
16
Fault Tolerance

18-540 Distributed Embedded Systems
Philip Koopman

November 8, 2000

Required Reading: Nelson, Fault-tolerant computing: fundamental concepts

2

Assignments
u Next lecture read about critical systems.

u Project part #5 due Wednesday 11/15

u Next homework is #8, due Friday 11/17

3

Where Are We Now?
u Where we’ve been:

• Distributed architecture (1st course section)
• Distributed networks (2nd course section)

u Where we’re going today:
• Making correct, robust systems

– Today: fault tolerance / reliability

u Where we’re going next:
• Critical systems (software, distributed system issues)
• Validation/certification
• Design methodology
• Miscellaneous & advanced topics

4

Preview
u Aerospace approaches don’t necessarily work on consumer products

• Automobiles as an example

u How and why things break
• Mechanical
• Hardware
• Software

u Designing systems for failure detection & recovery
• Practical limits of fault tolerant design
• Environment & other sources of problems
• How to (and not to) design a highly available system

5

Why Not Build Cars Like Aircraft?
u We all “know” that flying is safer than driving

• (This is only true per mile, not per hour)

u So, use commercial aircraft techniques to build automated vehicles
• Computer-controlled navigation & tactical maneuvers
• Redundant hardware
• Near-perfect software
• High-quality design and components
• Highly trained professional operators (oops…)

6

Automotive vs. Aviation Safety

U.S. Automobiles U.S. Commercial
Aircraft

Deployed Units ~100,000,000 ~10,000

Operating hours/year ~30,000 Million ~55 Million

Cost per vehicle ~$20,000 ~$65 Million

Mortalities/year 42,000 ~350

Accidents/year 21 Million 170

Mortalities / M illion
Hours

0.71 6.4

Operator Training Low High

Redundancy Levels Brakes only All flight-critical
systems

•Aviation autopilot is probably easier than an automotive autopilot

7

Why Not Aerospace Approaches For Cars?
u Based on culture of redundant HW, perfect SW
u Too expensive

• Component “Pain threshold” for vehicles is at the $.05 level
• Higher levels of cost OK for Europe if they provide performance value

u Different operating environment/reaction time
u Difficult to enforce maintenance

• People run out of gas &
engine oil; ignore “idiot lights”

• Aircraft don’t leave gate if
something is broken

• End-of-life wearout -- old
vehicles stay on the road

• Can we ensure same maintenance quality?
u Poorly trained operators

• Yearly driver exam with road test?
• Required simulator time for accident response?

8

Definitions
u RELIABILITY -- Aerospace model

• Survival probability for given “mission time”
• Good when repair is difficult

u AVAILABILITY -- Automotive & general
purpose computing model
• The fraction of time a system meets its specification
• Good when continuous service is important

u DEPENDABILITY
• Generalization: system does the right thing at the right

time

9

Generic Sources of Faults
u Mechanical -- “wears out”

• Deterioration: wear, fatigue, corrosion
• Shock: fractures, stiction, overload

u Electronic Hardware -- “bad fabrication; wears out”
• Latent manufacturing defects
• Operating environment: noise, heat, ESD, electro-migration
• Design defects (e.g., Pentium FDIV bug)

u Software -- “bad design”
• Design defects
• “Code rot” -- accumulated run-time faults

u People
• Takes a whole additional page...

10

Errors By Development Phase

STAGE ERROR SOURCES ERROR DETECTION STRATEGY
Specification Algorithm Design Simulation
& design Formal Specification Consistency checks

Prototype Algorithm design Stimulus/response
Wiring & assembly Testing
Timing
Component Failure

Manufacture Wiring & assembly System testing
Component failure Diagnostics

Installation Assembly System Testing
Component failure Diagnostics

Field Operation Component failure Diagnostics
Operator errors
Environmental factors

11

Fault Classification
u Duration

• Transient -- design flaws, environmental factors, etc.
• Intermittent -- recurring events
• Permanent -- “hard” failures/replace component -- only 10% of problems

u Extent
• Local (independent)
• Distributed (related)

u Value
• Determinate (stuck-at-high or -low)
• Indeterminate (varying values)

12

Error Containment Levels

13

Basic Steps in Fault Handling
u Fault Confinement -- contain it before it can spread
u Fault Detection -- find out about it to prevent acting on bad data
u Fault Masking -- mask effects
u Retry -- since most problems are transient, just try again
u Diagnosis -- figure out what went wrong as prelude to correction
u Reconfiguration -- work around a defective component
u Recovery -- resume operation after reconfiguration in degraded mode
u Restart -- re-initialize (warm restart; cold restart)
u Repair -- repair defective component
u Reintegration -- after repair, go from degraded to full operation

14

MTBF -- MTTD -- MTTR

MTTRMTBF
MTBF

 ty Availabili
+

=

15

A Brief History of Reliability Theory
u Electronics reliability theory

was invented in WWII
• For V-2 German rocket
• For Radar/electronics

u Problem: Misleading
mechanical analogy:
• “Chain is as strong as its

weakest link”
– Example: chain across Hudson

River in revolutionary war
• Assumes failures based only on

over-stress and aging effects
• Works for mechanical

components, not electronic
components

• V-2 rockets kept blowing up!

16

“Modern” Reliability Theory
u Electronics reality:

• Failures are RANDOM, with time-varying mean failure rates
• Even if there is no over-stress, electronic components will fail all the time

– Result: V2 rocket was unreliable even after improving weak components

• Solution: move to a probabilistic view of reliability
– And assume that failure rates are constant during “useful life”

• Reliability R(t) is probability system is working at time t.
– Reliability for N hours = N * l

17

Parallel & Serial Reliability
u Serial reliability: compute probability of failure-free operation

• All components need to operate for system to operate

• R(t) = R1(t) * R2(t) * R3(t)
– This is probability that all components work

u Parallel reliability
• Simple version -- assume only 1 of N components needs to operate

• R(t) = 1 – [(1-R1(t)) * (1-R2(t)) * (1-R3(t))]
– This is 1 - Probability that all components fail

• More complex math used for M of N subsystems
• There may also be a “voter” that counts for a serial reliability element!

1 2 3

1

2

3

18

Combination Serial/Parallel Systems
u Recursively apply parallel/serial equations to subsystems

19

Uses of Redundancy
u M of N subsystems need to be working

• Assume others “fail fast / fail silent”
• Example: brakes on a car

u M of N systems are compared for correctness
• Uses special (“failure-proof”) voting circuit; majority rules
• 2 of 3 is “Triplex Modular Redundancy” (TMR)

– If any 2 units agree, use that result
– Any incorrect unit is masked

20

Post-Modern Reliability Theory
u Pre-WWII: mechanical reliability / “weakest link”
u “Modern” reliability: hardware dominates / “random failures”

u But, software matters! (“post-modern” reliability theory)
• Several schools of thought; not a mature area yet
• Still mostly ignores people as a component in the system

1) Assume software never fails
– Traditional aerospace approach; bring lots of $$$$ and cross your fingers

2) Assume software fails randomly just like electronics
– May work on large server farms with staggered system reboots
– Doesn’t work with correlated failures -- “packet from Hell” / date rollover

3) Use software diversity analogy to create M of N software redundancy
– Might work at algorithm level
– Questionable for general software
– Pretty clearly does NOT work for operating systems, C libraries, etc.

4) Your Ph.D. thesis topic goes here: ________________

21

How Often Do Components Break?
u Failure rates often expressed in

failures / million operating hours (“Lambda” l):

u We have no clue how we should deal with software field reliability
• Best efforts at this point based on usage profile & field experience

Military Microprocessor 0.022

Automotive Microprocessor 0.12 (1987 data)

Electric Motor 2.17

Lead/Acid battery 16.9

Oil Pump 37.3

Human: single operator best case 100 (per Mactions)

Automotive Wiring Harness (luxury) 775

Human: crisis intervention 300,000 (per Mactions)

22

Common Hardware Failures
u Connectors

• Especially wiring harnesses that can be yanked
• Especially if exposed to corrosive environments

u Power supplies
• Especially on/off switches on PCs

23

“Mainframe”Outage Sources

AT&T
Switching
System

Bellcore
Commercial

Japanese
Commercial

Users

Tandem
1985

Tandem
1987

Northern
Telecom

Mainframe
Users

Hardware 0.20 0.26 0.75* 0.18 0.19 0.19 0.45

Software 0.15 0.30 0.75* 0.26 0.43 0.19 0.20

Maintenance -- -- 0.75* 0.25 0.13 -- 0.05

Operations 0.65 0.44 0.11 0.17 0.13 0.33 0.15

Environment -- -- 0.13 0.14 0.12 0.15 0.15

Power -- -- -- -- -- 0.13 --
(* the sum of these sources was 0.75)

24

Tandem Environmental Outages
u Extended Power Loss 80%
u Earthquake 5%
u Flood 4%
u Fire 3%
u Lightning 3%
u Halon Activation 2%
u Air Conditioning 2%

u Total MTBF about 20 years
u MTBAoG* about 100 years

• Roadside highway equipment will be more exposed than this
* (AoG= “Act Of God”)

25

Tandem Causes of System Failures

(Up is good; down is bad)

26

Tandem Outages

27

Lemons Or Just Statistics?

()
... 2, 1, 0, =x

!
)(

 :failures ddistribute Poisson

t
x

e
x
t

xp λλ −=

Annual failures for
100,000,000 vehicles

Vehicles failing
given 10 year MTBF

Vehicles failing
given 100 year MTBF

0 90,483,741 99,004,983
1 9,048,374 990,050
2 452,419 4,950
3 15,081 17
4 377 0
5 8 0
6 0 0

28

IBM 3090 Fault Tolerance Features

u Reliability
• Low intrinsic failure rate technology
• Extensive component burn-in during

manufacture
• Dual processor controller that incorporates

switchover
• Dual 3370 Direct Access Storage units support

switchover
• Multiple consoles for monitoring processor

activity and for backup
• LSI Packaging vastly reduces number of circuit

connections
• Internal machine power and temperature

monitoring
• Chip sparing in memory replaces defective chips

automatically

u Availability
• Two or tour central processors
• Automatic error detection and correction in

central and expanded storage
• Single bit error correction and double bit error

detection in central storage
• Double bit error correction and triple bit error

detection in expanded storage
• Storage deallocation in 4K-byte increments

under system program control
• Ability to vary channels off line in one channel

increments
• Instruction retry
• Channel command retry
• Error detection and fault isolation circuits

provide improved recovery and serviceability
• Multipath I/O controllers and units

29

More IBM 3090 Fault Tolerance

u Data Integrity
• Key controlled storage protection (store and

fetch)
• Critical address storage protection
• Storage error checking and correction
• Processor cache error handling
• Parity and other internal error checking
• Segment protection (S/370 mode)
• Page protection (S/370 mode)
• Clear reset of registers and main storage
• Automatic Remote Support authorization
• Block multiplexer channel command retry
• Extensive I/O recovery by hardware and control

programs

u Serviceability
• Automatic fault isolation (analysis routines)

concurrent with operation
• Automatic remote support capability - auto call

to IBM if authorized by customer
• Automatic customer engineer and parts

dispatching
• Trade facilities
• Error logout recording
• Microcode update distribution via remote

support facilities
• Remote service console capability
• Automatic validation tests after repair
• Customer problem analysis facilities

30

IBM 308X/3090 Detection & Isolation
u Hundreds of Thousands of isolation domains
u 25% of IBM 3090 circuits for testability -- only covers 90% of all errors
u Assumed that only 25% of faults are permanent

• If less than two weeks between events, assume same intermittent source
• Call service if 24 errors in 2 hours

u (Tandem also has 90% FRU diagnosis accuracy)

31

Approximate Consumer PC Hardware ED/FI

this space intentionally blank

32

Typical Workstation Software ED/FI
u SW Defects are inevitable -- what happens then?

*

*

*

**
*

Normalized Failure Rate by Operating System

Normalized Failure Rate (after analysis)
0% 10% 20% 30% 40% 50%

SunOS 5.5

SunOS 4.13

QNX 4.24

QNX 4.22

OSF-1 4.0

OSF-1 3.2

NetBSD

Lynx

Linux

Irix 6.2

Irix 5.3

HPUX 10.20

HPUX 9.05

FreeBSD

AIX

Abort %
Silent %
Restart %

* Catastrophic

33

Research Challenges
u Exploiting redundancy

• Hardware redundancy is easy, but that’s not the main problem in many cases
• Software redundancy is hard to ensure

u Heterogeneous redundancy?
• Use “good-enough” techniques in emergencies

– Car brakes for steering
– Elevator brake for emergency egress

u Equipment that reaches end-of-life wear-out
• Violates useful life assumptions,

but happens in consumer products

u Software
• “Reliability” doesn’t even mean

the same thing as used by the
software community

34

Conclusions
u Design reliability into the system, not on top of the system

• Take domain constraints into account when choosing approach

u Historically, goals of 100% unattainable for:
• Fault detection/isolation
• Availability
• Design correctness
• Isolation from environmental problems

u The biggest risk items are people & software
• But we’re not very good at understanding software reliability
• We understand people reliability, but it’s not very good

