
  

Search

Search the EE Times Network

The 8-bit HCS08 family of 
microprocessors targets power-
limited portable and wireless 
devices that require flash 
memory and quick transitions 
from sleep to performance 
modes.

Chip family easy on batteries

Ashling Microsystems has 
introduced development and 
debug tools for Philip's ARM-
based LP210x microcontrollers.

Ashling tools support Philips 
micro

More Product News

Motorola and PowerDsine are 
working together to develop an 
ASIC for the Power over 
Ethernet market.

Duo collaborate on PoE chips

More News From Europe

 An Introduction to Esterel

By Girish Keshav Palshikar
Embedded Systems Programming
(11/01/01, 12:36:41 PM EDT)
 
Esterel is a system-design language that can be used to generate complex 
state machines automatically. This article offers an overview of the syntax 
and usage.

Because of Esterel's textual nature (as opposed to graphical) and compositional 
facilities, it is relatively easy to write compact specifications for systems with very 
complex state machines. A system with thousands of states can generally be 
specified by an Esterel program of only a few hundred lines.

Esterel-invented by G. Berry in INRIA, France-belongs to a family of formal 
specification languages specialized for reactive systems; other members of this 
family include StateCharts, Lustre, Signal, and SL. More information about Esterel 
and its history can be found at 

. A variety of tools for compilation, code generation, simulation, theorem 
proving, and automata visualization are also available there.

http://www-sop.inria.fr/meije/esterel/esterel-
eng.html

Reactive systems

A reactive system is one that is 
in continuous interaction with its 
environment. Most real-time, 
embedded systems are reactive. 
In addition, operating systems, 
networking protocols, VLSI 
chips, and even a graphical user 
interface can be considered 
partly reactive. 

The behavior of a reactive 
system can be thought of as a 
black box that continuously 
receives some input events and 
reacts by producing some output 
events (Figure 1). This output 
may in turn affect the 
production of later input events by the environment. 

The task of specifying the behavior of a reactive system is akin to that of 
specifying relationships between the input and output events. However, such a task
is complicated by the fact that several input events may happen simultaneously and
that after the system receives an input event, it may take a finite nonzero amount 
of time to produce its response in the form of an output event. We can visualize 
the trace of the life of a reactive system as a series of overlapping reaction 

09.06.2003 21:52 UhrEmbedded.com - An Introduction to Esterel

Page 1 of 12http://www.embedded.com/story/OEG20011018S0090



 

• 
   
   
• 
• 
   
   
• 
• 
• 
• 
   
• 
• 

Online Editions
EE TIMES
EE TIMES ASIA
EE TIMES CHINA
EE TIMES FRANCE
EE TIMES GERMANY
EE TIMES KOREA
EE TIMES TAIWAN
EE TIMES UK

Web Sites
CommsDesign
GaAsNET.com
iApplianceWeb.com
Microwave Engineering
EEdesign
Deepchip.com
Design & Reuse
Embedded.com
Elektronik i Norden
Planet Analog
Semiconductor
 Business News
The Work Circuit
TWC on Campus

• 
• 
• 
• 
• 
• 
• 

ChipCenter
EBN
EBN China
Electronics Express
NetSeminar Services
QuestLink
Custom Magazines

Motorola Smart Networks 
Resource Guide 2003

    

    

    

    

intervals; each reaction interval begins when the system receives an input event 
and ends when it generates the corresponding output event (Figure 2). 

Synchrony hypothesis

To simplify the behavioral specifications of reactive systems, Esterel makes an 
assumption called the synchrony hypothesis. The synchrony hypothesis says that 
the underlying machine is infinitely fast and, hence, the reaction of the system to 
an input event is instantaneous. As a consequence, the reaction intervals are 
reduced to reaction instants; therefore, the reactions do not overlap with each 
other. This assumption is also called the hypothesis of atomic reactions. The 
system is then active only at each instant. "In between" the instants, it is idle and 
awaiting input events.

At first glance, the synchrony hypothesis may seem unrealistic; however, it 
considerably simplifies the specifications of reactive systems and is suitable for a 
large number of application areas. In practice, what is needed is that the machine 
react to an input event before the next input event arrives. 

Esterel allows multiple input events to arrive simultaneously. The reaction instant of 
Esterel is completed only when the system reacts to all of them; that is, the 
reaction to all the presently available input events constitutes the reaction instant.

Determinism

Esterel also assumes that the systems are deterministic. Informally, a non-
deterministic system does not have a unique response to a given input event; 
instead, it chooses its response to the input event from a set of possible responses 
and an external observer has no way to consistently predict the response that will 
be chosen by the system. For example, suppose an elevator is currently at the third 
floor of a building and people on both the first and fifth floors simultaneously press 
the request button. If the relevant behavior of the elevator controller is specified 
nondeterministically, the response of the system will be either  or 
movement without any guaranteed way for the users to predict it. Non-determinism 
corresponds to unlimited parallelism and not to any stochastic behavior. Automata 
theory defines non-determinism more rigorously.

UP DOWN

All Esterel statements and constructs are guaranteed to be deterministic. There is 
no way to introduce any nondeterministic behavior in an Esterel program. The 
Esterel compiler checks the given program and ensures that it is deterministic. This 
assumption of determinism greatly simplifies the behavioral specifications.

Parallelism

Esterel provides the operator  for a parallel composition of its programs. If  and
 are two Esterel programs then  is also an Esterel program, with the 

following characteristics: 

|| P1
P2 P1 || P2

All inputs received from the environment are available to both  and .P1 P2
All outputs generated by  (or ) are available in the same instant to  (or

).
P1  P2 P2

P1
Both  and P2 continue execution in parallel and the statement 
terminates when both  and  terminate.

P1 P1 || P2
P1 P2

No data or variables can be shared by  and .P1  P2

Modules

09.06.2003 21:52 UhrEmbedded.com - An Introduction to Esterel

Page 2 of 12http://www.embedded.com/story/OEG20011018S0090



  
Copyright © 2003 CMP Media LLC

Privacy Statement

A module in Esterel defines a (reusable) unit of behavior. A module is somewhat like 
a subroutine with its own local data and behavior. However, modules are quite 
different from subroutines in the manner of their usage. There is no "module call" 
facility in Esterel. A module is used like a macro in C; using a module simply means 
an inline substitution of its entire text at the place of "call." There are other 
significant differences between a module and a subroutine. For example, no global 
data is shared by modules, recursive module definitions are not possible, and so on. 

A module has an interface and a body defining the behavior. Following is the Esterel 
syntax to define a module. 

% this is a line comment
module module-name :
  declarations and compiler directives 
  % signals, local variables etc.
  body 
. % end of module body

Each module can be thought of as an independent Esterel program and Esterel 
provides several constructs to combine modules to build larger reactive systems. In 
fact, an Esterel program is typically an interconnected network of modules. 

Esterel does not have any notion of global data or global memory shared by all 
modules. However, each module can define its local data in terms of variables. Each 
Esterel statement has associated with it a precise definition about its duration in 
number of instants; for example, emit terminates instantly and await terminates 
only when the signal waited for becomes available. 

A reactive system reacts to its input events by producing output events. In 
general, a reactive system needs to interact with its environment; component 
subsystems of a reactive system also interact with each other. Esterel provides a 
simple logical concept called a signal to model many such events and interactions. A
signal is a logical unit of information exchange and interaction; its formal meaning is 
much like its everyday meaning. Examples include 

, and so on. Names of signals in Esterel are 
conventionally written in capital letters. Esterel provides different kinds of signals. 

START, STOP, HOUR, ALARM, 
LIFT_ARRIVED, BUTTON_PRESSED

Classification attributes for a signal:

Visibility: interface signal vs. local signal
Information contained in a signal: pure signal vs. valued signal
Accessibility of interface signals: input, output, inputoutput, sensor

Consider an Esterel module . The module  can exchange information with its 
external world or it may need to exchange information within its parts (or sub-
modules) executing in parallel. A signal that is exchanged between a module  and 
its external environment is called an interface signal. An interface signal is available 
for all parts and sub-modules of  due to the instantaneous signal broadcast 
mechanism in Esterel. For modularity reasons, a module  can use signals that are 
purely local to  and its parts and sub-modules and are hidden from the external 
environment of . Such a signal is called a local signal of module . 

M M

M

M
M

M
M M

A pure signal does not carry any information within it; only its presence or absence 
can be detected by the system. Thus a pure signal is typeless. A valued signal is a 
typed signal and carries a value whenever it is emitted; the type of a valued signal 
indicates the kinds of values that the signal can carry.

A module needs to declare its interface to the external world in terms of input 
signals, output signals, inputoutput signals, and sensors; also, each such interface 
signal can be pure or valued. 

An input signal for a module can only be "read" by the module; the module cannot 
generate (or emit) such a signal. An output signal for a module can be generated by
the module; the module cannot "read" such a signal. Clearly, an input signal for a 
module can be an output signal for another module and vice versa. An inputoutput 
signal for a module is one that can be both emitted as well as read by the module. 
Typically, such a signal is used only for those signals which the system receives 
from the environment and sends back to the environment after some filtering or 

09.06.2003 21:52 UhrEmbedded.com - An Introduction to Esterel

Page 3 of 12http://www.embedded.com/story/OEG20011018S0090



processing. 

A sensor is a special kind of signal that is "read only" and always assumed to be 
available in every instant; it cannot be waited for nor can it be emitted by any 
module. A sensor can only be read by accessing its value. Thus a sensor cannot be 
a part of an occurrence.

An important concept about signals is that of an occurrence. An occurrence simply 
refers to one or more happenings of a signal. To deal with an occurrence of the 
form , where  is an expression that evaluates to a positive integer and S is an 
input (or inputoutput) signal, the Esterel system checks for the presence of the 
signal  in successive instants and increments the internal counter whenever  is 
present; the occurrence is complete in the instant when the internal counter 
reaches the value . Thus an occurrence has a positive duration (in the number of 
instants). 

N S N

S S

N

Occurrences are used in most of the temporal statements in Esterel; for example, 
the await statement. In later versions of Esterel, the definition of an occurrence is 
somewhat expanded and made more flexible; for example, logical connectives like 
and, or, and not allow us to describe logical combinations of signals. For example, 
the occurrence  is complete when the Esterel system counts the presence 
of three  signals (once in each instant). Note that the  signals need not 
be present in consecutive instants. Thus the duration of this occurrence is at least 
three instants.

3 STOP
STOP STOP

An Esterel program can wait for, read, generate, and check for the presence of a 
signal. In this sense, a signal is like a message; however, these two concepts differ 
in some significant ways. 

A module can wait for an input or inputoutput signal to occur using the await 
statement. A module can check for the presence (or absence) of an input signal or 
an inputoutput signal using the present statement. A module can access (or read) 
the value of a valued input signal, a valued inputoutput signal, or a valued sensor 
using the  construct. A module can broadcast an output signal or an inputoutput 
signal using the emit statement. These operations on signals are explained later.

?

Instantaneous broadcast

Esterel incorporates an instantaneous broadcast mechanism for signal reception and 
transmission. This means that a signal cannot have any destination specified; all 
signals are broadcast and any module may listen to and read an emitted signal. 
Also, signals do not have any unique identifier. 

In Esterel, signals are emitted and used much like bus signals in a hardware 
interconnection bus (Figure 3). Any signal emitted makes a "wire" for that signal 
come alive with the information contained in that signal. Any module (including the 
module that emitted the signal) can tap this wire and read the emitted signal. Thus, 
no copies are made of an emitted signal. After the current reaction instant is over, 
the "bus" is "reset" (that is, cleared of all previous signals) and waits for any further 
input signals to be put on the wire by the environment. That is, the signals are 
available only in the current instant. The system's reaction to those input signals 
starts the next reaction instant.

The bus analogy is useful to illustrate another important fact about Esterel signals. 
A signal  emitted by a module M at a reaction instant t is made available to all 
other modules in the same reaction instant t. The emission of signal  constitutes 
part of the input event at  and the reaction instant  is not completed until some 

S
S

t t

09.06.2003 21:52 UhrEmbedded.com - An Introduction to Esterel

Page 4 of 12http://www.embedded.com/story/OEG20011018S0090



module reacts to the presently available signal . Thus an input event at an instant 
consists of all input signals received from the environment as well as all signals 
emitted by the system as a part of its reaction at that current instant. Such a 
composite mixture of input and output signals available at any instant is called an 
event in Esterel. The input signals within an event constitute an input event. The 
output signals within an event constitute an output event; thus, an event is a 
composite of an input and output event. 

S

In summary, all input signals received from the environment (as well as all signals 
generated by the system as part of its behavior) are available to all modules in the 
same reaction instant.

Esterel does not have facilities to directly refer to the past or future occurrences of 
signals. An Esterel program is memory-less in this sense; however, variables can be 
used to store historical information. Also, Esterel has no facility to refer to any of 
the past or future instants. 

A simple vending machine

We shall begin our exploration of the world of reactive programming with the 
celebrated example of a vending machine. We shall start with a very simplified 
version of a vending machine. The vending machine can serve either tea or coffee. 
The user has to insert a coin and then press either the  or  button, 
after which the system delivers the requested drink. Listing 1 depicts a specification
of VM1.

TEA COFFEE

Listing 1: A simple vending machine 

module VM1 :
input                    COIN, TEA, COFFEE;
output        SERVE_TEA, SERVE_COFFEE;
relation    COIN # TEA # COFFEE;
loop
        await COIN;
        await 
                    case TEA do emit SERVE_TEA;
                    case COFFEE do emit SERVE_COFFEE;
      end await;
end loop;

The code consists of only one module called . The interface of this module 
consists of three input signals ( , and ) and two output signals
 (  and ). The presence of the input signal 
signifies the insertion of a coin in the slot. The presence of the input signal  (or

) signifies the pressing of the  (or ) button. The machine 
indicates its readiness to serve tea (or coffee) by emitting to the environment the 
output signal  (or ). Notice that we are not interested 
(at this level of abstraction) in a number of details of the machine's operations, for 
example, the actual mechanism of the delivery of tea or coffee. All our input and 
output signals are then purely logical signals, intended to represent the behavior of 
the environment or the system, and as such, do not have anything to do with the 
technology of switches, sensors, and such used to receive and generate them. 

VM1
COIN, TEA COFFEE

SERVE_TEA SERVE_COFFEE COIN
TEA

COFFEE TEA COFFEE

SERVE_TEA SERVE_COFFEE

The relation directive is used to describe restrictions on the possible combinations 
of the input signals present in an instant. The relation directive has the form:

relation Master-signal-name => Slave-signal-name;

and indicates that in any instant where the input signal having the name 
 is present, the input signal having the name 

should also be present. 

Master-
signal-name Slave-signal-name

Esterel has another kind of relation directive, which is used to declare signals that 
are pair-wise incompatible. This directive has the form:

relation Signal-name1 # Signal-name2 # ... # Signal-namen;

and states that in any instant, at most one of the n input signals Signal-name1, 

09.06.2003 21:52 UhrEmbedded.com - An Introduction to Esterel

Page 5 of 12http://www.embedded.com/story/OEG20011018S0090



 may be present; that is, no two or more of 
these  input signals can be simultaneously present in any instant. Use of the 
relation directive reduces the size of the automaton generated from an Esterel 
specification. The relation directive in Listing 1 indicates that in any instant, at 
most one of the three input signals , , and  may be present.

Signal-name2, ... , Signal-namen
n

COIN TEA COFFEE

The classical Infinite Loop statement has the format:

loop Body end loop; 

and it forever executes the enclosed Esterel statements. The only restriction is that
the  must not terminate in the same instant that it started; this will cause an 
instantaneous infinite loop and the compiler will usually flag this as an error. Note 
that in this form, the loop statement never terminates; whenever an execution of

 terminates, a new execution of  is started.

Body

Body Body

The multiple await statement has the form:

await 
  case Occurrence  do Body

  case Occurrence  do Body

... 
  case Occurrence  do Body

end await;

1 1

2 2

n n

This statement is used to wait for any of the n occurrences: 

. If only one of the occurrences, , is 

complete in the current instant, then the execution of the corresponding case 
alternative behavior (given by the body  of Esterel statements) is started and 

all other awaits are terminated. If more than one occurrence is complete in the 
current input instant, then the case alternative for the occurrence that textually 
occurs first is executed and the other occurrences are ignored (that is, the 
behavior for them not executed). This rule makes the multiple await statement 
deterministic. This await statement terminates whenever the body , whose 

execution was started, terminates.

Occurrence , 

Occurrence , ..., Occurrence
1

2 n Occurrencei

Bodyi

Bodyi

The statement  waits till the  is complete and 
terminates when it happens. 

 await Occurrence; Occurrence

The statement  is used to broadcast the given output signal 
given by  the  statement executes instantaneously. That is, the 
emitted signal is also made available as part of the present instant. 

emit Signal-name;
Signal-name; emit

The sequential composition  terminates an Esterel statement and binds 
two Esterel statements in a sequential order for execution. Note that the semicolon 
does not denote an empty statement (unlike in C); thus  is illegal.

operator ;

;;

Now that the system behavior is specified as an Esterel program, we shall see how 
to test these behavioral specifications. Following are some examples of test cases 
for the above program (which can be performed by compiling and executing the 
Esterel program):

1. T1 = ({COIN},{}), ({TEA},{SERVE_TEA})

This test case consists of two instants; expected input and output events are 
given for each instant. Initially, the user inserts a coin; the system is not expected 
to produce any reaction to this input event. Then the user presses the  button 
and the system is expected to react by serving tea to him. No other input events 
are happening during the execution of this test case.

TEA

2. T2 = ({COIN},{}), 
({COFFEE},
{SERVE_COFFEE}) 

This test case is similar to T1 but checks the behavior of the  subsystem.COFFEE

3. T3 = ({COIN},{}),({COIN},{}), 
({TEA},{SERVE_TEA}), 
({TEA},{SERVE_TEA})

09.06.2003 21:52 UhrEmbedded.com - An Introduction to Esterel

Page 6 of 12http://www.embedded.com/story/OEG20011018S0090



This test case is similar to T1 but checks whether the system "remembers" the 
number of coins inserted (it does not). 

A temperature controller

The temperature within a chamber (perhaps the site of some chemical process) 
needs to be maintained at a known constant value (C = 250 degrees). We need to 
specify the behavior of a temperature controller to do this job. Two boilers,  and

, are available to heat the chamber (Figure 4). The temperature of the chamber 
is regularly provided by a thermometer at every  seconds. As soon as the 
temperature within the chamber goes below , boiler  should be switched on 
(unless it is already on). If  does not restore the temperature to C within a 
known constant time interval , then boiler  should be switched on. 
As soon as the temperature rises above , each boiler that is on must be switched 
off. 

B1
B2

N
C B1

B1
DT = 1 minute B2

C

The temperature controller system just described is specified in Listing 2.  is 
an integer valued input signal. The input signal  is used to indicate 
the need to sample the temperature reading; that is, the environment supplies the 
input signal  whenever it is time to receive the  signal.

 is a logical input signal but it can be generated by a clock whenever 
it is time to see the temperature. Local signals  and  indicate whether 
the current temperature is above or below C. The output signals 

, and  are used to indicate the output actions of the system in 
switching the boilers on or off. 

TEMP
SAMPLE_TIME

SAMPLE_TIME TEMP
SAMPLE_TIME

HIGH LOW
B1_ON, B1_OFF, 

B2_ON B2_OFF

Listing 2: A temperature controller

module temp_controller :
input        TEMP : integer, SAMPLE_TIME, DELTA_T;
output    B1_ON, B1_OFF, B2_ON, B2_OFF;
relation    SAMPLE_TIME => TEMP;

signal HIGH, LOW in 
    every SAMPLE_TIME do
        present TEMP else await TEMP end present;
        if ( ?TEMP >= 250 ) then emit HIGH else emit LOW end if;
    end every;
    ||
    loop 
        await LOW;
        emit B1_ON;
        do
            await HIGH;

09.06.2003 21:52 UhrEmbedded.com - An Introduction to Esterel

Page 7 of 12http://www.embedded.com/story/OEG20011018S0090



            emit B1_OFF;
        watching DELTA_T
        timeout
            present HIGH else
                emit B2_ON;
                await HIGH;
                emit B2_OFF;
            end present;
            emit B1_OFF;
        end;
    end loop;
end;
.

The relation directive states the master-slave combination of the signals
 and ; it states that in any instant where the input signal
 is present, the input signal  should also be present.  and

 are pure local signals and are not available to the environment external to the 
program.

SAMPLE_TIME TEMP
SAMPLE_TIME TEMP HIGH
LOW

New constructs

The signal statement is used to declare the local signals used within the module and
its sub-modules and parts. This statement has the format:

signal Signal-decl , Signal-decl , ..., Signal-decl  in

  Body end;
1 2 n

The above statement declares n local signals which are available only within the
 and not outside. For pure signals,  contains only a signal name. 

For a valued signal, the declaration  has the form 

.

Body Signal-decli
Signal-decli Signal-name  : 

Signal-type
i

i

The nothing; statement is a null statement that does nothing and terminates 
instantaneously. In addition, Esterel has the halt; statement, which also does 
nothing but never terminates. These two statements are surprisingly effective in 
many situations.

The every statement is the  construct in Esterel. The statement:Periodic Restart

every Occurrence do Body end every; 

has the following meaning: whenever the  is complete in the present 
instant, the execution of  is started and another wait starts for the 
completion of the next . If the next  is complete before the 
execution of  is completed, the current execution of  is terminated and a 
fresh execution of  is started. The every tick do  end every; statement 
allows some actions to be performed at every instant.

Occurrence
Body

Occurrence Occurrence
Body Body

Body Body

The  has the following format:Parallel Composition construct ||

Body  || Body  || ... || Body1 2 n

where each  is a group of Esterel instructions. The execution of all the bodies 

starts at the same instant and continues in parallel. The entire construct terminates
only after the execution of each body terminates; the execution of all bodies need 
not terminate at the same instant.

Bodyi

The present statement is the signal testing construct. The statement:

present Signal-name then Body  else Body  end present; 1 2

has the following meaning. If the signal having the name Signal-name is present in 
the current instant then start the execution of the statement body ; 

otherwise, start the execution of the statement body . The entire statement 

terminates when the execution of  or  terminates (whichever body was 

Body1
Body2

Body1 Body2

09.06.2003 21:52 UhrEmbedded.com - An Introduction to Esterel

Page 8 of 12http://www.embedded.com/story/OEG20011018S0090



started). In the present statement, either the then  part or the else 

part can be omitted (but not both). 

Body1 Body2

The statement:

present Signal-name else Body  end present; 2

has the following meaning: if the signal having the name Signal-name is present in 
the current instant then do nothing; otherwise, start the execution of the 
statement body Body . Thus it is equivalent to the statement:2

present Signal-name then nothing else Body  end present; 2

Similarly, the statement:

present Signal-name then Body  end present; 1

is equivalent to the statement:

present Signal-name then Body  else nothing end present; 1

If  is a valued signal which is available in the current instant, then the expression
 returns the value of this signal in the current instant. Thus  is the signal value 

extraction operator.  cannot be used on pure signals. Note that  is a unary 
operator. The type of the value returned by the expression  is the same as the 
type of signal .

S
?S ?

? ?
?

?

Esterel provides the standard  control statement which has the form:if-then-else

if boolean-expression then Body  else Body  end if;1 2

When the control comes to this statement, the  is evaluated. 
If the expression evaluates to true in the current instant then the execution of

 is started; otherwise, the execution of  is started. In the if-then-else 

statement, either the  part or the  part can be omitted (but 

not both). 

boolean-expression

Body1 Body2
then Body1 else Body2

The statement:

if boolean-expression else Body  end if;2

has the following meaning: if the  evaluates to true in the 
current instant then do nothing and pass the control to the following statement; 
otherwise start the execution of the statement body . Thus it is equivalent 

to the statement:

boolean-expression

Body2

if boolean-expression then nothing else Body  end if; 2

Similarly, the statement:

if boolean-expression then Body  end if; 1

is equivalent to the statement:

if boolean-expression then Body  else nothing end if; 1

The  is a basic and important temporal statement in Esterel. 
This statement has the following format:

do-watching-timeout

do   Body    watching Occurrence   timeout     Body end;1 2

The timeout clause is optional. Whenever the control arrives at this statement, it 
executes as follows:

if the Occurrence is complete in the 

09.06.2003 21:52 UhrEmbedded.com - An Introduction to Esterel

Page 9 of 12http://www.embedded.com/story/OEG20011018S0090



  current instant then 
    if Body  is given then 

        start executing Body

    else pass control to the following
     statement 
else start executing Body .

if Occurrence becomes complete 
  before Body  has finished then

    immediately abort the execution of 
     Body

    if Body  is given then 

        start executing Body

  else pass control to the following 
    statement
else Body  has finished execution but Occurrence is

not complete yet
    pass control to the following
    statement

2

2

1

1

1

2

2

1

As is clear from the above flowchart, this statement terminates either when 

does or when  does, provided  completes before  has 

finished its execution. The statement  is equivalent to the 
statement:

Body1
Body2 Occurrence Body1

await Occurrence;

do halt watching Occurrence;

Back to the example

With these new Esterel constructs, we are ready to describe the specification 
shown in Listing 2. The module consists of two loops which are executing in parallel 
and which exchange information using local signals  and ; let us call them

 and . 
HIGH LOW

Loop1 Loop2

 keeps waiting for the input signal . Every instant when this 
input signal is available,  also reads the input signal  and emits the local 
signal  or  depending on the value of the input signal .

Loop1 SAMPLE_TIME
Loop1 TEMP

HIGH LOW TEMP

 assumes that, initially, the temperature within the chamber will be less than
. If that is not the case, then it simply waits till the temperature falls below . 

When the temperature falls below  (as indicated by the presence of the local 
signal  emitted by ),  switches on boiler  (as indicated by the 
emission of the output signal ) and then waits until either the temperature 
again rises above  (as indicated by the presence of the local signal  emitted 
by ) or time interval  elapses (as indicated by the presence of the input 
signal ). This effect is achieved by the  statement. 
If  arrives before , boiler  is switched off (as indicated by the 
emission of the output signal ). Otherwise, boiler  is switched on and 
when  finally arrives, both  and  are switched off. The above behavior is 
forever repeated using the loop statement. Notice how we have used logical clock 
signals  and . 

Loop2
C C

C
LOW Loop1 Loop2  B1

B1_ON
C HIGH

Loop1 DT
DELTA_T do-watching-timeout

HIGH DELTA_T B1
B1_OFF B2

HIGH B1 B2

SAMPLE_TIME DELTA_T

The specification of the system needs to be tested for a number of typical 
situations. For each such situation, you can design a test case. Then test the 
system simulator constructed from Listing 2 using these test cases. Some examples 
of the test cases are as follows:

1. ({SAMPLE_TIME,TEMP(200)},{B1_ON}), 
({SAMPLE_TIME,TEMP(300)},{B1_OFF})

Initially, the temperature is below C, so the system should react by switching on 
boiler . Then the temperature crosses above , so the system should react by 
switching off .

B1 C
B1

2. ({SAMPLE_TIME,TEMP(100)},{B1_ON}), 
({SAMPLE_TIME,TEMP(150)},{}), 
({SAMPLE_TIME,TEMP(300)},{B1_OFF})

09.06.2003 21:52 UhrEmbedded.com - An Introduction to Esterel

Page 10 of 12http://www.embedded.com/story/OEG20011018S0090



Initially, the temperature is below C, so the system should react by switching on 
boiler . Then the temperature is still below  (but the time interval  is not yet 
finished), so the system should not produce any output. Then the temperature 
crosses above , so the system should react by switching off boiler .

B1 C DT

C B1

Initially, the temperature is below , so the system should react by 
switching on boiler . Then the temperature is still below  (but the time interval

 is not yet finished), so the system should not produce any output. Then while 
the temperature is still below , the time interval  finishes, so the system should 
react by switching on boiler . Then the temperature crosses above , so the 
system should react by switching off both  and .

3. ({SAMPLE_TIME,TEMP(100)},{B1_ON}), 
        ({SAMPLE_TIME,TEMP(200)},{}),
({SAMPLE_TIME,TEMP(220),DELTA_T},
        {B2_ON}), 
({SAMPLE_TIME,TEMP(300)},{B1_OFF,
        B2_OFF}) C

B1 C
DT

C DT
B2 C

B1 B2

The following properties of the above system are of interest:

It should never happen that  is OFF and  is ON at the same instant.B1 B2
It should never happen that a boiler (either  or ) is switched on when it is
already on.

B1 B2

It should never happen that a boiler (either  or ) is switched off when it 
is already off.

B1 B2

Theorem-proving and verification tools of Esterel can be used to verify that Listing 
2 satisfies these properties. 

 is a scientist at the Tata Research Development and 
Design Centre in Pune, India. He obtained a M.Sc. in physics from the Indian 
Institute of Technology (Bombay) and an MS in computer science and engineering 
from the Indian Institute of Technology (Chennai). E-mail him at

.

Girish Keshav Palshikar

girishp@pune.tcs.co.in

The author would like to thank Professor Mathai Joseph and Dr. Manasee Palshikar 
for their help.

References

Berry, G. "Esterel v3 Programming Examples: Programming a Digital Watch in Esterel 
v3," Tech. Report, Ecole des Mines de Mathematiques Appliquees, 1989.

Berry G. and G. Gonthier. "The Esterel Synchronous Programming Language: Design, 
Semantics, Implementation," Sci. Comp. Prog., 19 (1992), pp. 87-152.

Berry G., "Esterel on Hardware," in 
New Jersey: Prentice-Hall, 1992, pp. 87-104. 

Mechanized Reasoning and Hardware Design.

Boussinot, F. and R. De Simone. "The Esterel Language,"  Vol. 79, No. 9, 
Sep. 1991, pp. 1293-1304.

Proc. IEEE,

Return to November 2001 Table of Contents

Free Subscription to Embedded Systems Programming

First Name  Last Name

Company Name  Title

Business Address  City

State Select State/Province …  Zip

Email address  

• McObject's eXtremeDB in-memory embedded database

09.06.2003 21:52 UhrEmbedded.com - An Introduction to Esterel

Page 11 of 12http://www.embedded.com/story/OEG20011018S0090



eXtremeDB is the embedded in-memory database for C/C++ programmers. In-memory 
means amazing performance. Check out the XML-enabled and High Availability versions, 
too. Download a free trial.

• Free Technical Publications
Keep up with advancing technologies. Download the lastest technical publications 
including topics on IC, FPGA, Functional Verification, Design-for-Test and PCB Design 
Solutions.

• The Fastest Embedded Processor Ever - Xtensa V
Test drive Tensilica's Xtensa V processor, the fastest ever according to EEMBC 
Certification Labs.

• PEG (Portable Embedded GUI) Graphics Library/Tools
PEG is a GUI Development Package comprised of a full set of tools for embedded systems. 
PEG comes with a complete class library, runs fast, is small in size and completely 
rommable. PEG is delivered with C++ source code and is ROYALTY FREE!

• PCB123-the FREE PCB Solution, Design to Order
Remove engineering bottle-necks with our FREE and easy to use schematic and layout 
software. Quotes your boards as you design! Quick and easy solution for up to 4-layer 
circuit board designs.

Buy a link NOW:

09.06.2003 21:52 UhrEmbedded.com - An Introduction to Esterel

Page 12 of 12http://www.embedded.com/story/OEG20011018S0090


