
© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 1

Architecture analysis:
– The SAAM

– ATAM

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 2

When and Why To Analyze
Architecture -1

� Analyzing for system qualities early in the life cycle allows
for a comparison of architectural options.

� When building a system
» Architecture is the earliest artifact where trade-offs are

visible.
» Analysis should be done when deciding on

architecture.
» The reality is that analysis is often done during damage

control, later in the project.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 3

When and Why To Analyze
Architecture -2.

� When acquiring a system
» Architectural analysis is useful if the system will have

a long lifetime within organization.
» Analysis provides a mechanism for understanding

how the system will evolve.
» Analysis can also provide insight into other visible

qualities.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 4

Qualities Are Too Vague for Analysis

� Is the following system modifiable?
» Background color of the user interface is changed

merely by modifying a resource file.
» Dozens of components must be changed to

accommodate a new data file format.

� A reasonable answer is

»yes with respect to changing background color

»no with respect to changing file format

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 5

Qualities Are Too Vague for Analysis

� Qualities only have meaning within a context.

� SAAM specifies context through scenarios.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 6

Scenarios

� A scenario is a brief description of a stakeholder’s
interaction with a system.

� When creating scenarios, it is important to consider
all stakeholders, especially

» end users

» developers

» maintainers

» system administrators

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 7

Steps of a SAAM Evaluation

� Identify and assemble stakeholders

� Develop and prioritize scenarios

� Describe candidate architecture(s)

� Classify scenarios as direct or indirect

� Perform scenario evaluation

� Reveal scenario interactions

� Generate overall evaluation

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 8

Step 1: Identify and Assemble
Stakeholders -1

Stakeholder Interest
Customer Schedule and budget; usefulness of
 system; meeting customers’ (or

 market’s) expectations
End user Functionality, usability
Developer Clarity and completeness of

 architecture; high cohesion and
 limited coupling of parts;
 clear interaction mechanisms

Maintainer Maintainability; ability to locate
 places of change

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 9

Step 1: Identify and Assemble
Stakeholders -2

Stakeholder Interest
System Ease in finding sources of
administrator operational problems
Network Network performance,

administrator predictability

Integrator Clarity and completeness of
 architecture; high cohesion and
 limited coupling of parts;
 clear interaction mechanisms

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 10

Step 1: Identify and Assemble
Stakeholders -3.

Stakeholder Interest
Tester Integrated, consistent error-handling;

 limited component coupling; high
 component cohesion; conceptual integrity

Application Architectural clarity, completeness;
builder (if interaction mechanisms; simple
product line tailoring mechanisms
architecture)
Representative Interoperability
of the domain

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 11

Step 2: Stakeholders Develop
and Prioritize Scenarios

� Scenarios should be typical of the kinds of evolution
that the system must support:
» functionality
» development activities
» change activities

� Scenarios also can be chosen to give insight into the
system structure.

� Scenarios should represent tasks relevant to all
stakeholders.

� Rule of thumb: 10-15 prioritized scenarios

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 12

Step 3: Describe Candidate
Architectures

� It is frequently necessary to elicit appropriate
architectural descriptions.

� Structures chosen to describe the architecture will
depend on the type of qualities to be evaluated.

� Code and functional structures are primarily used to
evaluate modification scenarios.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 13

Step 4: Classify Scenarios

� There are two classes of scenarios.
» Direct scenarios are those that can be executed by the

system without modification.
» Indirect scenarios are those that require modifications to

the system.
� The classification depends upon both the scenario and the

architecture.
� For indirect scenarios we gauge the order of difficulty of

each change: e.g. a person-day, person-week, person-
month, person-year.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 14

Step 5: Perform Scenario
Evaluation

� For each indirect scenario
» identify the components, data connections, control

connections, and interfaces that must be added,
deleted, or modified

» estimate the difficulty of modification
� Difficulty of modification is elicited from the architect

and is based on the number of components to be
modified and the effect of the modifications.

� A monolithic system will score well on this step, but not
on next step.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 15

Step 6: Reveal Scenario
Interactions

� When multiple indirect scenarios affect the same
components, this could indicate a problem.

» could be good, if scenarios are variants of each
other

– change background color to green

– change background color to red

» could be bad, indicating a potentially poor
separation of concerns

– change background color to red

– port system to a different platform

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 16

Step 7: Generate Overall
Evaluation

� Not all scenarios are equal.

� The organization must determine which scenarios are
most important.

� Then the organization must decide as to whether the
design is acceptable “as is” or if it must be modified.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 17

Interaction of SAAM Steps

classification
of scenarios

individual
evaluation
of indirect
scenarios

assessment
of scenario
interaction

overall
evaluation

scenario
development
architecture
description

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 18

Example: SAAM Applied to
Revision Control System

� “WRCS” is a large, commercially-available revision control
system.

� No documented system architecture existed prior to the
evaluation.

� The purpose of the evaluation was to assess the impact of
anticipated future changes.

� Three iterations were required to develop a satisfactory
representation, alternating between
» development of scenarios
» representation of architecture

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 19

Architectural Representation of
WRCS

visdiff
ctrls

win31

OWLfmext

fntext

main

report

wrcs hook

bcext

mcext

vbext

pvcs2rcs

sccs2rcs

msarn200

make

diff

diff

bindiff

nwcalls

nwspxipx

nwnim

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 20

Scenarios Used in WRCS

� User scenarios

» compare binary file representations

» configure the product’s toolbar

� Maintainer

» port to another operating system

» make minor modifications to the user interface

� Administrator

» change access permissions for a project

» integrate with a new development environment

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 21

Scenario Classification

� User scenarios
» compare binary file representations: indirect
» configure the product’s toolbar: direct

� Maintainer
» port to another operating system: indirect
» make minor modifications to the user interface: indirect

� Administrator
» change access permissions for a project: direct
» integrate with a new development environment: indirect

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 22

Scenario Interactions

� Each indirect scenario necessitated a change in some
modules. This can be represented either tabularly or
visually.

� The number of scenarios that affected each module
can be shown with a table or graphically, with a fish-
eye view.

� A fish-eye view uses size to represent areas of
interest.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 23

Scenario Interaction Table

Module No. changes
main 4
wrcs 7
diff 1
bindiff 1
pvcs2rcs 1
sccs2rcs 1
nwcalls 1
nwspxipx 1
nwnlm 1
hook 4
report 1
visdiff 3
ctrls 2

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 24

Scenario Interaction Fish-Eye

 visdiff
ctrls

fmext

fntext

 wwwwrrrrccccssss
 hook

pvcs2rcs

sccs2rcs

msarn200

make

diff

diff

bindiff

nwcalls

nwspxipx

win31

OWL

bcext

mcext

vbext

nwnim

report

 main

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 25

Lessons Learned from WRCS

� Granularity of architectural description

� Interpretation of scenario interactions

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 26

Proper Granularity of
Architectural Description

� The level of detail of architectural description is
determined by the scenarios chosen.

� The next slide shows what an architect thought was an
appropriate level of detail.

� Components are annotated with the numbers of
indirect scenarios that affect them.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 27

Original Representation of
WRCS

visdiff
11

11

diff

msarn200
12

make
12

11,12

ctrls

main
11,12,13

report
13

fmext
13

fntext
13

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 28

The “main” Scenario Interactions

� Possibilities:
» Scenarios are all

of the same
class.

» Scenarios are of
different classes
and “main”
cannot be
subdivided.

» Scenarios are of
different classes,
and “main” can
be subdivided.

visdiff
11

11
diff

msarn200
12

make
12

11,12

 ctrls

main
11,12,13

report
13

fmext
13

fntext
13

main1
11

main2
12

main3
13

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 29

WRCS: What did we learn?

� We identified severe limitations in achieving the
desired portability and modifiability. A major system
redesign was recommended.

� The evaluation itself obtained mixed results.
» Senior developers/managers found it important

and useful.
» Developers regarded this as just an academic

exercise.
� SAAM allowed insight into capabilities and limitations

that weren’t easily achieved otherwise.
� This was accomplished with only scant knowledge of

the internal workings of WRCS.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 30

Lessons from SAAM -1

� Direct scenarios provide a
» first-order differentiation mechanism for competing

architectures
» mechanism for eliciting and understanding structures

of architectures (both static and dynamic)

� It is important to have stakeholders present at
evaluation meetings.
» Stakeholders find it to be educational.
» Architectural evaluators may not have the

experience to keep presenters “honest.”

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 31

Lessons from SAAM -2.

� SAAM and traditional architectural metrics
» Coupling and cohesion metrics do not represent different

patterns of use.
» High scenario interaction shows low cohesion.
» A scenario with widespread hits shows high coupling.
» Both are tied to the context of use.
» SAAM provides a means of sharpening the use of coupling

and cohesion metrics.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 32

Summary

� A SAAM evaluation produces

» technical results: provides insight into system
capabilities

» social results
– forces some documentation of architecture

– acts as communication vehicle among stakeholders

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 33

Carnegie Mellon University

Software Engineering Institute

Architecture analysis:
The ATAM

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 34

� Why analyze an architecture?

� ATAM Steps

� An example

� Summary and Status

Outline

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 35

Why Analyze an Architecture?

� All design involves tradeoffs.

� A software architecture is the earliest life-cycle
artifact that embodies significant design decisions:
choices and tradeoffs.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 36

The ATAM

� We have been developing the Architecture Tradeoff
Analysis Method (ATAM) for over two years.

� The purpose of ATAM is: to assess the
consequences of architectural decision alternatives in
light of quality attribute requirements.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 37

Purpose of ATAM - 1

� We need a method in which the right questions are
asked early to:
» Discover risks -- alternatives that might create

future problems in some quality attribute

» Discover sensitivity points -- alternatives for which
a slight change makes a significant difference in
some quality attribute

» Discover tradeoffs -- decisions affecting more than
one quality attribute

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 38

Purpose of ATAM - 2.

� The purpose of an ATAM is NOT to provide precise
analyses . . . the purpose IS to discover risks created
by architectural decisions.

� We want to find trends: correlation between
architectural decisions and predictions of system
properties.

� Discovered risks can then be made the focus of
mitigation activities: e.g. further design, further
analysis, prototyping.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 39

ATAM Benefits

� There are a number of benefits from performing
ATAM analyses:

» Clarified quality attribute requirements

» Improved architecture documentation

» Documented basis for architectural decisions

» Identified risks early in the life-cycle

» Increased communication among stakeholders

� The results are improved architectures.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 40

� Why analyze an architecture?

� ATAM Steps

� An example

� Summary and Status

Outline

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 41

ATAM Steps

� 1. Present ATAM

� 2. Present business drivers
� 3. Present architecture

� 4. Identify architectural styles
� 5. Generate quality attribute utility tree

� 6. Elicit and analyze architectural styles

� 7. Generate seed scenarios
� 8. Brainstorm and prioritize scenarios

� 9. Map scenarios onto styles

� 10. Present out-brief and/or write report

ATAM Steps

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 42

1. Present ATAM

� Evaluation Team presents an overview of ATAM
including:
» ATAM steps in brief
» techniques

– utility tree generation
– style-based elicitation/analysis
– scenario brainstorming/mapping

» outputs
– scenarios
– architectural styles
– quality attribute questions
– risks and “non-risks
– utility tree

Presentation

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 43

2. Present Business Drivers

� ATAM customer representative describes the system’s
business drivers including:

» business context for the system

» high-level functional requirements

» high-level quality attribute requirements

– architectural drivers: quality attributes that “shape” the
architecture

– critical requirements: quality attributes most central to the
system’s success

Presentation

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 44

3. Present Architecture

� Architect presents an overview of the
architecture including:

» technical constraints such as an OS, hardware, or
middle-ware prescribed for use

» other systems with which the system must interact

» architectural approaches used to meet quality
attribute requirements

� Evaluation team begins probing for:

» risks
» architectural styles

Presentation

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 45

� High-level overview of architecture is completed by
itemizing architectural styles found in the
architecture.

� Examples:

» client-server

» 3-tier

» pipeline

» publish-subscribe

4. Identify Architectural
 Styles

Investigation and Analysis

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 46

� Identify, prioritize and refine the most important quality
attribute goals by building a utility tree.

» a utility tree is an AHP (analytic hierarchy process)-
like model of the “driving” attribute-specific
requirements

» typically performance, modifiability, security, and
availability are the high-level nodes

» scenarios are leaves of utility tree
� Output: a prioritization of specific quality attribute

requirements.

5. Generate Quality
 Attribute Utility Tree

Investigation and Analysis

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 47

Utility Tree Construction -1

Utility

Performance Modifiability Availability

New sensors New middleware Change Web UI

Survive a singl
network failure

Live upgrade Quick restart
after disk failure

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 48

Utility Tree Construction -2

Utility

Performance Modifiability Availability

New sensors New middleware Change Web UI

Survive a singl
network failure

Live upgrade Quick restart
after disk failure

(0.2) (0.5) (0.3)

(0.7)(0.1)(0.2)

(0.(0.4)(0.1)

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 49

� Evaluation Team probes architectural styles from the
point of view of specific quality attributes to identify
risks.

» Identify the styles which pertain to the highest
priority quality attribute requirements

» Generate quality-attribute specific questions for
highest priority quality attribute requirement

» Ask quality-attribute specific questions

» Identify and record risks and non-risks

6. Elicit and Analyze
 Architecture Styles

Investigation and Analysis

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 50

Concurrent Pipelines Style

P21

P11 P12 P13 P1j

Pn1 Pn2 Pn3 Pnk

Processor Process Data flow

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 51

Quality Attribute Questions
� Quality attribute questions probe styles to elicit

architectural decisions which bear on quality attribute
requirements.

� Performance
» How are priorities assigned to processes?
» What are the message arrival rates?

� Modifiability
» Are there any places where layers/facades are

circumvented ?
» What components rely on detailed knowledge of

message formats?

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 52

Risks and Non-Risks -1

� While risks are potentially problematic architectural
decisions, …

� Non-risks are good decisions relying on implicit
assumptions.

� Risk and non-risk constituents

» architectural decision

» quality attribute requirement

» rationale

� Sensitivity points are candidate risks and risks are
candidate tradeoff points.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 53

Risks and Non-Risks -2

� Example risk
» Rules for writing business logic modules in the

second tier of your 3-tier style are not clearly
articulated. This could result in replication of
functionality thereby compromising modifiability of
the third tier.

� Example non-risk
» Assuming message arrival rates of once per

second, a processing time of less than 30 ms, and
the existence of one higher priority process, a 1
second soft deadline seems reasonable.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 54

� Scenarios are example stimuli used to

» Represent stakeholders’ interests

» Understand quality attribute requirements

� Seed scenarios are sample scenarios

� Scenarios are specific

» anticipated uses of (use cases),

» anticipated changes to (growth scenarios), or

» unanticipated stresses (exploratory) to the system.

7. Generate Seed Scenarios
Testing

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 55

� Stakeholders generate scenarios using a
brainstorming process.

� Each stakeholder is allocated a number of votes
roughly equal to 0.3 x #scenarios

� Prioritized scenarios are compared with the utility
tree and differences are reconciled.

8. Brainstorm and Prioritize
Scenarios

Testing

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 56

Example Scenarios

� Use case

» Remote user comes via the web to access report
database.

� Growth scenario

» Add a new data server to reduce latency by 50%.

� Exploratory scenario

» Half of the servers go down during operation.

=> Scenarios should be as specific as possible.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 57

� Identify styles and components within styles
impacted by each scenario.

� Continue identifying risks and non-risks.

� Continue annotating architectural information.

9. Map Scenarios onto Styles
Testing

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 58

� Recapitulate steps of ATAM

� Present ATAM outputs
» styles
» scenarios
» questions
» utility tree
» risks
» non-risks

� Offer recommendations

10. Present Out-Brief/Write
Report

Out-Briefing

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 59

� Why analyze an architecture?

� ATAM Steps

� An example

� Summary and Status

Outline

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 60

2. Present Business Drivers

� A distributed battlefield management system (BMS)

» One mobile central commander node
» A set of mobile fighter nodes under commander
» Information from many sources/sensors
» Messages of different types (maps, orders)

� Stakeholders wanted to understand how the system
would perform and adapt to changes

Presentation

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 61

3. Present Architecture

� Physical view:
“customer-providers”,
where the
commander node is
the customer and the
fighter nodes are
providers.

� Detailed information
also collected for
concurrency and code
views.

Commander
Node

Fighter
Node

Fighter
Node

Fighter
NodeFighter

Node

Fighter
Node

Fighter
Node

. .
.

Presentation

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 62

� We elicited information on the architectural
approaches with respect to modifiability, availability,
and performance.

» For availability, a backup commander scheme was
described.

» For modifiability, standard subsystem
organizational patterns were described.

» For performance, an independent communicating
components style was described..

4. Identify Architectural
 Styles

Investigation and Analysis

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 63

Utility

Performance Modifiability Availability
(0.3) (0.2) (0.5)

Ballistics kernel
computation New message

formats
New message
data types

Server failure

5. Generate Quality
 Attribute Utility Tree

Investigation and Analysis

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 64

� The repair time for the
system is the time to
turn the backup into
the commander node.

� Communication
between the
commander node and
the backup keeps the
backup “in sync”.

Commander
Node

Fighter
Node

Fighter
Node

Fighter
NodeFighter/

Backup

Fighter
Node

Fighter
Node

. .
.

6. Elicit and Analyze
 Architecture Styles

Investigation and Analysis

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 65

Availability Analysis - 1

� QA = the fraction of time the system is working

� The system is considered to be working if there is a
working commander node and one or more fighter
nodes.

� When the commander node fails the system has
failed.

� Provisions have been made in the BMS architecture
to turn a designated fighter (backup) node into a
commander node.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 66

Availability Analysis - 2

� Availability can be seen as:
 QA = h(λc, λb, µc, µb)

where λc = failure rate of the commander

 λb = failure rate of the backup

 µc = repair rate of the commander

 µb = repair rate of the backup

� Problem! The backup has no backup, i.e. in the
BMS architecture, µb = 0

� We discovered this problem via qualitative analysis
questions that focused on failure and repair rates.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 67

Availability Analysis - 3

� Hence, two well-aimed hits (or hardware failures)
disable the entire system!

� The solution was to turn more fighter nodes into
potential backups.

� Alternatives could be:

» Acknowledging backups (n)

» Passive backups (m)

» Passive backups (m) + update

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 68

Availability: Sensitivity/Risk
Identification

� The availability of the system can now be seen as:

 QA = j(n, m)

� n and m are architectural availability sensitivity points

� Since availability is a key attribute for the battle
management mission, some choices of n and m
present availability risks

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 69

� Initial set of seed scenarios were too general

» “System fails”

� Seed scenarios were later refined

» “Command node is destroyed and the Backup node
takes over as the Commander node”

7. Generate Seed Scenarios

Testing

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 70

� 46 scenarios were collected, covering modifiability,
scalability, availability, performance, portability.

� Examples:

» Modifiability: map data formats change

» Performance: the number of simultaneous missions
doubles

» Availability: the commander is disable by a direct hit

8. Brainstorm and Prioritize
Scenarios

Testing

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 71

Scenario Prioritization

� The stakeholders suggested groupings of scenarios.

� The stakeholders used preference-voting to prioritize
scenarios.

� The result was 15 high priority scenarios.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 72

� The architects mapped each of the high-priority
scenarios onto the BMS architecture.

� During this stage we:

» Gathered attribute-specific information
qualitative attribute questions

» Clarified our understanding of the architecture
and the scenarios

» Documented the answers

9. Map Scenarios onto Styles
Testing

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 73

Performance Analysis - 1

� We discovered a performance problem via a
qualitative attribute questions that asks about the
relative speeds of communication and processing.

� The problem uncovered was: the nodes in the BMS
architecture communicated via slow modems.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 74

Performance Analysis -2

� End-to-end latency calculations showed that the
overall latency was highly sensitive to the number
and size of transmitted messages.

� Communication load came from:
» The normal operations communication overhead
» The number of backups (both acknowledging and

passive)

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 75

Performance: Sensitivity/Risk
Identification

� Thus, system performance can be characterized as:

� QP = k(n, m, CO)

� Communications overhead was a constant.

� n and m are architectural performance sensitivity
points.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 76

Tradeoff Identification

� Increasing the number of backups increases
availability, but also increases average latency
(because these backups must be kept up-to-date by
the commander).

� Hence, the number of active and passive backups (n
and m) is a tradeoff point in the BMS architecture.

� The designers had not been aware of the tradeoff
inherent in their design.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 77

� Presentation and written report detailed the potential
modifiability, performance, and availability problems,
and …

� delineated new architecture options and their costs:
» Acknowledging backups
» Passive backups
» Passive backups + updates

10. Present Out-Brief/Write
Report

Out-Briefing

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 78

Results of the BMS ATAM

� Greatly improved architectural documentation
� Stakeholder buy-in
� Discovery of missing performance and availability

requirements
� Highlighting of a previously unknown tradeoff point in

the architecture
� Delineation of recommendations to mitigate the risks

of this tradeoff

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 79

� Why analyze an architecture?

� ATAM Steps

� An example

� Summary and Status

Outline

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 80

Summary - 1

� ATAM is a method for evaluating an architecture with
respect to multiple quality attributes.

� It is an effective risk mitigation strategy to avoid the
disastrous consequences of a poor architecture. ATAM:

» can be done early

» requires stakeholder participation

� The key to the method is looking for trends, not in
making precise analyses.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 81

Summary - 2

� ATAM relies critically on

» Clearly-articulated quality attribute requirements

» Active stakeholder participation

» Active participation by the architect

» Familiarity with architectural styles and analytic
models

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 82

Appendix A

Overview of
architectural styles

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 83

Overview of architectural styles*)

» Data-centered:
– Repository

– Blackboard

» Data-flow:
– Pipes & filters

– Batch/sequential

» Call-and-return:
– Top down

– OO

– layered

» Virtual machine:
– Interpreter

– Rule-based

» Independent
components:

– Communicating
processes

– Event systems

– implicit invocation

– explicit invocation

*) The presentation is based on Software Architecture in Practice (Bass et al.; Addison-Wesley, 1998) and
 Software Architecture: Perespectives on an Emerging Discipline (Shaw, Garlan; Prentice Hall, 1996)

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 84

Data-centered (I)

Access to shared data represents the core characteristic of data-
centered architectures. The data integrability forms the principal
goal of such systems.

Shared Data

Client Client

passive data

computational
component / obje

data flow

Legend:

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 85

Data-centered (II)

The means of communication between the components distinguishes
the subtypes of the data-centered architectural style:

» Repository: passive data (see schematic representation of
previous slide)

» Blackboard: active data
A blackboard sends notification to subscribers when relevant
data change (→ Observer pattern)

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 86

Data-centered (III)

+ clients are quite independent of each other
=> clients can be modified without affecting others

coupling between clients might increase performance but lessen
this benefit

+ new clients can be easily added

No rigid separation of styles: When clients are independently
executing processes: client/server architectural style

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 87

Data-flow

The system consists of a series of transformations on successive
pieces of (input) data. Reuse and modifiability form the principal goals of
such architectures.

Validate

process

data flow

Legend:

Sort Report
Tape Tape Tape Page

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 88

Data-flow substyles

� Batch sequential (→ sample on previous slide)

» components (= processing steps) are independent programs

» each step runs to completion before the next step starts,
i.e., each batch of data is transmitted as a whole between
steps

� Pipe-and-filter (→ UNIX pipes & filters)

» incremental transformation of data based on streams

» filters are stream transducers and use little contextual
information and retain no state information between
instantiations

» pipes are stateless and just move data between filters

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 89

Pros and cons of pipes-and-filters
+ no complex component interactions to manage

+ filters are black boxes

+ pipes and filters can be hierarchically composed

– batch mentality => hardly suitable for interactive applications

– filter ordering can be difficult; filters cannot interact cooperatively
to solve a problem

– performance is often poor

parsing/unparsing overhead due to lowest common denominator
data representation

– filters which require all input for output production have to create
unlimited buffers

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 90

Virtual machine (I)

Virtual machines simulate some functionality that is not native
to the hardware/software on which it is implemented. This
supports achieving the quality attribute of portability.

Examples:

» interpreters

» command language processors

» rule-based systems

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 91

Virtual machine (II)

Schematic representation:

Data
(program state)

Program being
interpreted

Interpretation
Engine Internal state

inputs

outputs

program
instructions

state data

selected instruction

selected data

data
updates

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 92

Call-and-return

Call-and-return architectures rely on the well-known abstraction of
procedures/functions/methods. Shaw and Garlan discern between
the following substyles:

» main-program-and-subroutine style

– remote-procedure-call systems also belong to this
category but are decomposed in parts that live on
computers connected via a network

» object-oriented or abstract-data-type style

» layered style

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 93

Layered style

Components belong to layers. In pure layered systems each level
should communicate only with its immediate neighbors.

Each successive layer is built on its predecessor, hiding the lower
layer and providing some services that the upper layers make use
of. Upper layers often form virtual machines.

User interface

Basic utilities

Core system

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 94

Event systems

Publish/subscribe (observer) pattern: Components can register an interest
in notifications.

Example: coupling between JavaBeans

Listener

Source Listener

Listener

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 95

Heterogeneous styles (I)

Example: event system + layered style

Listener

Source Listener

Listener

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 96

Heterogeneous styles (II)

In general, the presented architectural styles do not clearly
categorize architectures. Styles exist as cognitive aids and
communication cues.

» The data-centered style, composed out of thread-
independent clients is like an independent component
architecture.

» The layers in a layered architecture might be objects/ADTs.

» The components in a pipe-and-filter architecture are usually
independently operating processes and thus also
correspond to an independent component architecture.

» Commercial client/server systems with a CORBA-based
infrastructure could be described as layered object-based
process systems, i.e., a hybrid of three styles.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 97

Appendix B—Bibliography (I)
Bass L., Clements P., Kazman R. (1998) Software Architecture in Practice, Addison-Wesley

Fayad M., Schmidt D., Johnson R. (1999) Building Application Frameworks: Object-Oriented Foundations of Framework Design, Wiley

Fayad M., Schmidt D., Johnson R. (1999) Implementing Application Frameworks: Object-Oriented Frameworks at Work, Wiley

Fayad M., Schmidt D., Johnson R. (1999) Domain-Specific Application Frameworks: Manufacturing, Networking, Distributed Systems, and
Software Development, Wiley

Gabriel R.P. (1996). Patterns of Software—Tales from the Software Community. New York: Oxford University Press

Gamma E., Helm R., Johnson R. and Vlissides J. (1995) Design Patterns—Elements of Reusable OO Software. Reading, MA: Addison-Wesley
(also available as CD)

Pree W. (1995) Design Patterns for Object-Oriented Software Development. Reading, Massachusetts: Addison-Wesley/ACM Press

Szyperski C. (1998) Component Software—Beyond Object-Oriented Programming, Addison-Wesley.

Shaw M., Garlan D. (1996) Software Architecture—Perspectives on an Emerging Discipline. Prentice-Hall

comprehensive architecture descriptions of real-world software systems:

Freeman E, Hupfer S, Arnold K (1999) JavaSpaces—Principles, Patterns, and Practice, Addison-Wesley

Wirth N, Gutknecht J. (1993) Project Oberon—The Design of an Operating System and Compiler, Addison-Wesley

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 98

Appendix B—Bibliography (II)
Bibliography on Software Architecture Analysis (http://www.fit.ac.jp/~zhao/pub/sa.html),

maintained by Jianjun Zhao

This is the bibliography on software architecture analysis, with special emphasis on architectural-level understanding, testing, debugging, reverse engineering, re-engineering,
maintenance, and complexity measurement.

--

R. Balzer, "Instrumenting, Monitoring and Debugging Software Architectures."

P. Bengtsson and J. Bosch, "Scenario-Based Software Architecture Reengineering," Proc. 5th International Conference on Software Reuse (ICSR5), pp.308-317, IEEE
Computer Society Press, Victoria, B.C, Canada, June 1998.

P. Bengtsson, "Towards Maintainability Metrics on Software Architecture: An Adaptation of Object-Oriented Metrics," Firsrt Nordic Workshop on Software Architecture
(NOSA'98), Ronneby, August 1998.

P. Bengtsson and J. Bosch, "Architecture Level Prediction of Software Maintenance," Proc. 3rd European Conference on Maintenance and Reengineering (CSMR99) ,
Amsterdam, The Netherlands, March 1999.

L. Bass, P. Clements, and R. Kazman, "Software Architecture in Practice," Published by Addison-Wesley in the SEI Series, 1998.

A. Bertolino, P. Inverardi, H. Muccini, and A. Rosetti, "An Approach to Integration Testing Based on Architectural Descriptions," Proc. Third IEEE International Conference
on Engineering of Complex Computer Systems (ICECCS97), pp.77-84, Como, Italy, September 1997.

G. Canfora, A. De Lucia, G. di Lucca, and A. Fasolino, "Recovering the Architectural Design for Software Comprehension," Proc. IEEE Third Workshop on Program
Comprehension, Washington, DC, November 1994.

S. J. Carriere and R. Kazman, "The Perils of Reconstructing Architectures," Proc. 3rd International Software Architecture Workshop (ISAW3), pp.13-16, ACM SIGSOFT,
Orlando, Florida, USA, November 1998.

S. J. Carriere, R. Kazman, and S. Woods, "Assessing and Maintaining Architectural Quality," Proc. 3rd European Conference on Maintenance and Reengineering (CSMR99)
, Amsterdam, The Netherlands, March 1999.
P. Clements, R. Krut, E. Morris, and K. Wallnau, "The Gadfly: An Approach to Architectural-Level System Comprehension," Proc. 4th International Workshop on Program
Comprehension (IWPC96), IEEE Computer Society Press, pp.178-186, 1996.

J. F. Girard and R. Koschke, "Finding Components in a Hierarchy of Modules: A Step towards Architectural Understanding," Proc. International Conference on Software
Maintenance (ICSM97), IEEE Computer Society Press, pp.58-65, Bari, Italy, October 1997.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 99

Appendix B—Bibliography (III)
G. Y. Guo, J. M. Atlee, and R. Kazman, "A Software Architecture Reconstruction Method," Proc. First Working IFIP Conference on Software Architecture (WICSA1), San
Antonio, TX, USA, February 1999.

D. Harris, H. Reubenstein, and A. S. Yeh, "Reverse Engineering to the Architectural Level," Proc. International Conference on Software Engineering (ICSE95), pp.186-195,
IEEE Computer Society Press, July 1995.
S. Henry and D. Kafura, "Software Structure Metrics Based on Information Flow," IEEE Transactions on Software Engineering, 7(5), September 1981.

P. Inverardi and A. L. Wolf, "Formal Specification and Analysis of Software Architectures using the Chemical Abstract Machine Model," IEEE Transactions on Software
Engineering, 21(4):373--386, April 1995.
R. Kazman, "Tool Support for Architectural Analysis and Design," Proc. 2nd Software Architecture Workshop (ISAW2), pp.94-97, San Francisco, CA, October 1996.

R. Kazman, G. Abowd, L. Bass, and P. Clements, "Scenario-Based Analysis of Software Architecture," IEEE Software, pp.47-55, November 1996.

R. Kazman and M. Burth, "Assessing Architectural Complexity," Proc. 2nd Euromicro Working Conference on Software Maintenance and Reengineering (CSMR98), pp.104-
112, IEEE Computer Society Press, Florence, Italy, March 1998.
R. Kazman and S. J. Carriere, "View Extraction and View Fusion in Architectural Understanding," Proc. 5th International Conference on Software Reuse (ICSR5), pp.290-
299, IEEE Computer Society Press, Victoria, B.C, Canada, June 1998.

R. Kazman, M. Klein, M. Barbacci, H. Lipson, T. Longstaff, and S. J. Carriere, "The Architecture Tradeoff Analysis Method," Proc. Fourth IEEE International Conference
on Engineering of Complex Computer Systems (ICECCS98), pp.68-78, Montery, USA, August 1998.

R. Kazman, S. Woods, and S. J. Carriere, "Requirements for Integrating Software Architecture and Reengineering Models: CORUM II", Proc. 5th Working Conference on
Reverse Engineering (WCRE98), pp.154-163, Honolulu, HI, October 1998.

R. Kazman and S. J. Carriere, Playing Detective: Reconstructing Software Architecture from Available Evidence", Journal of Automated Software Engineering, April 1999.
(to appear)

T. H. Kim, Y. T. Song, L. Chung, and D. Huynh, "Software Architecture Analysis Using Dynamic Slicing", Proc. AoM/IAoM CS'99, Auguest 1999.

T. H. Kim, Y. T. Song, L. Chung, and D. Huynh, "Dynamic Software Architecture Slicing", Proc. 23th IEEE Annual International Computer Software and Applications
Conference (COMPSAC99), October 1999. (to appear)

J. Kramer and J. Magee, "Analysing Dynamic Change in Software Architectures: A Case Study", Proc. IEEE 4th International Conference on Configurable Distributed
Systems (CDS 98), pp.91-100, Annapolis, May 1998.
R.L. Krikhaar, R.P. de Jong, J.P. Medema, and L.M.G. Feijs, "Architecture Comprehension Tools for a PBX System", Proc. 3rd European Conference on Maintenance and
Reengineering (CSMR99) , Amsterdam, The Netherlands, March 1999.

D.C. Luckham, J.J. Kenney, L.M. Augustin, J. Vera, D. Bryan, and W. Mann, "Specification and Analysis of System Architecture Using Rapide," IEEE Transactions on
Software Engineering, Vol.21, No.4, pp.336-355, April 1995.
C. H. Lung, S. Bot, K. Kalaichelvan, and R. Kazman, "An Approach to Software Architecture Analysis for Evolution and Reusability," Proc. of CASCON '97, November
1997.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 100

Appendix B—Bibliography (IV)
C. H. Lung and K. Kalaichelvan, "A Quantitative Approach to Software Architecture Sensitivity Analysis", Proc. of the 10th Internationall Conference on Software
Engineering and Knowledge Engineering, pp. 185-192, June 1998.

C. H. Lung, "Software Architecture Recovery and Restructuring through Clustering Techniques," Proc. 3rd International Software Architecture Workshop (ISAW3), pp.101-
104, ACM SIGSOFT, Orlando, Florida, USA, November 1998.
J. Magee, J. Kramer, and D. Giannakopoulou, "Analysing the Behaviour of Distributed Software Architectures: a Case Study", Proc. 5th IEEE Workshop on Future Trends in
Distributed Computing Systems (FTDCS97), pp.240-247, Tunisia, October 1997.

J. Magee, J. Kramer, and D. Giannakopoulou, "Software Architecture Directed Behavior Analysis," Proc. Ninth International Workshop on Software Specification and Design
(IWSSD9), pp.144-146, IEEE Computer Society Press, Ise-Shima, Japan, April 1998.

J. Magee, J. Kramer and D. Giannakopoulou, "Behaviour Analysis of Software Architectures" Proc. First Working IFIP Conference on Software Architecture (WICSA1), San
Antonio, Texas, February 1999.

T. J. McCabe and C. W. Butler, "Design Complexity Measurement and Testing," Communications of ACM, Vol.32, No.12, pp.1415-1425, 1989.
G. Naumovich, G.S. Avrunin, L.A. Clarke, and L.J. Osterweil, "Applying Static Analysis to Software Architectures," Proc. the Sixth European Software Engineering
Conference Held Jointly with the 5th ACM SIGSOFT Symposium on Foundations of Software Engineering, pp.77-93, Lecture Notes in Computer Science, Vol.1301,
Springer-Verlag, 1997.
D. E. Perry and A. L. Wolf, ``Foundations for the Study of Software Architecture'', ACM SIGSOFT Software Engineering Notes, pp.40-52, Vol.17, No.4, October 1992.

J. Peterson and M. Sulzmann, "Analysis of Architectures using Constraint-Based Types," Proc. First Working IFIP Conference on Software Architecture (WICSA1), San
Antonio, TX, USA, February 1999.

M. D. Rice and S. B. Seidman, "An Approach to Architectural Analysis and Testing," Proc. 3rd International Software Architecture Workshop (ISAW3), pp.121-123, ACM
SIGSOFT, Orlando, Florida, USA, November 1998.

D.J. Richardson and A. L. Wolf, "Software Testing at the Architectural Level," Proc. 2nd International Software Architecture Workshop (ISAW2), pp.68-71, San Francisco,
California, October 1996.
M. Shaw and D. Garlan, "Software Architecture: Perspectives on an Emerging Discipline," Prentice Hall, 1996.

J.A. Stafford, D.J. Richardson, and A. L. Wolf, "Chaining: A Software Architecture Dependence Analysis Technique," Technical Report CU-CS-845-97, University of
Colorado, September 1997.
J.A. Stafford, D.J. Richardson, and A. L. Wolf, "Aladdin: A Tool for Architecture-level Dependence Analysis of Software Systems," University of Colorado Technical
Report, CU-CS-858-98, 1998.

J.A. Stafford and A. L. Wolf, "Architectural-level Dependence Analysis in Support of Software Maintenance," Proc. 3rd International Software Architecture Workshop
(ISAW3), pp.129-132, ACM SIGSOFT, Orlando, Florida, USA, November 1998.
W. Tracz, "Testing and Analysis of Software Architectures," Proc. ACM International Symposium on Software Testing and Analysis (ISSTA96), S.Diego, USA, January 1996.

V. Tzerpos and R.C. Holt, "The Orphan Adoption problem in Architecture Maintenance," Proc. Working Conference on Reverse Engineering (WCRE97), Amsterdam, The
Netherlands, October 1997.

© 2000, Carnegie Mellon Universit (R. Kazman), W. Pree 101

Appendix B—Bibliography (V)
C. Williams, "Software Architecture: Implications for Computer Science Research," Proc. First Working IFIP Conference on Software Architecture (WICSA1), San Antonio,
TX, USA, February 1999.

J. Zhao, "Software Architecture Slicing," Proc. 14th Conference of Japan Society for Software Science and Technology (JSSST'97), pp.49-52, Ishikawa, Japan, September
1997.
J. Zhao, "Using Dependence Analysis to Support Software Architecture Understanding," in M. Li (Ed.), "New Technologies on Computer Software," pp.135-142, International
Academic Publishers, September 1997.

J. Zhao, "Applying Slicing Technique to Software Architectures," Proc. Fourth IEEE International Conference on Engineering of Complex Computer Systems (ICECCS98),
pp.87-98, August 1998.

J. Zhao, "On Assessing the Complexity of Software Architectures," Proc. 3rd International Software Architecture Workshop (ISAW3), pp.163-166, ACM SIGSOFT, Orlando,
Florida, USA, November 1998.

J. Zhao, "Extracting Reusable Software Architectures: A Slicing-Based Approach," Proc. ESEC/FSE'99 Workshop on Object-Oriented Reengineering, Toulouse, France,
September 1999. (to appear)

--

Other Links on Software Architecture

Bibliographies:

Ric Holt's Annotated Biblography on Software Architecture http://plg.uwaterloo.ca/~holt/cs/746/98/biblio.html
Rick Kazman's Software Architecture Bibliography http://www.cgl.uwaterloo.ca/~rnkazman/SA-bib.html

Kamran Sartipi's Software Architecture Bibliography http://se.math.uwaterloo.ca:80/~ksartipi/papers/sa-bib.ps

SEI Bibliography on Software Architecture http://www.sei.cmu.edu/architecture/bibpart1.html

Others:

Dewayne Perry's Web Page on Software Architecture http://www.bell-labs.com/user/dep/work/swa/

Software Architecture Technology Guide http://www-ast.tds-gn.lmco.com/arch/guide.html
On-line Proceedings of the International Workshop on the Role of Software Architecture in Testing and Analysis (ROSATEA)

http://www.ics.uci.edu/~djr/rosatea/
--

Last updated: Auguest 20, 1999
Maintained by Jianjun Zhao (zhao@cs.fit.ac.jp)

