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1 Introduction

This paper informally presents the theoretical and practical foundations of syn-
chronous programming of reactive systems, mostly focusing on the author’s Es-
terel language. Synchronous languages are based on the perfectly synchronous
concurrency model, in which concurrent processes are able to perform computa-
tion and exchange information in zero time, at least at a conceptual level. The
synchronous model is well adapted to a very wide spectrum of computer ap-
plications, ranging from hardware circuit design to large-scale real-time process
control, and including embedded systems, communication protocols, systems
drivers, or user interfaces.

The synchronous model and languages are very different from models and
languages well-known in the Computer Science community such as Petri Nets,
CCS, CSP, or the 7-calculus. Therefore, we find it useful to write a foundational
paper explaining the application class, the model, the programming styles and
languages based on it, their semantics, their implementation, and program ver-
ification. The development of synchronous languages was deeply influenced by
the work of Robin Milner on process calculi and bisimulation. Since Robin Mil-
ner himself always expressed great interest in the subject, we find it natural
to write that paper for a book dedicated to him. The paper is based on two
invited lectures by the author: one at LICS’94, and the first Milner Lecture at
Edinburgh University in 1996.

1.1 History

The perfectly synchronous model and languages appeared independently in the
beginning of the 80’s in different places. Esterel was defined by the author in



Sophia-Antipolis [11, 10]. Lustre was defined by P. Caspi and N. Halbwachs
in Grenoble [27]. Signal was developed by A. Benveniste and P. Le Guernic in
Rennes [24]. In Israel, D. Harel introduced the Statecharts quasi-synchronous
graphical formalism [30]. In Grenoble, F. Maraninchi defined the Argos formal-
ism [38] that makes (restricted) Statecharts drawings fully synchronous. More
recently, in Nice, C. Andre extended Argos into the SyncCharts formalism [2]
that has the same expressive power as Esterel. Synchronous programming was
also introduced in the framework of concurrent constraint programming by V.
Saraswat et. al. [46, 47]. See [26] for a joint presentation of Argos, Esterel,
Lustre, and Signal.

R. Milner also introduced a form of synchrony primitive in his SCCS pro-
cess calculus [40]; D. Austry and G. Boudol developed Milner’s synchronous
approach further in the Meije calculus [3]. The SCCS and Meije calculi are
somewhat weaker than the aforementioned languages since they do not support
negation, i.e. instantaneous test for signal absence. Nevertheless, they are useful
to us for verification purposes.

The synchronous model and languages caught on quite easily in the auto-
matic control community, where they did not fundamentally depart from models
implicitly already in use in these areas. Esterel, Lustre, and Signal were actu-
ally designed and developed in mixed Control Theory and Computer Science
teams!. The languages also entered the field of hardware design in the be-
ginning of the 90’s [5, 53], when it was realized that the synchronous model
was identical to the zero-delay model of circuits?. Being somewhat unclassi-
cal compared to prevalent CSP or CCS based models, it took more time for
the synchronous model to be accepted in the mainstream Computer Science
community.

From the very beginning, the authors of synchronous languages developed
or helped to develop software systems to support them and submitted them to
industrial experimentation. The interest for synchronous languages in industry
has grown steadily, and we think that their proper industrial career is about to
start.

The development of synchronous languages has borrowed techniques from a
number of usually disconnected fields. We already mentioned Control Theory.
The semantics are given using Scott’s fixpoint semantics and Plotkin’s Structural
Operational Semantics techniques [45]. The compilers are developed directly
from the semantics, following the example of Robin Milner’s ML language [42],
itself in the line of Landin’s viewpoint [35]. Automata theory techniques are used
in the compilers [16, 12, 10]. Process calculi techniques such as bisimulation [41]
or testing [31, 28] play a major role in program verification, as well as abstract

1The control-theory designers were Jean-Paul Rigault and Jean-Paul Marmorat for Esterel,
Paul Caspi for Lustre, and Albert Benveniste for Signal.

2Thanks to Jean Vuillemin and Patrice Bertin at Digital Equipment Paris Research Lab-
oratory; with them, the author also developed the 2z synchronous language based on 2-adic
number theory [54], not presented here.



interpretation techniques [25]. Synchronous hardware design, optimization, and
verification techniques based on logic simplification techniques or on Binary
Decision Diagrams [21, 14, 15] are now of prominent use in implementation
and verification. Finally, constructive logic techniques as well as asynchronous
hardware analysis techniques [17] turned out to be fundamental for solving the
particularly important semantical causality problem for Esterel [52].

1.2 Overview of the Paper

Section 2 presents the application area, namely, deterministic reactive systems.
Section 3 presents an analysis of models of concurrent computing, insisting on
the synchronous model and its adequacy for reactive systems programming.
Section 4 presents the linguistic principles that underly synchronous languages,
using the example of Esterel and Lustre. Section 5 presents the semantics and
discusses the causality issues that are inherent in synchronous programming. In
particular, we discuss the constructive semantics idea and its physical roots: the
equivalence between propagation of electrical currents in circuits and proofs in
constructive Boolean logic. Section 6 presents the techniques used to compile
Esterel programs into automata, hardware circuits or conventional C programs,
as well as optimization techniques. Finally, Section 7 discusses program verifi-
cation.

2 Interactive and Reactive Systems

Instead of computing data outputs from data inputs, most modern computer-
driven systems constantly interact with their environment and are themselves
made of concurrent parts. Such systems fall into two distinct classes.

o In interactive systems, clients ask for accesses or resources that the system
grants or allocates if and when possible. This class covers operating sys-
tems, data bases, networking, distributed algorithms, etc. The computer
(network) is the leader of the interaction, and clients wait to be served.
The main concerns are deadlock avoidance, fairness, and coherence of dis-
tributed information.

o In reactive or refler systems, the computer role is to react to external
stimuli by producing appropriate outputs in a timely way, the leader of
the interaction being the environment. Reactive systems are prominent
in industrial process control, airplane or automobile control, embedded
systems, audio or video protocols, bus interfaces, systems or man-machine
interfaces drivers, signal processing, etc. In reactive systems, the pace of
the interaction is determined by the environment, not by the computers.
Most often, clients cannot wait. The main concerns are correctness (safety)
and timeliness.



The above terminology was introduced in [4] and we find it convenient to reuse
it here, knowing of no better words. Of course, large scale systems can have
components of both kinds. For instance, driving an airplane is mostly reactive,
while communicating with the ground is mostly interactive. An automatic teller
machine is reactive except for interactive communication with the bank.

Interactive and reactive systems deeply differ on the key issue of behav-
ioral determinism. Interactive systems are naturally viewed as being non-
deterministic. Being the master of the interaction, the system is allowed to
make hidden internal choices about if and when requests are answered, and
the answer to a sequence of inputs needs not be unique. On the other hand,
behavioral determinism is a highly desirable and often mandatory property of
slave reactive systems: the outputs of the system should be uniquely determined
by its inputs and possibly by their timing. Think for example of airplane or
automobile control, signal processing, or camera control.

Respecting either the non-deterministic or deterministic character of a sys-
tem is mandatory for any formalism used to describe or program it. Since the
behavior of a non-deterministic systems is far more complicated than that of
a deterministic one (e.g., bugs may even be non-reproducible), the use of non-
deterministic primitives should be reserved for interactive systems. In classical
and well-studied concurrent formalisms such as Petri Nets or process calculi,
non-determinism is built-in. This makes the formalisms well-suited to interac-
tive systems and not well-suited to reactive ones. The synchronous languages
we study here are concurrent and deterministic. This makes them well suited to
reactive systems and inadequate for interactive ones. No formalism is yet able
to encompass both characteristics in a smoothly unified way.

Most reactive systems involve two kinds of activities, data handling and
control handling, with a rather varied balance between them. At one extreme,
signal processing applications are mostly data-oriented: the data flow is quite
complex but the control is often reduced to pipelining of operators. At the
other extreme, a bus interface is control-intensive and manipulates data in a
trivial way, filling and emptying buffers. Data-intensive and control-intensive
applications call for different specification and programming techniques. As
far as synchronous languages are concerned, Lustre and Signal are tailored to
data-intensive applications while Esterel, Statecharts, and its descendants are
tailored to control-intensive applications. Large applications can have both
data-intensive parts and control-intensive parts. Unifying the corresponding
styles at the programming language level is an active area of research.

3 Models of Concurrent Computations

To deal with reactive or interactive systems, our first task is to look for an
adequate concurrency model. Here, we mean a naive model that one can explain
to non-computer scientists, not a 26-tuple of sets and relations. Such a model



should have four characteristics. First, it should be simple and intuitive. Second,
it should be physically meaningful w.r.t. its application class. Third, it should be
compositional, in the sense that a group of agents can be viewed as a single agent
and a sequence of communications can be viewed as a single communication.
Last, it should be mathematically powerful to serve as a basis for semantics and
verification. In our view, there are three fundamental and radically different
models that can be described by analogy with elementary physics:

e The Chemical Model. Computing agents are viewed as molecules float-
ing in a soup which is stirred by a magical mechanism called Brown-
ian motion. Communication (computation) can occur when two or more
molecules enter in contact, and it results in the destruction of some old
molecules and the generation of some new ones.

e The Newtonian Model. Computing agents are viewed as planets mov-
ing in space. In each instant, planets move in function of their current
speed, their acceleration being determined by the positions and weights of
all other planets. In terms of information, everything is as if each planet
communicates its weight and position to every other planet in zero time.

e The Vibration Model. Computing agents are viewed as molecules or-
ganized in a crystal. When a molecule is kicked, it pushes its neighbors,
which generates a wave traveling at some predefined speed (e.g., the speed
of sound).

The three models obey our four requirements in different ways. The main differ-
ence is the time z it takes to establish a desired communication. Since sequenc-
ing communications sums up times, we can roughly express compositionality by
the equation z + z ~ x where ~ is read as “homogeneous with”. In the chemical
model, x is arbitrary, and arbitrary + arbitrary ~ arbitrary implies composition-
ality. In the Newtonian model, z is always 0, and 0+0 = 0 holds trivially. In the
vibration model, the communication time is fixed, or rather bounded if we allow
for some non-determinism due to heat variations, and compositionality follows
from bounded + bounded ~ bounded. These are the three basic compositional
models.

Chemistry is non-deterministic and asynchronous: there is no guarantee on
the time it takes for two given molecules to interact, even if the interaction
proper can be viewed as a synchronous act. The Chemical Abstract Machine or
CHAM [9] is a mathematical version of chemistry that now routinely serves as
a basis for the semantics of interactive process calculi or languages [43]. Being
unable to express timeliness, the chemical model is obviously inappropriate for
reactive systems.

In the Newtonian model, planets evolve in a deterministic and perfectly syn-
chronous way. The Newtonian model will serve as a guideline for the definition
and semantics of our synchronous languages, where we shall similarly assume
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Figure 1: A synchronous circuit

that processes instantaneously exchange information in a deterministic way. For
implementation, we shall use the more complex electrical vibration model, where
information propagates with delay, where geometrical constraints may come in
the picture, and where some (controllable) internal non-determinism may exist.

In physics, there is a well-known tension between the accuracy and the ade-
quacy of a mathematical model. To compute planet or billiard ball trajectories,
one can use either Einstein’s generalized relativity theory or Newtonian me-
chanics. The former is more accurate but much harder, while the latter is less
accurate but much easier and still adequate in most cases. The same happens in
our field. The simplifying Newtonian assumption is adequate for programming,
since it brings simplicity, determinism, and technology-independence at the lan-
guage level. The more accurate vibration model that governs implementation is
much harder, since actual response (propagation) times depend on implemen-
tation details and since a given system can be implemented in many different
ways. To control how good the logical synchrony assumption is w.r.t. practical
constraints, we have to estimate a bound on the actual reaction time for a given
implementation. If the bound meets the specified timing constraints, we are
happy. Otherwise, we either look for a better implementation or conclude that
the intended system is infeasible with our technology. We would be satisfied
to solve only 90% of the problems in this way and to leave the rest to more
sophisticated or more manual techniques.

3.1 An Example: Synchronous Circuits

The simplest example of the joint use of Newtonian and vibration models is
synchronous circuit design. An acyclic combinational synchronous circuit is pic-
tured in Figure 1. In the zero delay (Newtonian) viewpoint, the circuit is viewed
as a set of Boolean equations that has an acyclicity property: the equations can
be ordered in such a way that any variable only depends on previously defined



ones. Then, for any Boolean input, all the Boolean variables are uniquely de-
fined by the equations. This view is used by the logic designer, who concentrates
on the Boolean properties of the circuit, ignoring why and how the values are
actually computed.

In the electrical vibration viewpoint, the circuit is viewed as an acyclic net-
work of gates linked by wires. Boolean values are represented by voltages, say
0V and 5V, and wires and gates have bounded propagation delays. If the input
voltages are kept stable to some Boolean voltages, then, after some predictable
time, the output voltages stabilize at the right Boolean voltages. This is a phys-
ical fact, not a mathematical theorem. Since the number of input configurations
is finite, it is possible to determine a maximum output stabilization time 6 valid
for all inputs. That view is taken by the electrical engineer, who does not care
about what the circuit does and whose role is to minimize ¢ according to the
current technology, using all possible tricks.

The technology-dependent value ¢ is the right and ideally the only interface
between the logic designer the electrical engineer. Both know that waiting for ¢
time units ensures that the electrical circuit behaves as the zero-delay system
of equations, which makes both of them happy.

An acyclic combinational circuit is memoryless. In sequential circuits, one
adds elementary Boolean memories called registers to the combinational part
to hold the state. A register is a delay element initialized to 0 and driven by a
clock. The register input is an output of the combinational part, and the register
output feeds back as an input to the combinational part. The output value of
the register is initially 0, and then the value of its input at the previous clock
tick. if 6 is the stabilization time of the combinational part, a combinational
reaction can be performed every ¢ time units. Changing the register output
at clock tick consumes some additional time 6’. If the clock period is bigger
than 6 + ¢’ time units, the sequential circuit adequately performs a series of
reactions both in the logical and in the electrical model.

3.2 Pure Synchrony in Software

The software analogue of synchronous circuits is cycle-based reaction, a very
common model in software process control. The implementation cyclically re-
peats a sequence of three actions: reading the inputs, computing the reaction,
and producing the corresponding outputs. Input events occurring during a re-
action are queued for the next reaction, which makes the reaction atomic and
deterministic. The Newtonian and vibration viewpoints are as for circuits. In
the Newtonian viewpoint, we neglect the reaction time and we consider a reac-
tion to be instantaneous. In the vibration viewpoint, we measure the maximum
reaction time 6 for a given platform and check how good the Newtonian approx-
imation is w.r.t. the actual problem to be solved.

Focusing on time yields of course a simplified picture. In practice, space
is equally important and one must explore different time / space implementa-



tion tradeoffs. This will be discussed in Section 6. Pipelining and distributed
implementation can also be necessary. They will not be discussed here.

4 Synchronous Styles and Languages

This section is devoted to synchronous programming styles. We start with the
data-flow styles of Lustre and Signal. Then, we introduce the imperative style
used in Esterel and in graphical formalisms & la Statecharts.

4.1 The Data-Flow Style

The data-flow style is well-adapted to steady process-control applications and
to signal processing. Consider a dynamical system of equations of the form:

X'H—l = Ut+1 * sin(Xt + St+1 — St)
St+1 = COS(St + Ut+1)

where U is the input signal, X is the output signal, with Xy, = 0, and S is
an internal state variable, with Sy = 1. In such a system, there is already
an implicit perfect synchrony assumption: the time taken by the arithmetical
operations is 0. In Lustre [26, 27], the system is rewritten as follows:

node Control (U : float) returns (X : float);

var S : float;

let
X
S

tel

0. -> (Uxsin(pre(X)+S-pre(8)));
1. -> cos(pre(S)+U);

or in an equivalent graphical form pictured in Figure 2.

The time indices are removed, and a variable such as X denotes the sequence
or flow of values {X; | t € N} where ¢ is an integer discrete time index. Standard
operators act synchronously: X +Y = {X; +Y; | t € N}. The pre operator
acts as an uninitialized delay: pre(X):+1 = X; for t > 0 and pre(X), = nil,
where nil denotes uninitialization. Finally, the -> operator provides flow initial-
ization: (X— >Y) = Xy and (X—>Y); =Y; for ¢t > 0.

Flows can be extracted from other flows using the when undersampling oper-
ator. If B is a boolean flow and X is a flow of type ¢, then “X when B” is a flow
of type t that contains only the values of X whose indices t are such that B; =
true, renumbered to form a proper flow. For instance, if X = 01 2 ...
and B = true false true ..., then (X when B)q =0, (X when B); =2, .... In
“X when B”, the Boolean flow B is called the clock of the result. The constant
flow true acts as the master clock. Flows can be computed at different rates
according to their clock. An important restriction is that only flows having



Figure 2: A graphical Lustre program

equal clocks can be combined by the operators. This ensures that any program
can be computed with finite memory.

The Signal language [24] is similar, except that it also allows for oversam-
pling, i.e. for creating flows that are faster than the inputs. Technically, Signal
considers flow operators that define relations between flows instead of just func-
tions in Lustre.

4.2 The Imperative Style

Consider now the following controller specification written in natural language:

Emit the output 0 as soon as both the inputs A and B have been
received. Reset the behavior whenever the input R is received.

As it stands, this simple specification is a little bit ambiguous. We additionally
assume that nothing is to be done at initialization time and that the input
signals can be simultaneous, as it is common in hardware. Furthermore, in the
case where R occurs, the output should not be emitted and only the resetting
should be performed.

A common way of making such a specification formal is to draw the picture
of an automaton (also called a Mealy machine) as in Figure 3. The ‘.’ operation
in labels is the synchronous product of signals of SCCS [40] and Meije [3]. There
are tools to analyze the behavior of such automata and to translate them into
software programs or circuits. However, the direct specification of an automaton
is not good programming style. In the automaton, the inputs and output names
appear in many places, unlike in the specification. If we consider the same
problem with n basic inputs A,B,C, ..., the automaton explodes exponentially.



B?.~R?.0! A?.~R?.0!

Figure 3: A Mealy machine

Even for automata of manageable size, a little change to the specification may
incur a major change to the automaton, which often ends with a full rewriting.
These facts are well-known in Language Theory, where regular expressions are
usually preferred to automata pictures.

Synchronous imperative formalisms aim at providing modular ways of de-
scribing control-intensive reactive behaviors. The basic principle is to help the
user to write things only once. Although it is not always made explicit, the
Write Things Once or WTO principle is clearly the basis for loops, procedures,
higher-order functions, object-oriented programming and inheritance, concur-
rency vs. choice between interleavings, etc. Reactive programming will call for
even more structure. In Esterel, the controller is written as follows:

module ABRO:

input A, B, R;

output 0;

loop
[ await A || await B J;
emit O

each R

end module

with only one occurrence of A, B, R, and 0.

In each reaction, each signal has a unique presence / absence status. For
input signals, the status is given by the environment. For other signals, the
status is absent by default, and it is set present by executing an emit state-
ment. The “await A” instruction waits for A and terminates when A occurs.

10
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Figure 4: A chart for ABRO

A parallel combination of two statements terminates instantaneously as soon
as both statements are terminated. The time needed for synchronization is
conceptually 0 (Newtonian). Therefore, “await A || await B” terminates in-
stantaneously as soon as both A and B have occurred. The sequencing operator
“p; ¢’ instantaneously transfers control to ¢ when p terminates. Therefore, 0
is emitted as soon as both A and B have been received. The “loop p each R”
operator is a preemption operator [6]. Its behavior is as follows: the body p is
immediately started and it runs freely until the next instant where R occurs.
At that instant, p is instantaneously killed, whatever its current state is, and p
is immediately restarted afresh. In “loop. . .each”, preemption is called strong
because it has priority over body execution: at preemption time, the body is
not executed in the instant. Therefore, if A, B, and R are simultaneously present,
then 0 is not emitted, as requested by the specification. The behavior is exactly
that of the automaton, but the writing is much better. Write Things Once
is achieved using the cooperation of sequencing, concurrency, and preemption
constructs, each of them being indispensable.

Synchrony expresses that the internal bookkeeping necessary to execute
statements takes no time, i.e. that it should be performed entirely within an
input-output cycle in an implementation (see Section 3.2). The only constructs
that take time are the ones explicitly required to do so, here “await” and
“loop...each”. Notice that synchrony of all other constructs is necessary to
obtain the required behavior with no spurious silent move.

A graphical program for ABRO is pictured in Figure 4 States are hierarchi-
cally decomposed. Sourceless arrows indicate initial states. Bullets indicate
termination, and the R arrow has a circle to indicate strong preemption. The

11



SyncCharts formalism [2] is based on a similar graphical style and compiles into
Esterel.

4.2.1 Nested Preemptions and Exceptions

In Esterel, the essence of programming consists of controlling the life and death
of activities by using preemption structures. The nesting of preemption struc-
tures expresses preemption priority in a natural way. Here is the basic training
of an athlete:

module Runner:
input Second, Meter, Lap;
output ...; % not given here
every Morning do
abort
loop
abort RunSlowly when 15 Second;
abort
every Step do
Jump || Breathe
end every
when 100 Meter;
FullSpeed
each Lap
when 2 Lap
end every
end module

Here, the inputs are Morning, Second, Step, Meter, and Lap. The identifiers
in italic represent statements not written here. In a lap, the full sequence
is executed only if the lap is longer than 15 Second plus 100 Meter. If the
lap is shorter than 15 Second, one only runs slowly. If the lap is shorter
than 15 Second plus 100 Meter, one never runs full speed. The same hap-
pens if mornings occurs very often.

Notice that any input can serve as a time unit in a preemption. In reactive
programming, timing constraints should not be expressed only in seconds. When
driving a car, if there is an obstacle at 30 meters, the timing constraint is “stop
in less than 30 meters”, no matter the time it takes to stop.

4.2.2 Exceptions

Esterel supports an exception mechanism that is fully compatible with concur-
rency. When the athlete is getting older, he should worry about his heart during
the most strenuous part of a lap:

12



trap HeartAttack in
abort
loop
abort RunSlowly when 15 Second;
abort
every Step do
Jump || Breathe || CheckHeart
end every
when 100 Meter;
FullSpeed
each Lap
when 2 Lap
handle HeartAttack do
GoToHospital
end trap

In CheckHeart, one should execute an exception raising statement of the form
“exit HeartAttack” if there is any problem with the heart, which can be de-
tected using the aforementioned preemption constructs. Then, the concurrent
processes Jump and Breathe are immediately preempted?, and control immedi-
ately enters the GoToHospital statement.

4.2.3 Data Handling

Esterel programs can also manipulate data of arbitrary types. Here is a simple
protocol:

module Sender :
input Message : Message; % from user
output Send : Message; % to line

input Ack; % from line
output Sent; % to user
input Millisecond; % from timer
loop

await Message ;

abort

every 100 MilliSecond do
emit Send(7Message)
end every
when Ack ;
emit Sent
end loop
end module

3Technically, concurrent statements are weakly preempted, unlike with the abort statement:
they are allowed to run for a last time in the reaction.

13



In addition to their presence / absence status which is as for pure signals, the
signals Message and Send bear a value that belongs to an abstract type Message.
In any reaction, a valued signal has exactly one value, which is determined by the
environment for input signals and by the emit statements for other signals. The
expression ?Message yields the current value of Message. Esterel also supports
non-shared variables that can be assigned to or passed to routines written in
other languages.

By default, data-handling operations are assumed to be instantaneous, as
in data-flow languages. However, Esterel also supports an exec primitive that
makes it possible to call long external computations that do take time. This
construct is very useful for computation tasks scheduling.

5 Semantics

The denotational semantics of data-flow languages is standard. Streams are
modeled as infinite sequences, most often in Scott’s classical cpo model, and
sometimes using the p-adic metric d(X,Y) = 27", where n is the least inte-
ger such that X, # Y, [54]. Equations are solved using fixpoint techniques
based either on the Knaster-Tarski or on the Banach fixpoint theorems. Acyclic
programs have well-defined unique solutions.

The semantics of imperative languages is more difficult. We give some clues
for Esterel, referring to [7, 6] for more details. The first step is to define a kernel
calculus from which the other statements are derived by macro-expansion. The
Esterel kernel contains primitives for terminating, pausing for the instant, and
exiting a trap, respectively written 0, 1 and k with k& > 2 (this numerical encod-
ing follows an idea of Cousineau [22]). Signal emission is written !s, while s 7p, ¢
instantaneously tests for the presence of a signal. Sequencing, looping, and syn-
chronous concurrency are written p; ¢, px, and p|g. The preemption structures
are suspension s D p, which freezes p for the instant if s is present, and trap
declaration {p}. An auxiliary 1 p operator is necessary for trap renumbering.
Finally, local signals are declared using the classical hiding notation p\s.

5.1 The Behavioral Semantics of Esterel

The primary semantics is the behavioral semantics. The reaction of a program P
to an input event I is defined by a reaction P % P’ where O is the output event
and P’ is the derivative, i.e., the program that will perform the next reaction.
The reaction is defined using an auxiliary inductive relation p % p’ where p

is a statement, p’ is its derivative, E is the context event that tells which signals
are present, E' is the event made of the signals emitted by p in E, and k is a
numerical completion code. Instantaneous signal broadcasting is obtained by
imposing the invariant E' C E, which expresses that any statement hears what

14



it is saying. Here are two of the rules:

E'0 o,
p——p q—749
E E
(seq2)
E'UF',l
p;q P
Ek o,
pP—p 49 —4¢
E E
(parallel)

E'UF', maz(k,l)
plg —————»

/ | ql
Rule (seq2) is used for a sequence p; ¢ when p terminates in the instant, i.e.,
returns code 0. Then ¢ is executed in the same rule premise, which models
synchrony. Signal information flows from p to ¢ because of the broadcasting in-
variant: one must have E'UF’ C E, hence E' C E, which means that g receives
the signals emitted by p. Rule (parallel) defines the semantics of concurrency.
The statements p and ¢ are executed simultaneously in the same context E, and
each of them receives the signals emitted by the other because of the broadcast-
ing invariant. Control synchronization between the branches is performed by
returning the maximum of their completion codes; this is the essence of the
numerical encoding, see [7, 6].

5.2 Cyclic Instantaneous Dependencies and Paradoxes

For reactive programs, the two basic requirements are reactivity, i.e., existence
of reaction for all inputs, and determinism, i.e., uniqueness of the reaction. Not
all Esterel programs are reactive and deterministic. With output X, the program
“present X else emit X” is non-reactive since X should be present if and only
if it is not emitted, which contradicts instantaneous broadcasting. The program
“present X then emit X” is non-deterministic since X should be present if and
only if it is emitted, which does not determine its status. Such paradoxical
programs must be rejected at compile-time. An easy way to reject them is to
forbid static self-dependency of signals, in the same way one usually requires
circuits to be acyclic. The above programs indeed corresponds to the nonsensical
cyclic circuits “X = not X” and “X = X”. However, requiring acyclicity turns out
to be inadequate to Esterel practice. Users do write cyclic but sensible programs
such as the following one:

15



module GoodCyclel :
input I;
output X, Y;
present I then

present X then emit Y end
else

present Y then emit X end
end present

In GoodCyclel, X depends on Y and conversely, but it is immediately visible
that any given status of I breaks the cycle. Assume for example I present.
Then, the else branch of “present I” is not executed and X is not emitted.
Therefore, X is absent, and Y is absent since it is not emitted either. The
deduction is symmetrical if I is absent, with X and Y absent. Delays can also
cut cycles:

module GoodCycle2 :

output X, Y;

present X then emit Y end;

pause;

present Y then emit X end

In GoodCycle2, the dependency of X on Y is meaningful at first reaction only
while the reverse dependency of Y on X is meaningful at second reaction only.
The signals X and Y are both absent in any instant. As before, this is directly
obvious on the source code.

Of course, these toy examples do not show why cycles are useful in practice.
See [8] for the example of a naturally cyclic bus arbiter. In [36], it is shown that
cyclic programs can be exponentially smaller than acyclic ones for the same
behavior.

5.3 Logical Correctness and Further Paradoxes

An apparently simple way to deal with cycles is to require the programs to be
reactive and deterministic, i.e., to have one and only one behavior for each input.
This condition is also called logical correctness. It can be checked using BDD
algorithms [29]. However, logical correctness also leads to somewhat paradoxical
behavior. Consider the following Strange program:
module Strange:
output X, Y;
present X then
emit X
end
[
present [X and not Y] then
emit Y
end

16



An easy case inspection shows that there is only one logically consistent behav-
ior, X and Y absent. That behavior is consistent since neither X nor Y is emitted.
No other behavior is consistent. For instance, consider X present and Y absent.
Then, “emit Y” is executed, which contradicts Y absent. Although Strange is
logically correct, it is by no means understandable, which is more important to
us. The reaction is not computed in a causal way.

The constructive semantics restricts the behavioral semantics by properly
defining how information should causally propagate in programs, regardless of
cycles. The foundations of the constructive semantics being much simpler to
explain on circuits, let us first examine how Esterel programs are translated into
Boolean circuits.

5.4 Translating Esterel Programs Into Circuits

The circuit semantics translates Esterel imperative programs into sequential
circuits, see Section 3.1, or, equivalently, into Lustre data-flow programs. The
basic idea is to associate a subcircuit with each statement, allocating gates and
wires for control and signal propagation. Only the 1 or pause kernel unit-delay
statement generates a register. All the other constructs only generate combina-
tional logic. A first translation was presented in [5]. It rejected programs that
can execute a given statement several times in different contexts in the same
instant, which is possible (and useful) in Esterel. The translation has now been
extended to cover that case as well, see [7].

If an Esterel program contains no cyclic instantaneous signal dependencies,
then the circuit obtained by the translation has no combinational cycle. In
that case, it is easy to see that both the Esterel program and the circuit are
logically correct and that they have the same behavior. However, remember we
also want to deal with dependency cycles in Esterel programs. Esterel cycles
translate into combinational logic cycles, which implies that we also need to
understand combinationally cyclic circuits. Consider first the circuit obtained
by translating GoodCyclel above:

X = (not I) and Y
Y=1IandX

The circuit is also logically correct: I = 0 implies Y = 0 and then X = 0,
while I = 1 implies X = 0 and then Y = 0. Notice that the correctness of
the compiled equational circuit is much less directly visible than that of the
imperative Esterel program. This is why cycles are usually rejected in data-flow
languages and digital circuit design. The (simplified) circuit for GoodCycle? is

R = reg(1)
X = (not R) and Y
Y =R and X
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2

Figure 5: Delay assignment for unstable Hamlet

where reg is the register construct (reg(X) = 0->pre(X) in Lustre). In the
first instant, R = O implies Y = 0 and then X = 0. In all further instants, R = 1
implies X = 0 and then Y = 0. The circuit has no behavioral problem.
Consider now the circuit for Strange:
X=X
Y = X and not Y

As for Esterel, the only Boolean solution is X = 0, Y = 0, but that solution
seems to come from nowhere.

5.5 Electrical Propagation in Cyclic Circuits

Let us now switch from the Newtonian Boolean model to the electrical vibration
model. What happens if we implement GoodCyclel, GoodCycle2, and Strange
with gates and wires? It is easy to see that GoodCyclel and GoodCycle2 sta-
bilize in bounded time for any input, exactly as if they were acyclic. On the
contrary, Strange does not stabilize, since the X wire is not driven by a gate.
Things become clearer by considering the following simpler Hamlet circuit?:

X = X or not X

Obviously, the only Boolean solution is X = 1 according to the law of excluded
middle. Unfortunately, electrons never heard of excluded middle, and the elec-
trical circuit does not stabilize for all gate and wire delays. For example, consider
the delay assignment of Figure 5, where the bottom triangle represents an iden-
tity gate with delay 3 and where wires are delay-free (we are not precise about
the delay model for lack of room, see [51, 52| for details). Then, assuming that
all wires have initial value 0, the value of X oscillates forever between 0 and 1.

4To understand the name, interpret X as “to be”.
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5.6 The Constructive Boolean Logic

For Hamlet, the Boolean solution X = 1 is obtained by making a self-justifying
guess and a proof by contradiction to reject X = 0. Electrons are unable of
performing such fancy speculative reasoning, which we must therefore reject to
model circuits. The solution is to use constructive logic, in which all values must
be computed by explicit proofs. The constructive Boolean logic for combina-
tional circuits is very simple. It can be presented in three equivalent ways: as a
proof calculus, as a term rewriting system, or as the Scott semantics of Boolean
equations.

The proof calculus deals with sequents of the form C,Z + e — b, where C is
the circuit presented as a system of equations, 7 is an input function that defines
a Boolean value 0 or 1 for each input variable, e is a Boolean expression written
with the inputs and variables of C, and b is a Boolean value. The sequent is
read “for the circuit C, with input values Z, the expression e evaluates to b”. For
expressions, we restrict ourselves to not and or operators; as usual, conjunction
can be defined by x and y = not (not z or not y). Let 0 = 1 and 1 = 0. The
proof rules are as follows:

CCIFe—b
— (negation)
C,TF note—b
C,IFe—1 (left-or-1)
eft-or-
C,IT+Feore —1
C,ITFée —1

(right-or-1)
C,IT+Feore —1

C,IFe—0 CIFe—0

(or-0)
C,IFeore —0
(1) =b
L (input)
CCIFI—b
X=eelC C,IFe—b )

(variable)

C.TFX—b

A circuit C is said to be constructive for an input 7 if all variables can be
evaluated to a Boolean value using the above rules. In this case, it is easy
to see by induction on the length of the proof that the results form the unique
solution of the Boolean system, establishing that constructiveness implies logical
correctness and that the order of proof steps is immaterial.

It is easy to see that GoodCyclel and GoodCycle2 are constructive for all
inputs, while Strange and Hamlet are non-constructive. For Hamlet, there is no

19



way to build a proof: a proof of X — b must end by rule (variable), but no proof
of “X or not X’ can be constructed without first proving X — b’ for some b'.

In the term rewriting approach, the equations are oriented from right to left
and the following constant-folding rules are added:

not 0 — 1
not1 —0
lorz—1
rorl—1
Oor0—20

A circuit C is constructive for an input if each variable in C can be rewritten
into a Boolean value using the input value assignment 7, the oriented equations
and the above rules.

In the Scott denotational semantics view, variables are interpreted over the
Scott Boolean domain B; = {.1,0,1} and the Boolean operators are interpreted
as the least monotonic functions that satisfy the above equations. Notice that or
is interpreted by Plotkin’s parallel or, a function that cannot be defined in
software programming languages [44]. Then, for each input Z, the circuit C
defines a monotonic function Cz from variable values to variable values, and the
circuit is said to be constructive if the value of any variable in the least fixpoint
of C7 has no 1-component.

It is easy to see that the three definitions of constructiveness coincide. The
fact that constructiveness is a variant of Scott semantics immediately implies
compositionality. The main full abstraction theorem shows that constructive
logic exactly matches electrical current propagation:

Theorem 1 Let C be a circuit and I be an input event. Then C with input T
electrically stabilizes in bounded time for all gate and wire delays if and only if
it is constructive for T.

In other words, a cyclic constructive circuit electrically stabilizes just as an
acyclic one. It is natural to call constructive cyclic circuits combinational ones.

Notice that Theorem 1 is very much in the spirit of the Curry-Howard cor-
respondence between computations and proofs [23]: an electrical computation
performs a proof of a logical formula.

The proof of Theorem 1 is given by Shiple in [51]. For lack of room, we can
only give a very brief proof sketch. The roots are in Brzozowski and Seger’s anal-
ysis of asynchronous circuits [17]. Information propagation in the up-bounded
inertial delay model is “asynchronous” because of gate and wire delays. Here,
in the terminology of Section 3, asynchrony is vibrational rather than chemical
since the delays are bounded from above. Given any circuit with delays, Brzo-
zowski and Seger first show that, after a bounded time, only non-transient states
of the circuit wires can be reached. Then, they present a technique called GWM
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(Global Multiple Winner) analysis that makes it possible to directly compute the
reachable non-transient states, using a state transition system semantics that
abstracts away delays. Next, they show that a ternary analysis using Scott’s
Booleans can be used to easily compute the least upper bound of the reachable
non-transient states. Finally, Shiple shows that a circuit is constructive if and
only if this least upper bound contains only the Booleans 0 and 1 identifying a
unique stable state, i.e., if it stabilizes for all gate and wire delays.

Constructiveness is extended to sequential circuits by requiring the combina-
tional part to be constructive for any input and any reachable state. There is no
added difficulty, see [52] for details. The set of legal inputs can also be restricted
using input relations, see [8, 7]. In that case, constructiveness is required only
for the legal inputs.

Constructiveness for combinational and sequential circuits is decidable. The
BDD-based algorithms presented in [36, 52| perform an efficient fixpoint com-
putation in a symbolic version of Scott’s semantics. They synthesize the set of
inputs that make a circuit constructive and yield an equivalent acyclic version
that may be better for practical implementation purposes since conventional
synthesis tools do not handle cycles.

5.7 The Constructive Semantics of Esterel

The constructive semantics of Esterel lifts the basic constructiveness idea to the
imperative constructs. The idea is to control the logical behavioral rules by
means of two auxiliary constructive predicates that determine for each input
what a program must do or cannot do in terms of control and signal propaga-
tion. In the reactive system terminology, proof steps are called microsteps and
they are used to define fine-grain operational semantics. See [7] for the rules.
As for circuits, the constructive semantics can be presented in an equivalent
denotational form that is directly synchronous and compositional. The opera-
tional semantics is adequate for studying the execution of a reaction, while the
denotational semantics directly defines the input/output function of a module,
abstracting away all possible microstep orderings.
With respect to the circuit translation, the main result is as follows:

Theorem 2 An Esterel program is constructive for an input if and only if the
translated circuit is.

We are currently building a mechanically checked proof of that theorem using
the COQ system [32].

Combining Theorem 1 and Theorem 2, we obtain the final result that an
Esterel program is constructive if its circuit electrically stabilizes for all gate
and wire delays. This final result shows that the constructive semantics is not
only mathematical but also physical, which yields the most solid foundations to
the language we can think of.
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6 Implementation

Synchronous languages can be implemented on hardware or software centralized
or distributed platforms. For simplicity, we concentrate on centralized software
or hardware implementations. The reader interested in distributed implemen-
tation can refer to [18].

6.1 Control vs. Data

In imperative languages such as Esterel, the distinction between control and
data is direct at source code level, see for instance the protocol in Section 4.2.3.
A major property of Esterel is that control is finite-state. The implementation
basically consists of building a deterministic control finite-state machine that
schedules data-handling actions.

In data-flow languages, one can use the same implementation scheme by
establishing a distinction between two kind of variables: actual data variables,
to be computed at run-time, and control variables to be handled at compile-time
using some kind of partial evaluation. Control variables are most often Boolean
variables that express a property of the program state, e.g., some status is on
or off; by extension, they can range over any finite set of values.

The control finite-state machine can be implemented in many different ways
in software or hardware, with a variety of time-space tradeoffs. This gives us
lots of freedom to meet application-dependent performance constraints. In the
sequel, we detail the two main implementations, explicit automata and Boolean
circuits, and we briefly discuss optimization issues. Implementation of data
handling is comparatively easy provided one carefully analyzes the relationship
between control dependencies and data dependencies.

6.2 Implementation By Explicit Automata

An explicit control automaton is given by a set of states and a transition from
each state, which is a tree with unary or binary nodes. A unary node triggers
a data action, a binary node is either an input signal presence test or a data
test. The leaves of the transition are states. Reaction from a state follows
the transition, executing the actions and performing the tests on the way, until
reaching the state leaf from which the next reaction will start.

To compute the control automaton associated with an Esterel program, we
adapt Brzozowski’s residual algorithm originally introduced to translate regular
expressions into automata [16, 12]. Given a program body p, we formally com-
pute all derivatives p’ for all input event sequences as specified by the formal
semantics, but leaving data values uninterpreted. Then, we construct a finite
automaton having the derivatives as states. That automaton is often close to
minimal, for yet largely unknown reasons. Automata can also be constructed
from data-flow programs using partial evaluation techniques.
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The main advantage of automata is speed. Executing a transition is very
fast and independent of program size. Since executing the data actions at run-
time is necessary for any implementation, automata are close to time-optimal
amongst centralized implementations. Local signals used for internal communi-
cation between statements disappear in the automaton, exactly as intermediate
non-terminals disappear in parser generation. Therefore, local signals are truly
zero-delay at run-time. Further optimizations concerning the orders of tests in
transitions are analyzed in [19].

The drawback of automata is of course size. Only relatively small applica-
tions can be handled. Automata are usually appropriate for protocols, drivers,
or man-machine interface systems. Large process-control applications most of-
ten lead to size explosion.

6.3 Implementation using Sequential Boolean Circuits

Sequential circuits were introduced in Section 3.1. Since n Boolean registers can
hold 2™ states, a sequential circuit can denote an exponentially bigger automa-
ton, which makes the state space explosion vanish. Direct implementation of
acyclic sequential circuits in hardware is performed by sequential logic synthesis
systems [50]. Software implementation in the cycle-based model of Section 3.2 is
eagy: sort the equations according to the variable dependency relation, print the
equations as C assignments in order, then print the assignments of new values
to the registers. Other more efficient software implementations are discussed
in [39)].

The translation of a data-flow program into a synchronous Boolean circuit
is a simple process. Roughly, for Lustre, each Boolean pre delay operator
generates a register, and one additional register is generated for all initializations
by the -> operator. The translation of an Esterel program into a sequential
circuit was already mentioned in Section 5.4. The circuit’s worst-case size is
the square of that of the source program, but the squaring factor rarely shows
up in practice. The translation can yield cyclic circuits, which are analyzed for
constructiveness and made acyclic using algorithms presented in [36, 52].

6.4 Circuit Optimization

The direct translation of high-level programs into circuits usually yields rather
fat circuits that must be optimized before actual implementation. Fortunately,
circuit optimization has been extensively studied in the hardware community.
For Esterel, we borrowed many existing algorithms and we also developed spe-
cific algorithms that give good practical results. Optimization can be split into
two subproblems: combinational optimization, and sequential optimization

In combinational optimization, the game is as follows: given a network of
combinational gates, build another network optimized w.r.t. size or speed cri-
teria. There is a wide variety of academic and industrial tools for that purpose,
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see [14]. In the previously described software implementation of circuits, the
reaction time is roughly proportional to the number of equations and operators.
Therefore, size optimization is the issue even for speed. Hardware-directed tools
can be used as well, provided one pretends to optimize the “area of silicon”.

The sequential optimization problem can also be called the state assignment
problem. A sequential circuit obviously denotes a finite automaton, the states
of which are the register Boolean configurations reachable from the initial state
by some input sequence. The mapping from states to configurations is called
the state assignment. Given a circuit, the goal is to denote the same automaton
using more efficient state assignments and fewer registers.

If the automaton has n states, it is clearly sufficient to use log(n) registers.
However, when changing the state assignment, one must change the combina-
tional circuit accordingly. In the worst case, the new combinational size can
be 2!9(") = pn_ which means that reducing the number of registers can make
the combinational logic explode. The problem of finding the best log(n) as-
signment is NP-complete and no good heuristics scale up for it. Furthermore,
in many cases, adding a few registers can make the combinational logic much
smaller. Therefore, the real problem is to find a good register / combinational
logic tradeoff.

An Esterel program directly specifies such a tradeoff: a register is gener-
ated by each source Esterel temporal statement, and the combinational logic
is generated by the other statements. Achieving Write Things Once ensures a
good register assignment, which means that elegant programs have good imple-
mentation. However, there is often some unessential redundancy between the
registers in the direct translation. In [48, 49], we present algorithms that re-
duce the number of registers without significantly changing the encoding, hence
without making the logic explode.

For a simple example, consider the ABRO program of Section 4.2. Four reg-
isters are allocated: a boot register B, a register A for “await A”, a register B
for “await B”, and a register R for “each R”. The boot register B has initial
value 0 and then value 1 at all cycles. The register A (resp. B) has value 1
while waiting for A (resp. B), and the register R has value 0 initially and 1
while waiting for R. Using BDD-based reachable states computation, one finds
that R is always 1 except at start time, which implies R = B. Therefore, one
can remove R and replace its output by that of B, without changing the logic.
Combinational optimization then yields an optimal circuit. See [48] for more
elaborate examples.

7 Verification

Since reactive software is often used for safety-critical applications, verification
of program properties is fundamental. Here again, we directly benefit from work
done in other areas such as process calculi and hardware circuit verification [34,
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13, 20]. We are interested in safety properties of the kind “wrong things never
happen” and in bounded-response properties of the kind “something useful will
happen before some time” that are in fact safety properties. Liveness properties
of the kind “something useful will happen some day” are usually much less
important for reactive systems.

Many useful properties are data-insensitive and can be proved or disproved
using only the finite-state control structure of a program. We present the two
techniques we use most often for such pure control properties, bisimulation
reduction and verification using observers. As a running example, we use a lift
controller and we show how to verify that the lift cannot travel with the door
open. Data-dependent properties are analyzed in [1, 25]. They are usually much
harder and will not be considered here.

7.1 Bisimulation Reduction

Bisimulation has been originally introduced by David Park and Robin Milner to
define equivalence between process calculi terms [41]. The variant we use here
is weak bisimulation.

Consider the lift controller. For the door, there is an output signal Open
sent by the controller to open the door and an input signalsent by a door sensor
when the door is closed. For lift motion, there is an output signal Start sent by
the controller to start the engine and an input signal Stopped sent by a sensor
when the lift is stopped. There are of course many other signals such as call
buttons, bells, and whistles, which are not relevant to the property we want to
prove.

The first step is to erase the useless signals and to keep only the four relevant
signals Open, Closed, Start, and Stopped. If none of these signals appears on a
transition, the transition is called a silent transition 7 as in CCS [41]. After this
erasure process, the automaton has the same number of states, the same number
of transitions, and fewer transition labels. It can also be non-deterministic.

The second verification step is to perform weak bisimulation reduction, which
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consists of computing the smallest weakly bisimilar transition system. This is a
very intuitive operation that can be explained to any user without mathematics:
the reduct has the same behavior w.r.t. the observed signals, no spurious path
is introduced, and no path disappears. Figure 6 shows the result for the lift
controller. On such a three-state automaton, the property we want to verify is
immediate.

Bisimulation reduction is performed by various tools. For Esterel, we mostly
use the FcTools system described in [13]. The implementation is very efficient
for explicit automata, but as yet much less efficient for sequential circuits since
bisimulation is expensive to compute with BDDs.

7.2 Verification by Observers

Verification by observers is probably a folk technique. It has been made sys-
tematic for synchronous languages by Halbwachs et. al. [28]. A similar tech-
nique called testing has been extensively studied by M. Hennessy for process
calculi [31].

The idea is described in Figure 7. The safety property to be verified for
a program P is expressed as another reactive program called the observer O,
which is put in synchronous parallel with P. The observer takes as inputs the
inputs and outputs of P. Its only output is a signal called BUG. Since not all
input sequences may be meaningful for P, another reactive program FE called the
environment can be put in synchronous parallel with P and O to only generate
the useful input sequences. The outputs of E are the inputs of P, and the
inputs of E are arbitrary signals acting as oracles. Notice that the synchronous
observer O is purely passive: it listens to P without interfering with it, unlike in
asynchronous formalisms where the observer interacts with the observed process
and can restrict its behavior, which is quite unnatural for verification purposes.

The verification consists of checking that the signal BUG is never emitted
by the triple E || P || O for any input sequence of E. This can be done using
standard reachability analysis techniques for explicitly or implicitly encoded
finite-state machines [21, 33]. If the property is false, one can build counter-
examples, i.e., sequences of useful inputs of P that violate the property.

Any synchronous language can be used to program the observer O and the
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environment E. For the lift example, we can write the observer in Esterel as
follows:

Module Doors:
input Start, Open, Closed;
output BUG;
loop
await Open;
abort
await Start;
emit BUG
when Closed
end loop

Temporal logic is also a well-known way of expressing properties [37]. Lustre
can easily encode a temporal logic of the past, sufficient for most safety prop-
erties [28]. The TempEst system described in [33] allows the user to specify
the observer as a temporal logic property, which is compiled into an Esterel
program.

8 Conclusion

In this overview paper, we have tried to cover all aspects of synchronous pro-
gramming, from theory to implementation. The kernel is of course the syn-
chronous model of deterministic concurrency. Languages were grouped in two
categories: data-flow and imperative. Smoothly unifying both styles is one of the
important remaining challenges (we cannot explain here why this is non-trivial).
The semantics are now well-understood, and major progress has been made re-
cently in understanding causality issues through a somewhat unexpected use
of constructive logic. Efficient implementation uses techniques from automata
theory and hardware. Program verification is based on process calculi and finite-
state machine verification techniques.

For all the synchronous languages designers, what really matters is the use
of the languages and compilers. A lot of emphasis has been put on developing
techniques and tools that scale to real-size programs. We hope that the syn-
chronous tools will make their users happy, both in academia and in industry,
and that application will foster new ideas and new research directions.
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