
Accurate 3D-Vision-Based Obstacle Detection for an

Autonomous Train

Johann Weichselbauma, Christian Zinnera, Oliver Gebauerb, Wolfgang
Preeb

aSafety & Security Department, AIT Austrian Institute of Technology GmbH,
Donau-City-Straße 1, 1220 Vienna, Austria, {johann.weichselbaum,

christian.zinner}@ait.ac.at, Tel.: +43 50550 4120, Fax.: +43 50550 4250
bDepartment of Computer Science, Univ. of Salzburg, Jakob Haringer Straße 2, 5020

Salzburg, Austria

Abstract

In this paper we present a 3D-vision based obstacle detection system for
an autonomously operating train in open terrain environments. The sys-
tem produces dense depth data in real-time from a stereo camera system
with a baseline of 1.4 m to fulfill accuracy requirements for reliable obstacle
detection 80 m ahead. On an existing high speed stereo engine, several mod-
ifications have been applied to significantly improve the overall performance
of the system. Hierarchical stereo matching and slanted correlation masks
increased the quality of the depth data in a way that the obstacle detection
rate increased from 89.4% to 97.75% while the false positive detection rate
could be kept as low as 0.25%. The evaluation results have been obtained
from extensive real-world test data. An additional stereo matching speed-up
of factor 2.15 was achieved and the overall latency of obstacle detection is
considerably faster than 300 ms.

Keywords: Dense Stereo Matching, Census Transformation, Slanted
Correlation Masks, Autonomous Train, Obstacle Detection

1. Introduction

This work has been carried out in the context of a research project that
aims to equip trains, especially region branch lines, with complex sensor sys-
tems to enable autonomous operating on existing routes without the need of
major constructional modifications of the track system. Autonomous trains
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as such are not new, however, existing systems usually operate on track sys-
tems which are closed hermetically to prevent any persons or animals from
getting into the endangered area. Within the proposed concept, the system
must be aware of any obstacles which may appear, and suitable decisions and
actions have to be carried out on the basis of extensive sensor information.

The major motivation for the development of an autonomously driving
train is the low economy of regional trains due to their sparse occupation,
which is partially caused by their low frequency. Trains arriving in an interval
of 10 minutes instead of one or even two hours could double or triple their pas-
senger demand as they would not require any knowledge about their schedule
and be available nearly instantly. These vehicles could be smaller and be op-
erated as powered rail cars. Their economy could be raised significantly if
there were not the need for an increased amount of drivers. Replacing the
driver’s function without additional investments into the rail infrastructure
is therefore the key to improved attractiveness of regional trains. Besides
of the manipulation of the car the driver’s function is the ability to differ
between relevant and irrelevant objects on the track and the proper con-
trol of the car’s speed with regard to the safety of the car and its passengers.
Examples for the challenge of judging objects on rails correctly are snow, veg-
etation between rails, plastic ribbons, blown away newspapers, fallen trees
or branches, mudflow, avalanches, other cars, animals or humans. Currently
there is no single sensor known which is able to handle this judgment as good
as the human driver can do it with the use of his eyes only. On the other
hand, technical sensors offer abilities which overstrain the human, as they do
not get tired or detracted and can see without the presence of light or even
through fog.

1.1. Setup of the Experimental Test Platform

In order to achieve an obstacle recognition performance which comes close
to the human’s eye a combination of sensors which are based on different tech-
nical principles is the best choice. We used laser scanners, single and stereo
cameras working in the spectral ranges of visible light and infra-red, radar
and ultra sonic sensors (see Fig. 1). Besides the technical characteristics of
sensors the effective evaluation and fusion of their signals contributes to a
useful recognition performance. In addition to precise 3D sensor data, a high
level of precision is also required for the self-localization of the car, as the
obstacle recognition depends on an offline-created map of the track’s trajec-
tory. For a successful discrimination of objects to be inside or outside the
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Figure 1: Test platform

track clearance on curved tracks, the longitudinal position of the car must
be known better than 1 m (cf. Fig. 16).

1.2. Sensor Systems for Vision based Obstacle Detection

In this paper, we contribute the development of a highly accurate real-
time stereo vision system for obstacle detection as part of the sensor system
of the train. In contrast to the other sensor modalities that are available
off-the-shelf, the stereo vision sensor itself is a topic under research and it
needs application-specific optimization. Therefore, this work is an important
precondition for a later evaluation and comparison of all sensors applied on
the test platform.

Major challenges for a stereo vision system within this context are

• a short latency time between image capturing and results output

• a high angular resolution to be able to discriminate obstacles from other
objects which might be located closely beside the tracks (e.g., poles,
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signaling equipment)

• a high amount of depth resolution is necessary to fulfill the previous
requirement on curved tracks

• a high inter-frame dynamic range to cope with wide variety of occurring
outdoor illumination situations

• a high intra-frame dynamic range to be able to capture high contrasted
scenes

• post-processing and analysis of depth data in order to provide the re-
sults as a list of objects with annotated attributes according their size
and location in 3D.

We propose a solution that employs dense stereo matching techniques while
using cameras with a comparably high resolution together with a quite wide
stereo baseline.

1.3. Outline

The remainder of this paper is organized as follows. Examples for other
stereo vision based sensors for vehicles are quoted in Section 2. In Section 3
basic requirements for this particular application are used to deduce a stereo
geometry and camera setup. An initial result uncovers several weaknesses
that motivated further improvement. Section 4 describes a number of con-
crete measures to improve results quality as well as lower the computational
effort. Section 5 covers the task of extracting information about obstacles
from the depth images resulting from stereo matching. Extensive evalua-
tions from large real-world datasets are reported in Section 6. Concluding
statements are given in Section 7.

2. Related Work

Stereo vision based obstacle detection is a popular technology for ad-
vanced driver assistance systems. There is a wide variety of possible ap-
proaches (feature-based vs. dense stereo, combination with optical flow,
variants of SLAM, etc.) that have been discussed in a series of publications.

It is very common that real-time capable dense stereo matching relies on
a calibration procedure that ensures the epipolar constraint to reduce the
matching problem to a one-dimensional search of the correct disparity per
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pixel. It is also common that, due to the underlying principle of triangu-
lation, the depth resolution decays proportionally to the square of object
distance. This is an issue in inter-urban traffic in railway applications, where
commonly used stereo baselines between 0.2 and 0.4 meters simply cannot
deliver sufficient depth resolution to differentiate whether distant obstacles
are on track or only nearby. The particular issues caused by large baselines
while being forced to meet very restrictive computation time constraints are
less reflected in literature.

Obstacle detection with dense stereo is done in [1], where the high compu-
tational effort of the stereo matching has been tackled with a hybrid SW-HW
solution. With a stereo baseline of 0.32 m and an image width of 512, real-
time dense stereo matching is shown to be feasible.

[2] calculates dense v-disparity maps by a semi-global matching approach
and performs a Hough-transform based analysis for the obstacle detection.
Available computing power as of 2002 seems to be the reason for the quite
small image width of 380. These two approaches also make use of lane
detection to check whether 3D points are inside a certain clearance.

In [3] a highly parallelized disparity engine in hardware is realized to
achieve interactive frame rates on VGA images.

The 3D vision group of AIT contributed a stereo vision based obstacle
detection during a joint participation with the team of Auburn University
at the DARPA Grand Challenge 2005 [4]. A more recent outcome is the
real-time mapping approach based on dense stereo vision according to [5].

3. Requirements and Initial Stereo Vision Concept

Within the application scenario, few major a-priori requirements have
been identified for the vision-based obstacle system.

• detection of obstacles inside the tracks clearance volume with at least
a size of 0.3× 0.3× 0.3 m at a distance from 10 m up to 80 m ahead

• localization accuracy of obstacles relative to the sensor system of less
than 1 m in the longitudinal direction and less than 0.5 m in the lateral
direction

• horizontal field-of-view of 40◦ in order to capture any relevant scenes
according to the smallest curve radius on the test track within 80 m
distance
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range depth subpixel lateral
boundary disparity depth step depth step pixel size

near 230 px 9.96 m 0.043 m 0.014 m 0.006 m
far 28 px 81.8 m 2.92 m 0.97 m 0.05 m

Table 1: Initial stereo vision properties based on 1200 pixel wide input images

• latency time of less than 300 ms from capture time to obstacle report
time for the first experimental implementation.

Especially the depth resolution requirement is very hard compared to
other applications related to autonomous land vehicles. It is necessary to
be able to discriminate real obstacles from ordinary infrastructure elements
closely to the tracks clearance volume – even in curves. We have to define
a stereo camera geometry that meets the requirements. The basic relation
between depth (z) in meters and disparity (d) in pixels is

z =
T · f
d

, (1)

with the focal length f given in multiples of the sensor pixel pitch and the
size of the stereo baseline T in meters. A measure for the resolution in
longitudinal direction can be derived from the depth step per (subpixel-)
disparity step. Using the absolute value of the first derivative of (1) weighted
by a subpixel-refinement factor rs and expressed for z yields

Rlong(z) = rs ·
z2

T · f
. (2)

Supposing an empirically observed enhancement through subpixel refinement
of factor 3 (rs = 1

3
, the required depth resolution of 1 m at a distance of 80 m

is still challenging and results in a stereo baseline of 1.4 m and the need of
evaluating 1200 pixels wide images. A sensor of resolution 1600×1200 pixels
has been chosen. Its pixel pitch of 5.5 µm leads to a focal length requirement
of 12 mm. The summary in Table 1 shows, that the chosen configuration
meets these requirements.

The current prototype of the camera system can be seen in Fig. 1 above
the front window. The outer monochrome cameras form a baseline of 1.4 m.
The middle color camera primarily serves as source for color information and
can be also exploited for stereo vision.
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Figure 2: Census based stereo matching block diagram

All three cameras have been calibrated in such a way that, after rectifi-
cation, they fulfill the epipolar constraint, and every scene point is projected
onto the same scan line in every camera.

3.1. Correlation Based Stereo Matching

The large image dimensions required in conjunction with hard timing
constraints allows only for highly efficient correlation based stereo matching
approaches that use local optimization strategies. As a basis of this work,
the method described in [6], which is implemented with various performance
optimizations as according to [7] in the software stereo engine S3e. A good
overview of various other existing stereo matching algorithms give [8] and [9].

Fig. 2 shows a simplified block diagram of the stereo matching method
that applies a census transform with a relatively large mask size of 15 ×
15. Census-transform based matching has shown robustness according to
radiometric differences of the input images, which is a distinct advantage
when matching images originating from monochrome cameras against such
from bayer-filter-equipped color cameras. The large census mask helps ex-
ploiting even low amounts of texture in the scene. The computational effort
has been significantly lowered by using a sparse census transform scheme.
Stereo matching costs are aggregated by relatively small aggregation win-
dows ranging from 3 × 3 to 5 × 5. Matching costs are analyzed according
a winner-takes-all strategy which has included a confidence estimation, sub-
pixel refinement and L/R-consistency check facility.
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(a) Left rectified image (b) Depth image
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Figure 3: Results of reference configuration

3.2. First Test Runs

Fig. 3 shows a camera view of a real-world scene along with a color-
coded depth map after the existing standard stereo matching engine has been
applied on it. It discloses several problems, which have their main reason in
the required depth resolution on long distances:

• Depth data on the ground floor is not very dense, which is mainly
caused by perspective distortion between the input images due to the
large baseline.

• The ambiguity between the two tracks caused false depth data on the
left track and no data on the right one.

• A net computation time of 325 ms per frame on a state-of-the-art PC
with an i7 CPU @ 3.06 GHz and 4×2 cores has been achieved. This
is too long, although the achieved performance figure of 560 million
disparity evaluations per second (1200 × 660 pixels @ 230 disparities
@ 3.08 fps) is quite competitive.

Each color in the depth image in Fig. 3 indicates a certain distance.
Throughout this paper, the distances in the depth images are coded according
to the color bar shown in Fig. 3c.

4. Enhancements for Accurate and Fast Stereo Matching

The aforementioned problems are a matter of results quality as well as
computational load. We will identify modifications to the system that deliver
improvement for both.
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Figure 4: Perspective distortion on ground plane (mounting height h, baseline
T , angle between optical axis of the cameras and ground plane ϕ)

4.1. Slanted Correlation Mask

The large baseline, that is necessary to obtain the required accuracy for
this application, leads to extensive perspective distortions on the ground
plane. The amount of distortion can be quantified as the slanting-angle α
between the projections of the ground plane in the left and right camera
images, respectively. According to Fig. 4, α follows the relation

α = atan(T · cos(ϕ)

h
) . (3)

Due to the usage of standard quadratic correlation masks, we obtained
poor results on the ground plane from the initial S3e system. The problem is
known in literature, e.g., [10] leverages a simplified Lucas-Kanade approach
and also [11] computes a 3D plane at each pixel on which a support region
is projected. Our considerations led to the conclusion that such approaches
impose too much additional computational cost because any additional vari-
ation in the program flow will over-proportionally undo the benefits of our
extensive platform-specific optimizations using SSE instructions.

In the case of S3e the problem originates much less from the cost aggre-
gation, whose rather small mask sizes limit the effect of disparity gradients
within the mask. However, the large census mask sizes are much more suf-
fering from perspective distortion. To overcome this problem we use few
discrete variants of slanted sparse census masks (Fig. 5b) and superimpose
their results.

α = tan(
∆u

∆v
) = tan(

1

2
) ≈ 26.56◦ , (4)

which is similar to the result of (3) when inserting the actually used stereo
camera geometry. The effectiveness is illustrated in Fig. 6, where a scene has
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Figure 5: Two different types of sparse census masks

been composed from two planes – one of them parallel to the image plane,
and the other one simulating a slanted ground plane. The results of the two
census mask variants are finally superimposed on a per-pixel-level according
to

dresult(u, v) =

{
dnormal(u, v), cnormal(u, v) ≥ cslanted(u, v)
dslanted(u, v), else

, (5)

where c(u, v) represents the confidence of the disparity value d(u, v).
We additionally observed that the matching results are similarly dense

and smooth for any orientation of a plane that is in-between the ones in the
test scene. Thus, we generalized the approach for other situations occurring
that cause major distortions (Fig. 7). The corresponding projections on the
left and right image planes are depicted in Fig. 8 and Fig. 9 shows the census
masks that correct these distortions during the stereo matching. We chose to
treat only one input image with a slanted mask and re-use the intermediate
results from the straight masks, which saves some overhead in contrast to
using asymmetric masks. The census mask according to Fig. 5b realizes a
slanting-angle of Each type of census mask can be individually switched-
on in the matching process, which allows to incorporate as less additional
computational costs as necessary. Furthermore, when combined with the
hierarchical stereo matching approaches of Section 4.3, the overhead can be
kept even lower, since the slanted masks can be avoided on the bottom level
of the image pyramid when using the reprojection pyramid mode as well
as when the disparity hint is generated from a significantly smaller stereo
baseline according to the dual baseline approach of Section 4.2.

4.2. Dual Baseline Approach

Using a combined approach with a second baseline that is smaller can
reduce the computation time for a single frame. The idea is to exploit the
three-camera configuration for a smaller distance between the two cameras
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(a) Left rectified image with
textured planes

(b) Depth image with nor-
mal correlation mask

(c) Depth image with slanted
correlation mask

(d) Combination of normal
and slanted masks

Figure 6: Depth images using different correlation masks

(a) Situation 1 (b) Situation 2 (c) Situation 3 (d) Situation 4

Figure 7: Situations with perspective distortion
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Figure 8: Perspective distortions on image planes for different situations
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Figure 9: Sparse census masks for differnt types of perspective distortions
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Figure 10: Disparity ranges for both baselines (minDisp BL1/2 and maxDisp
BL1/2 are the minimum and maximum disparity values of the searchranges
of both baselines

of the second baseline, as this allows for a reduced disparity search range.
As the second baseline is intended to observe the near range of the clearance
gauge, the accuracy of the system is still guaranteed, even when using a
lower image resolution. The disparity range of the large baseline can also be
reduced, since it is only responsible for the further distances.

Fig. 10 shows how the whole search range is divided into a near range
and a far range interval. Both range intervals define the disparity ranges for
the corresponding baselines. The disparity images resulting from each of the
baselines are combined to a single final disparity map that is then used for
further processing and obstacle detection.

In Fig. 11 the effect of the dual baseline approach can be seen. The first
image (Fig. 11a) shows the left rectified input image of the scene. Fig. 11b
and Fig. 11c show the resulting disparity images of the large baseline and the
smaller baseline. These two images get combined to the final disparity image
that can be seen in Fig. 11d, where the valid pixels in the near range and
far range area are taken from the disparity image of the small baseline and
large baseline, respectively. The decision process is visualized by Fig. 11e,
where white pixels correspond to pixels of the larger baseline and grey pixels
to disparity values from the small baseline. The final combined depth image
of the scene is depicted in Fig. 11f.

4.3. Hierarchical Stereo Matching

The stereo matching algorithm is over-proportionally computational de-
manding for high resolution images. As a remedy, a hierarchical stereo match-
ing approach has been implemented, based on the concept described in [5]
which in turn was inspired by contributions like [12].

The basic idea can be seen in Fig. 12. Stereo matching is first performed
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(a) Left rectified input image (b) Disparity image baseline 1

(c) Disparity image baseline 2 (d) Combined disparity image

(e) Decision image (f) Combined depth image

Figure 11: Example of combined disparity image with dual baseline approach
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Figure 12: Hierarchical stereo matching [5]
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on down-scaled input images. If, for example the images get reduced by the
half in width and height, also the disparity search range is reduced by the
same factor. As a consequence, the effort of some steps (e.g. census trans-
form) is reduced to one fourth and some steps (e.g. DSI calculation) even to
one eighth at this pyramid level. The resulting disparity image of reduced
half resolution is intended to serve as a disparity-hint-image dh(x, y) for the
stereo matching process on the next higher resolution images. According to
the information in the disparity-hint-image, only a reduced disparity range
(e.g. hint-value ± 4 disparities) has to be searched for the correct match.
However, in order to preserve lateral precision, the search intervals from the
hint-image are propagated on a small x-y-neighborhood, which allows a re-
finement of the lateral position of depth discontinuities, too. Depending on
image resolution and the number of hierarchical steps, an overall speed-up-
factor of more than 6 has been achieved in [5].

During this work, the approach has been further extended by a so-called
reprojection pyramid mode. Instead of limiting the disparity search range
when matching the original left and right input images Il(x, y) and Ir(x, y),
we now are matching the left input image Ir(x, y) against a re-projected
right input image Irepr(x, y) using a rather small disparity range of, e.g., ±4
disparities. The re-projection is a horizontal backward-mapping

Irepr(x, y) = Ir(x− dh, y) , (6)

where the up-scaled disparity hint dh(x, y) from the prior pyramid level rep-
resents the offset in x-direction. Since disparities are subpixel-quantized, the
mapping applies linear interpolation. The stereo matching engine is now
applied between Il(x, y) and Irepr(x, y), which yields a map of disparity off-
sets doff (x, y) that can be used to refine the original disparity hint image
according to

drefined = dh(x, y) + doffs(x, y) . (7)

As already indicated, this refinement method works also on disparity hint
images with lower resolution. Furthermore, the largest part of disparity
gradients due to perspective distortions (as discussed in Section 4.1) are
eliminated during the reprojection step, so no slanted correlation masks need
to be applied. Thus, the hierarchical- as well as the disparity refinement- as
well as the slanted-aspects are combined into a single step.

The only drawback is that the lateral resolution does not become signif-
icantly better when compared to the disparity hint image. For this reason,
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Figure 13: Sequence of operation diagram

the reprojection pyramid mode fits best when used on the highest resolution
step of each pyramid matching process.

With this toolbox of possibilities for building a hierarchical processing
chain we elaborated a scheme according to Fig. 13, where each box represents
a stereo matching process with a certain resolution and mode of operation.
Each process uses two input images from either the left and right or left
and middle cameras from a certain level of pyramidal resolution decimation
and some do also have a disparity hint input image from a different stereo
matching process. The left three boxes represent the large baseline (BL1) and
the right upper two boxes the small baseline (BL2). BL2 uses one additional
hierarchical step with half the resolution of the final disparity map of BL2
of 800 × 440 pixels which is sufficient to ensure the specified accuracy on
the near range. On the contrary, BL1 uses three hierarchical steps with a
final output resolution of 1200 × 660 pixels. For BL1, the first hierarchical
step uses the middle camera, while in the remaining steps the right camera
is used.

5. Obstacle Detection from Depth Data

5.1. Clearance Filtering

The track on which the train is operating has been recorded in advance as
a sequence of GPS points. During operation the train is also equipped with a
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GPS receiver for self-localization. Thus, a framework provides the trajectory
of the track ahead up to a user-defined distance at each point in time and
also for the exact moment the three cameras are synchronously triggered.
After image acquisition and disparity image calculation, each valid disparity
value is transformed into a 3D-Point in the camera coordinate system with

P3D(u, v, d) =

 X
Y
Z

 =

 (u−cu)·T
d

(v−cv)·T
d

f ·T
d

 (8)

where u, v and d are the image coordinates and the corresponding dis-
parity value, T and f the baseline and the focal length out of the camera
calibration data and X, Y and Z the resulting coordinates of the 3D-Point
in the camera coordinate system. In the next step, each 3D point is checked
whether it is within a certain three-dimensional clearance profile around the
actual course of track and it is deleted if not. After this step, only 3D points
within this clearance profile remain in the disparity image.

5.2. Labeling

After clearance filtering, the disparity image still contains outliers caused
by isolated wrong matches or noise in the input images. The labeling process
groups connects adjacent pixels with similar disparity to labels [13] which
have to pass certain checks. The first check deletes each label that contains
fewer pixels than a certain threshold. The next check calculates the real
world size of the label. If the size is smaller than a given minimum size,
the label is deleted, too. The remaining labels are declared and reported as
obstacles to the train control system. Fig. 14d shows the remaining labels
after that process and it can be seen that outliers have been eliminated and
pixel that correspond to the obstacle remain in the image.

5.3. Dynamic Regions of Interest

The a-priori knowledge of track trajectory allows us to know which parts
of the current input images are relevant for obstacle detection. In order to
save computation time, only these parts of the images are actually used for
depth calculation. Therefore, certain regions of interests (ROI) are indepen-
dently estimated for each baseline and only for these ROIs, stereo matching
is done. In the left rectified image in Fig. 14a two white rectangles indicate
the calculated ROIs for BL1 and BL2, respectively.
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(a) Left rectified image with
ROIs and box around detected
obstacle (b) ROI Depth image

(c) Clearance filtered image (d) Labeling filtered image

Figure 14: Obstacle detection example
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Configuration Baseline 1 Baseline 2
HS II OR HS II OR

Reference 1 L-R 1200×660 - - -

1
3 L-M 600×330
2 L-R 600×330 2 L-M 270×149
1 L-R 1200×660 1 L-M 540×297

2
3 L-M 600×330
2 L-R 600×330 2 L-M 400×220
1 L-R 1200×660 1 L-M 800×440

3
3 L-M 700×385
2 L-R 700×385 2 L-M 500×275
1 L-R 1400×770 1 L-M 1000×600

Table 2: System configurations, HS = Hierarchical step, II = Input image,
OR = Output resolution, L-R = Left and right input image, L-M = Left and
middle input image

6. Evaluation Results

In this section our proposed stereo vision based obstacle detection is eval-
uated on extensive amount of real-world data. We show the detection rate of
obstacles on the track including false-positive detections, and we also present
performance measurements with various performance enhancements.

To evaluate the obstacle detection abilities of this system, various se-
quences with different scenarios have been recorded including a fifty minutes
sequence with more than 12000 frames of almost the whole 15 km long test
track, which starts at WGS84 coordinates (47.999193N;13.920281E) and ends
at (47.915449N;13.803991E). A ground truth information of this sequences
has been generated manually by categorizing frames whether they contain
obstacles on the track or not.

As the parameter space in our proposed system is considerably large (im-
age resolution, number of hierarchical steps, labeling parameters, ...) there
exists an almost unlimited number of different configurations that can be ap-
plied. According to the needs of the application we chose three configurations
alongside the reference configuration of 2.

Table 2 lists the four configurations that are compared, where ”Refer-
ence” is the reference configuration as it is described in Tab. 1. The three
other configurations use the two baseline approach a hierarchical mode setup
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Sequence Frames Frames with ob-
stacles ≤ 80 m

Description

A 12022 506 Sequence 1 contains almost the
whole test track. Obstacles
in this sequence are persons on
the track and other approaching
trains.

B 813 311 Sequence 2 shows a crouching
person on the track as the train
approaches. Other persons are
crossing a crossway.

Table 3: Recorded sequences and test cases for system evaluation

according to Fig. 13. The only difference between these configurations is the
resolution of the output disparity images.

6.1. Results in Obstacle Detection and False/Positive Detection rates

For evaluating the abilities of the system in obstacle detection we have
chosen two representative test sequences with various numbers of frames,
situations and obstacles. Table 3 gives a short overview of these sequences.

In Table 4 the results of obstacle detection are shown. In sequence A all
obstacles at a distance between 10 m and 80 m have been detected by our
proposed system with all three configurations. The false positive rates were
also low, where the configurations with a higher output image resolution
showed the best results. The filtered false positive rate indicates frames
whose predecessor and/or successor reports a false positive detection, too –
i.e, the wrong result has been ”confirmed“. This rate has more relevance to
us, as the test system for autonomous train control is designed to only set
actions when an obstacle appeared in at least two subsequent frames. The
false positive rates in sequence B are even lower, but on the other hand,
there have been a few frames with an obstacle on the track, where nothing
has been detected. One possible cause for these errors are inaccuracies in the
currently submitted course of track trajectory, because also trains have an
elastic suspension that may cause pitch and roll movements of the vehicle.
This results in deviations of the trains coordinate system, which are currently
not captured properly by the sensor equipment. Fig. 15a shows a track
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(a) Accurate track information (b) Inaccurate track information
causing false positive detections

Figure 15: Example of accurate and inaccurate track information

segment, where the provided track information is accurate and matches with
the current view (the track information is indicated by a dotted line), whereas
Fig. 15b shows a typical case, where the track information deviates from the
current view. The virtual track trajectory ”dives” into the ground plane and
this results in several false positive detections. For the future course of the
project we intend to overcome this problem by integrating a track detection
in our system, like it is proposed in [14], to compensate these errors.

Another cause for false positives are inaccuracies of the self localization
and the recorded track data map. Both are based on GPS measurements and
the do have certain inaccuracies and uncertainties (Fig. 16). Again, track
detection or even more a SLAM-based approach that uses 3D sensor data
could improve self localization and support more reliable obstacle detection.

6.2. Results in Performance

The latency between image acquisition and obstacle report is of high
relevance as this time span is a measure for the overall response time of the
system. The shorter this time span the faster the train control system can
initiate actions to avoid a collision with an obstacle on the track. In this
section, analysis results of the computational performance are presented.

Performance analysis has been done for all configurations on the basis of
one frame that we consider representative for the vast majority of scenes.
The test platform was a standard PC comprising a i7 CPU @ 3.06 GHz and
4×2 (hyperthreading) cores. Beside of the size of the ROIs, almost all parts
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Figure 16: Error in position of obstacles

Sequence Configuration
Number

Obstacle de-
tection rate

False-
Positives

Filtered
False-
Positives

A Reference 506 (100%) 246 (2.04%) 184 (1.53%)
A 1 506 (100%) 265 (2.20%) 157 (1.31%)
A 2 506 (100%) 167 (1.39%) 94 (0.78%)
A 3 506 (100%) 129 (1.07%) 66 (0.55%)
B Reference 278 (89.39%) 3 (0.36%) 2 (0.25%)
B 1 306 (98.93%) 28 (3.44%) 6 (0.73%)
B 2 304 (97.75%) 26 (3.20%) 6 (0.73%)
B 3 304 (97.75%) 10 (1.23%) 2 (0.25%)

Table 4: Obstacle detection rate and False/Positive rate
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Configuration Reference 1 2 3

Stereo matching BL1 325.80 48.18 45.54 64.60
Stereo matching BL2 - 24.02 57.35 86.92

Stereo matching total 325.80 72.20 102.89 151.52
Stereo matching FPS 3.07 fps 13.85 fps 9.72 fps 6.60 fps

Combine Disparity Images* - 18.27 18.72 25.13
Clearance Filtering* 40.90 24.91 23.35 30.06

Labeling* 6.54 6.48 5.73 8.07
Depth image calculation 8.68 6.32 6.50 8.73

Image acquisition 35.00 35.00 35.00 35.00

Total latency time 416.92 163.18 192.19 258.51

Table 5: Performance table (all times in ms), *not yet performance optimized

of the software have a constant execution time which is not dependent on
the content of the input images. Timing results are listed in Tab. 5, where
not only the total calculation time per frame is shown, but also the time
consumption of several other stages, and the stereo matching itself is split
for each baseline. Image acquisition time has been estimated empirically, it
mainly consists of the exposure time and the data transfer time to the host
computer over gigabit ethernet. The reference configuration does not use
hierarchical stereo matching, ROI mode and slanted correlation masks. It
shows the slowest overall performance and especially the slowest performance
in stereo matching. As expected, configuration one is the fastest configura-
tion and could deliver stereo matching frame rates of almost 14 fps. Some
modules still have potential for performance optimization, e.g., ROIs pro-
cessing and clearance filtering. With further optimizations we expect even
higher frame rates.

7. Discussion and Conclusions

With the current implementation of the stereo vision based obstacle de-
tection system it could be shown that it is possible to fulfill the requirements
for this application. The system has successfully detected every obstacle in
the recorded test sequences. With the proposed software enhancements a
latency lower than the requested 300 ms has been achieved even at an in-
creased resolution of 1400 pixel image width, which could enable a detection
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range longer than 80 m.
The results of the system depend strongly on the accuracy of the delivered

track information. When the track information is inaccurate, the system may
fail in certain situations. For future development it is intended to make the
stereo vision based sensor system more independent of the provided track
information by, for example, integrating an additional track detection system
into the software framework, to enable a correction of the track information
or, in the best case, to be independent from any external information.

Another improvement that is intended in the future course of this project
is to apply a stereo vision system with thermal infrared cameras, as the
obstacle detection system should ideally work reliably in all weather and
light conditions. First experimental results are very promising.
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