotto control system (i.e.,
timing and functionality code) is guaranteed to conform
with the S/G simulation behavior of the original Giotto
model. Because Giotto is environment determined, this con-
formance is precise in both timing and functionality: for any
given sequence of sensor readings, the S/G simulation and
the behavior of the generated code output the same se-
quence of actuator settings and update the actuator set-
tings at the same points in time. In other words, a Giotto
control system exhibits no internal race conditions, which
makes its behavior predictable and verifiable.

The Giotto compiler checks time safety of the E code by
performing a schedulability analysis on the Giotto pro-
gram for given worst-case execution times of the function-
ality code. For single-CPU platforms, the schedulability
analysis can be done in polynomial time by checking a utili-
zation equation for each Giotto mode [22] (the analysis is
exact under the reasonable assumption that all modes of
the Giotto program can be reached during program execu-
tion; otherwise the analysis is conservative). The
schedulability analysis requires worst-case execution time

assumptions for C code, which may be provided by
non-Giotto-specific tools [23].

The code-generation process is perhaps best under-
stood if we consider which parts need to be redone if the
platform changes. To run a Giotto control system on a new
platform, we must:

1) provide C programs that implement Giotto device
drivers to interface the new hardware

2) recompile the functionality (C) programs for the new
platform

3) have the Giotto compiler redo the time-safety check
for the new worst-case execution times

4) implement the Embedded Machine on the new plat-
form.

In particular, if the new platform offers sufficient perfor-
mance, then the generated timing (E) code can also be run
on the new platform. Indeed, once the Embedded Machine
has been ported, the new execution environment can run
any Giotto control system that passes a time-safety check.

The Giotto compiler has a great deal of freedom when gen-
erating E code. This is because a Giotto program does not
specify where, how, and when tasks are scheduled. For exam-
ple, the helicopter control program can be compiled on plat-
forms with a single CPU (by time sharing between the data
fusion and control tasks) or on platforms with two CPUs (by
parallelism); it can be compiled on platforms with preemp-
tive priority scheduling (such as most real-time operating

60 IEEE Control Systems Magazine February 2003

Legend: Tool Model Software Execution Environment

Giotto Simulink
Model

Embedded
Coder

Functionality
Programs

C
Compiler

Functionality
Code

Symbol
TableE Code

Giotto
Compiler

Giotto
Program

S/G
Translator

Linker

Embedded Machine + Platform

Figure 11. The Giotto tool chain for code generation.

systems) or on platforms with time-slice scheduling.
Roughly, all the Giotto compiler needs to ensure is that 1) the
sensors and actuators are read and written as close as possi-
ble to the times specified by the Giotto semantics, and 2)
whenever in the Giotto semantics the logical completion of
one task precedes the invocation of another task, then the
same precedence is preserved during the actual execution
[2]. The first requirement reduces I/O jitter; the freedom
given by the second requirement can be used by the compiler
to optimize performance. In particular, as we will see next,
the helicopter system executes two logically concurrent, log-
ically atomic (i.e., nonpreempted) tasks through time sharing
and preemption on a single CPU.

As the Giotto compiler maintains compliance of the code
with the logical semantics, Giotto systems can be com-
posed. The existing I/O behavior of a Giotto control system
does not change when new Giotto tasks are added, provided
the compiler succeeds in showing that the resulting E code
remains time safe despite the additional load.

The Giotto-Based
Autopilot Control System
The system architecture of the Giotto-based helicopter con-
trol system is shown in Figure 12. The upper left portion
shows the Giotto program and the corresponding functional-
ity programs, namely, Oberon implementations of the Giotto
device and link drivers and Giotto tasks. The non-Giotto tasks
shown in the upper right portion of Fig-
ure 12 implement asynchronous
(event-triggered) tasks or background
(non-time-critical) tasks, which are in-
terfaced to the Giotto system through
sensor and actuator ports via Giotto de-
vice drivers. Asynchronous tasks must
be taken into account by the schedul-
ability analysis performed by the Giotto
compiler; background tasks are exe-
cuted only when the Giotto system is
idle. In the middle of Figure 12, the origi-
nal OLGA system software is extended
by an implementation of the Embedded
Machine in the kernel of the HelyOS
real-time operating system. The under-
lying hardware is unchanged.

Figure 13 shows the actual, physical
execution of the Giotto autopilot pro-
gram in the ControlOn mode, which
corresponds to the logical execution
shown in Figure 10. Since the OLGA
hardware has a single CPU to run the
Giotto system as well as non-Giotto
tasks, at any point during the actual ex-
ecution, at most one of the Giotto or
non-Giotto tasks can be running. This
is in contrast to the logical execution,

where the two Giotto tasksADFilter andNavControl run
logically in parallel. To check the schedulability of the
ControlOn mode, the Giotto compiler must verify that on
the OLGA CPU, five times the worst-case execution time of
ADFilter, plus the execution time of NavControl, plus
worst-case assumptions for Giotto overhead (i.e., driver ex-
ecution) and asynchronous non-Giotto tasks, are less than
the hyper-period of the mode (25 ms).

The schedule of tasks during the actual execution is de-
termined by the generated E code as well as the scheduler of
the operating system (OS), which is part of the platform.
The E code governs the timing behavior of the Giotto sys-
tem: it triggers the immediate (synchronous) execution of
the drivers and hands tasks that are ready to be scheduled
to the OS. The HelyOS schedules Giotto tasks using a
rate-monotonic scheduler and runs background tasks
whenever the Giotto system is idle. There is a tradeoff be-
tween E code scheduling and scheduling by the OS. In the
two extreme cases, the E code may give the OS maximal free-
dom by handing over tasks as soon as they are ready to be
scheduled in conformance with the Giotto semantics, or it
may make its own scheduling decisions and hand, at all
times, only one of the ready tasks to the OS. Many intermedi-
ate solutions are also possible. E code scheduling is explicit,
determined by the Giotto compiler; scheduling by the OS is
implicit, depending on the scheduling strategy used by the
OS. Note, however, that E code scheduling is not necessarily

February 2003 IEEE Control Systems Magazine 61

Giotto Control Software Event-Triggered/
Non-Time-Critical Software

Giotto Autopilot Program

Giotto
Link Drivers
and Tasks

Asynchronous
Tasks

Background
Tasks

HelyOS Real-Time SystemEmbedded
Machine

Device
Drivers

Computer System

Actuators Sensors
OLGA System

Giotto
Device
Drivers

E Code

Figure 12. The Giotto-based helicopter control system.

static, because scheduling decisions may depend on the
state of the program. E code is compatible with any schedul-
ing strategy of the OS, but the scheduling strategy must be
known when the Giotto compiler checks the generated E
code for time safety.

The top row of Figure 13 shows the execution of the
ADFilter task and the drivers from the top row of Figure
10. The middle row shows the execution of theNavControl
task and the drivers from the bottom row of Figure 10. The
bottom row shows the execution of background
(non-time-critical) tasks. At 0 ms, the ADFilter task starts
before the NavControl task, even though both are ready
according to the Giotto semantics, because ADFilter runs
at a higher rate and thus has a higher priority. For the same
reason, NavControl is preempted at 5 ms by the second in-
vocation of ADFilter. Note that to conform with the data
flow specified by the Giotto semantics, the NavControl

task must read the output of the last invocation of the
ADFilter task from the previous control cycle, even
though the first invocation ofADFilter in the current cycle
is already completed when NavControl starts, and thus a
fresher output of ADFilterwould be available. The benefit
of this strict adherence to the Giotto semantics is that the
same output value, namely, the one defined by the FLET as-
sumption, is used in all implementations, independent of
the scheduling strategy and performance of the platform.

In the helicopter system, to implement the Giotto seman-
tics, the input for theNavControl task is loaded at 0 ms and
then buffered for 25 ms until the end of the task’s period.

Similarly, task outputs are buffered and made available only
at the end of a task period. Buffering task inputs and outputs
is a sufficient but conservative technique for implementing
the FLET assumption of the Giotto semantics. Other tech-
niques such as scheduling with precedence constraints are
possible [2].

Conclusions
Giotto is a domain-specific, high-level programming lan-
guage: domain specific, as it addresses embedded control
applications; high level, as it abstracts platform-dependent
implementation details. Giotto increases the transparency
of control software and automates scheduling and optimiza-
tion through compilation.

The successful reengineering of the OLGA autopilot soft-
ware using Giotto demonstrates the feasibility of the Giotto
approach for high-performance control systems. The Giotto
compiler automatically generates timing code for a control
system with multiple modes of operation, multiple levels of
task priorities, and time-triggered as well as event-triggered
task activation. Giotto incurs an overhead through E code
interpretation, predicate checks for mode switching, and
the copying of ports. Measurements on the helicopter im-
plementation have shown that this overhead amounts to
less than 2% of a 25-ms period.

Giotto-based control systems benefit from the dual sepa-
ration of concerns (reactivity versus scheduling; timing
versus functionality) in many ways. First and foremost, the
timing behavior of the control system is guaranteed to con-

62 IEEE Control Systems Magazine February 2003

Tasks/Drivers

Filter

Accelerometers
Gyroscopes
Temperature

Data

GPS
Laser

Compass
Pilot

RPM

Filter

Data

Control

0 5 10 15 20 25 Time (ms)

CPU Executing:

Giotto Drivers Giotto Tasks Background Tasks

Figure 13. The actual execution of the Giotto autopilot program in the ControlOn mode based on rate-monotonic scheduling.

form to the simulation behavior of the corresponding
Simulink model. Indeed, for any given behavior of the physi-
cal environment, the response of the Giotto system is
unique and therefore predictable. Second, the development
effort is significantly reduced, as the tedious programming
of the timing code is handed over to the Giotto compiler.
Also, the automation of the timing code generation elimi-
nates a common source of errors. Third, the high degree of
modularization and software transparency facilitates the
easy exchange and addition of functionality, as well as the
easy modification of timing requirements. Functionality
programs can be packaged as software components and re-
used; timing (Giotto) programs can be composed without
changing their individual behaviors. Fourth, the system can
be ported to all platforms for which an implementation of
the Embedded Machine is available. An implementation of
the Embedded Machine on top of HelyOS was accomplished
in one week, and its source code is only 6 KByte.

Current Giotto Implementations
There are several implementations of execution environ-
ments for Giotto besides the one used for the helicopter
control system described in this article. The first implemen-
tation of Giotto was a simplified Giotto execution environ-
ment on a distributed platform of Lego Mindstorms [24]
robots. The robots use infrared transceivers for communi-
cation. Then we implemented a full Giotto execution envi-
ronment on a distributed platform of Intel x86 robots
running the real-time operating system VxWorks [25]. The
robots use wireless Ethernet for communication. We also
wrote a Giotto program that runs on five robots, three Lego
Mindstorms and two x86-based robots, to demonstrate the
applicability of Giotto for heterogeneous platforms. For a
discussion of this work, and embedded control systems de-
velopment with Giotto in general, we refer to the earlier re-
port [26].

We have implemented a Giotto-based automotive elec-
tronic throttle controller on a single Motorola MPC 555 pro-
cessor running the real-time operating system OSEKWorks
[27]. The Giotto program specifies three tasks: a 1- KHz con-
troller task that implements various throttle controllers, a
33-Hz monitor task that monitors the system status, and a
66-Hz manager task that determines, based on the system
status, which throttle controller is executed by the control-
ler task.

The BEAR helicopter control system [16] is also being
reimplemented in Giotto. In contrast to the OLGA helicopter
control system, where the functionality programs have
been reused from the original project, the second genera-
tion of the BEAR helicopter control system is a complete re-
design of the software implementation [28].

Except for the one used in the OLGA helicopter control
system (which is written in Oberon), all current versions of
the Embedded Machine are written in C and are
POSIX-compliant. Non-real-time implementations of the Em-

bedded Machine are also available for Linux and Windows.
The Giotto compiler is written in Java. All Giotto software
tools are available for download at http://www.eecs.berke-
ley.edu/~fresco/giotto/.

Related Work
Giotto was originally inspired by the time-triggered archi-
tecture (TTA) [29], which first realized the time-triggered
paradigm for meeting hard real-time constraints in
safety-critical distributed settings. Whereas the TTA encom-
passes a hardware architecture and communication proto-
col, Giotto provides a platform-independent programmer’s
model for time-triggered applications.

The intertask communication semantics of Giotto is simi-
lar to the MetaH language [30], which is designed for
real-time, distributed avionics applications. Giotto can be
viewed as capturing a time-triggered fragment of MetaH in
an abstract and formal way. In particular, unlike MetaH,
Giotto specifies not only intertask communication but also
mode switches in a time-triggered fashion, and it does not
constrain the implementation to a particular scheduling
scheme.

Many objectives of Giotto are shared by the synchronous
reactive programming languages [21], including Esterel
[31], Lustre [32], and Signal [33]. Giotto emphasizes the use
of scheduled computation (i.e., the execution of tasks,
which consume nonnegligible amounts of CPU time) at the
expense of synchronous computation (i.e., the execution of
drivers, which are constrained to be bounded, independent,
noninteracting processes). Consequently, whereas the com-
pilation of synchronous reactive languages focuses on
fixed-point analysis, the compilation of Giotto focuses on
schedulability analysis. A more detailed comparison is
given in [34].

Acknowledgments
We thank Niklaus Wirth and Walter Schaufelberger for their
advice and support of the reengineering effort of the ETH
Zürich helicopter control system using Giotto. This re-
search was supported in part by DARPA SEC grant
F33615-C-98-3614, MARCO GSRC grant 98-DT-660, and
AFOSR MURI grant F49620-00-1-0327. A preliminary version
of this article appeared as [1].

References
[1] C.M. Kirsch, M.A.A. Sanvido, T.A. Henzinger, and W. Pree, “A Giotto-based
helicopter control system,” in Proc. 2nd Int. Workshop Embedded Software
(EMSOFT), LNCS 2491, Springer Verlag, 2002, pp. 46-60.

[2] T.A. Henzinger, B. Horowitz, and C.M. Kirsch, “Giotto: A time-triggered lan-
guage for embedded programming,” in Proc. 1st Int. Workshop Embedded Soft-
ware (EMSOFT), LNCS 2211, Springer Verlag, 2001, pp. 166-184.

[3] J. Chapuis, C. Eck, M. Kottmann, M.A.A. Sanvido, and O. Tanner, “Control of
helicopters,” in Control of Complex Systems, K. Ågström, P. Albertos, M.
Blanke, A. Isidori, W. Schaufelberger, and R. Sanz, Eds. New York: Springer
Verlag, 1999, pp. 359-392.

[4] N. Wirth, “Tasks versus threads: An alternative multiprocessing para-
digm,” Software-Concepts and Tools, vol. 17, pp. 6-12, 1996.

February 2003 IEEE Control Systems Magazine 63

[5] T.A. Henzinger, “Masaccio: A formal model for embedded components,” in
Proc. 1st IFIP Int. Conf. Theoretical Computer Science, LNCS 1872, Springer
Verlag, 2000, pp. 549-563.
[6] D.J. McConnel, B. Lewis, and L. Gray, “Reengineering a single-threaded em-
bedded missile application onto a parallel processing platform using MetaH,”
Real-Time Syst., vol. 14, pp. 7-20, 1998.
[7] N. Wirth, “A computer system for model helicopter flight control; Techni-
cal memo 6: The Oberon compiler for the StrongARM processor,” Institute for
Computer Systems, ETH Zürich, Tech. Rep. 314, 1999.
[8] N. Wirth and J. Gutknecht, Project Oberon: The Design of an Operating Sys-
tem and Compiler. New York: ACM Press, 1992.
[9] M.A.A. Sanvido, “A computer system for model helicopter flight control;
Technical memo 3: The software core,” Institute for Computer Systems, ETH
Zürich, Tech. Rep. 317, 1999.
[10] weControl GmbH, wePilot1000 [Online]. Available:
http://www.wecontrol.ch
[11] The Robotics Institute, Carnegie Mellon University [Online]. Available:
http://www.cs.cmu.edu/afs/cs/project/chopper/www
[12] The UAV Lab, Georgia Institute of Technology [Online]. Available:
http://controls.ae.gatech.edu/labs/uavrf
[13] Laboratory for Information and Decision Systems, Massachusetts Insti-
tute of Technology, “Aerial robotics” [Online]. Available:
http://gewurtz.mit.edu/research/heli.htm
[14] Robotics Research Laboratory, University of Southern California, “Au-
tonomous flying vehicles” [Online]. Available: http://www-robot-
ics.usc.edu/~avatar
[15] Measurement and Control Laboratory, ETH Zürich, “Autonomous heli-
copter project” [Online]. Available: http://www.heli.ethz.ch
[16] Electronic Research Laboratory, University of California at Berkeley,
“BEAR: Berkeley aerial robot” [Online]. Available: http://robotics.eecs.berke-
ley.edu/bear
[17] Aerospace Robotics Laboratory, Stanford University, “The Hummingbird
helicopter” [Online]. Available: http://sun-valley.stanford.edu/~heli
[18] Institute for Technical Computer Science, Technische Universität Berlin,
“Marvin” [Online]. Available: http://pdv.cs.tu-berlin.de/MARVIN
[19] C. Eck, “Navigation algorithms with applications to unmanned helicop-
ters,” Ph.D. dissertation, 14402, Computer Science, ETH Zürich, 2001.
[20] T.A. Henzinger and C.M. Kirsch, “The Embedded Machine: Predictable,
portable real-time code,” in Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), ACM Press, 2002, pp. 315-326.
[21] N. Halbwachs, Synchronous Programming of Reactive Systems. Norwell,
MA: Kluwer, 1993.
[22] T.A. Henzinger, C.M. Kirsch, R. Majumdar, and S. Matic, “Time-safety
checking for embedded programs,” in Proc. 2nd Int. Workshop Embedded Soft-
ware (EMSOFT), LNCS 2491, Springer Verlag, 2002, pp. 76-92.
[23] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H.
Theiling, S. Thesing, and R. Wilhelm, “Reliable and precise WCET determina-
tion for a real-life processor,” in Proc.1st Int. Workshop Embedded Software
(EMSOFT), LNCS 2211, Springer Verlag, 2001, pp. 469-485.
[24] Lego, “Mindstorms” [Online]. Available: http://mindstorms.lego.com
[25] Wind River Systems, “VxWorks operating system” [Online]. Available:
http://www.windriver.com/products/html/vxwks5x.html
[26] T.A. Henzinger, B. Horowitz, and C.M. Kirsch, “Embedded control sys-
tems development with Giotto,” in Proc. ACM SIGPLAN Workshop Languages,
Compilers, and Tools for Embedded Systems (LCTES), ACM Press, 2001, pp.
166-184.
[27] Wind River Systems, “OSEKWorks operating system” [Online]. Available:
http://www.windriver.com/products/html/osekworks.html
[28] B. Horowitz, J. Liebman, C. Ma, J.T. Koo, T.A. Henzinger, A.
Sangiovanni-Vincentelli, and S. Sastry, “Embedded-software design and sys-
tem integration for rotorcraft UAV using platforms,” in Proc. 15th IFAC World
Congress, Elsevier, 2002 [CD-ROM].
[29] H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded
Applications. Norwell, MA: Kluwer, 1997.
[30] S. Vestal, “MetaH support for real-time multi-processor avionics,” in Proc.
5th Int. Workshop Parallel and Distributed Real-Time Systems, IEEE Computer
Society Press, 1997, pp. 11-21.

[31] G. Berry, “The foundations of Esterel,” in Proof, Language and Interaction:
Essays in Honour of Robin Milner, G. Plotkin, C. Stirling, and M. Tofte, Eds. Cam-
bridge, MA: MIT Press, 2000, pp. 425-454.
[32] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
dataflow programming language Lustre,” Proc. IEEE, vol. 79, pp. 1305-1320,
Sept. 1991.
[33] A. Benveniste, P. Le Guernic, and C. Jacquemot, “Synchronous program-
ming with events and relations: The Signal language and its semantics,” Sci.
Comput. Program., vol. 16, pp. 103-149, 1991.
[34] C.M. Kirsch, “Principles of real-time programming,” in Proc. 2nd Int. Work-
shop Embedded Software (EMSOFT), LNCS 2491, Springer Verlag, 2002, pp.
61-75.

Thomas A. Henzinger is a professor of electrical engineer-
ing and computer sciences at the University of California,
Berkeley. He holds a Dipl.-Ing. degree in computer science
from Kepler University, Linz, Austria; an M.S. degree in com-
puter and information sciences from the University of Dela-
ware; and a Ph.D. degree (1991) in computer science from
Stanford University. He was an assistant professor of com-
puter science at Cornell University (1992-1995) and a direc-
tor of the Max-Planck Institute for Computer Science in
Saarbrücken, Germany (1999). His research focuses on
formalisms and tools for the design, implementation, and
verification of reactive, real-time, and hybrid systems.

Christoph M. Kirsch is a postdoctoral researcher at the De-
partment of Electrical Engineering and Computer Sciences
at the University of California, Berkeley. He holds a Dipl.-In-
form. degree (1996) and a Ph.D. degree (1999) in computer
science from the University of Saarbrücken, Germany. He re-
ceived both degrees while at the Max-Planck Institute for
Computer Science in Saarbrücken, Germany. His research
focuses on formalisms and tools for the design and imple-
mentation of real-time and embedded systems.

Marco A.A. Sanvido is a postdoctoral researcher at the De-
partment of Electrical Engineering and Computer Sciences
at the University of California, Berkeley. He holds a Dipl.-Ing.
degree (1996) and a Dr.techn. degree (2002) in computer sci-
ence from the Swiss Federal Institute of Technology in
Zürich, Switzerland. His research focuses on tools for the
design and implementation of real-time embedded systems.

Wolfgang Pree is a professor of computer science at the
University of Salzburg, Austria. He holds a Dipl.-Ing. degree
(1987) and a Dr.techn. degree (1992) in computer science
from Kepler University in Linz, Austria. He was a visiting as-
sistant professor at Washington University in St. Louis
(1992-1993); a guest scientist at Siemens AG Munich
(1994-1995); a professor of computer science at the Univer-
sity of Constance, Germany (1996-2001); and recently spent
a sabbatical at the University of California, Berkeley. His re-
search focuses on software construction, in particular,
methods and tools for automating the development of
real-time embedded software and for improving the reus-
ability through generic software.

64 IEEE Control Systems Magazine February 2003

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

