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Abstract. This paper presents an approach for incrementally adjusting
the timing behavior of legacy real-time software according to explicit tim-
ing specifications expressed in the Timing Definition Language (TDL).
The primary goal of such a migration is to achieve predictable timing
behavior, which enables application of formal verification methods to the
legacy system.
Our approach entails a minimal instrumentation of the original code
combined with an automatically generated runtime system, which en-
sures that the executions of designated periodic computations in the
legacy software satisfy the logical execution time specifications of the
TDL model. The presented approach has been applied to a complex
legacy controller system in the automotive domain.

1 Introduction

Modern methodologies for embedded system design such as Model-Driven En-
gineering (MDE) [1] and Platform-Based Design [2] advocate a top-down ap-
proach for application development. The development process starts from high
level models, which are incrementally refined to software models and then to
implementations on execution platforms.

While the benefits of these approaches are well-understood, their full adop-
tion in the established embedded industry is rather slow. One of the main factors
responsible for this is the large base of legacy applications, which have been tra-
ditionally developed at the programming language level, are usually highly opti-
mized and thoroughly tested. MDE is thus employed only partially, typically for
developing new functionality up to the software model, which is then manually
merged with the existing legacy code.

Based on the argument that execution time of software should be captured
in high-level models [3], several MDE approaches propose programming disci-
plines based on timing models for certain embedded applications. In particular,
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the Logical Execution Time (LET) abstraction has been proposed for achieving
predictable timing properties of control applications [4]. This model is used in
several timing specification languages and tools such as the Hierarchical Tim-
ing Language (HTL) [5] and the Timing Definition Language (TDL) [6]. While
all of these assume the classical MDE top-down approach, they are particularly
amenable to a bottom-up application to legacy software, due to the separation
of concerns provided by the original LET model, where timing is separated from
functionality. This facilitates the enforcement of timing requirements on a legacy
system in a systematic and minimally interventive way. It also addresses intel-
lectual property concerns, requiring no information about what the legacy code
does. However, availability of the legacy source code and platform configuration
information is assumed.

In this paper we describe how to apply TDL modeling to typical controller
systems. We propose an instrumentation-based approach, with minimal inter-
vention in the legacy code and platform configuration. To achieve this, we had
to reconcile the top-down approach of TDL with the constraints imposed by
the legacy system. Two main aspects required trade-offs in this respect: (1)
Event-triggered computations, which in TDL are assumed to have lower prior-
ities than time-triggered tasks, while the legacy application has higher priority
events, and (2) the TDL runtime system, which originally implements a virtual
machine called E-Machine and compiles the timing specification into code for
this E-Machine, called E-code, which has proved to be quite large for complex
legacy applications. Issue (1) was addressed by a careful scheduling analysis, con-
sidering information about minimum inter-arrival times of high-priority events.
Problem (2) was resolved by employing an application-specific runtime system,
called TDL-Machine, which was code-generated from the TDL model and from
application-specific information.

The approach described in this paper was applied to a complex industrial
legacy application in an incremental manner. The desired timing behavior was
tested by software-in-the-loop and hardware-in-the-loop simulations.

2 Background

This section briefly presents the Timing Definition Language (TDL), as well as
common characteristics of legacy software that challenge some of the assump-
tions made in LET-based programming disciplines such as TDL.

2.1 The Timing Definition Language (TDL)

TDL allows the LET-based specification of timing properties of hard real-time
applications. The LET of a computational unit, or task, represents a fixed logical
duration between the time instant when the task becomes ready for execution
and the instant when the execution finishes. A task’s LET is specified at the
model level, independently of the task’s functionality. When deploying the model
on a platform, the LET specification is satisfied if the total physical execution
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time of the task is within the LET interval for every task invocation, and an
appropriate runtime system ensures that task inputs are read at the beginning
of the LET interval (the release time) and task outputs are made available at the
end of the LET interval (the termination time). This is illustrated in Figure 1.
Between release and termination points, the output values are those calculated
in the previous execution. Default or specified initial values are used in the first
execution of a task.

read inputs write outputs

logical view

physical view

Logical Execution Time (LET)

preempt resume

time

release terminate
start finish

Fig. 1. The Logical Execution Time (LET)

Tasks can receive information from the environment via sensors and act on
the environment via actuators. A task has input ports, output ports, and state
ports. State ports keep state information between different executions of the
same task.

Tasks that are executed concurrently are grouped in modes. In TDL, a mode
is a set of periodically executed activities: task invocations, actuator updates,
and mode switches. Such a mode activity has a specified execution rate and may
be carried out conditionally. The LET of a task is expressed as the mode period
divided by the frequency of the task invocation. Note that the time steps of all
activities in a mode period can be statically determined.

Mode activities are carried out by a runtime system which performs the
following operations at every time step:

– Update output ports of tasks whose LET end at the current time step. At
time 0, the ports are initialized rather than updated.

– Update actuators.
– Test for mode switches. If a mode switch is enabled, switch to the target

mode.
– Update input ports of the tasks whose LET start at the current time step.
– Trigger the execution of the tasks whose LET start at the current time step.

TDL provides a top level structuring unit called a module, which groups
sensors, actuators, tasks, and modes that belong together. The module concept
serves multiple purposes: (1) a module provides a name space and an export/im-
port mechanism and thereby supports decomposition of large systems, (2) mod-
ules allow the parallel composition of real-time applications, (3) modules serve
as units of loading, that is, a runtime system may support dynamic loading and
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1 module Sender {
2 sensor int s1 uses getS1;
3 actuator int a1 uses setA1;
4 public task inc {
5 input int i;
6 output int o := 10;
7 uses incImpl(i,o);
8 }
9 start mode main [period=5ms] {

10 task [freq=1] inc(s1); //LET = 5ms (=period/freq)
11 actuator [freq=1] a1 := inc.o;
12 mode [freq=1] if exitMain(s1) then freeze;
13 }
14 mode freeze [period=1000ms] {}
15 }

Listing 1.1. A TDL example

unloading of modules, and (4) modules are the natural choice as unit of distri-
bution because dataflow within a module (cohesion) will most probably be much
larger than dataflow across module boundaries (adhesion).

An example of a TDL program is shown in Listing 1.1 and a graphical repre-
sentation of this program is shown in Figure 2. In the example, module Sender
contains a sensor variable s1 and an actuator variable a1. The value of s1 is
updated by executing the (platformspecific) driver getS1 and the value of a1 is
sent to the physical actuator by using the platform-specific driver setA1. Every
module has exactly one start mode, indicated by preceding the mode declaration
with the keyword start. The declaration of the output port of task inc specifies
an initial value of 10. The task is invoked in mode main of the Sender module,
where its input port is connected to the sensor s1. In the same mode, actuator
a1 is updated with the value of the task’s output port. The timing behavior of
the mode activities is specified by means of individual frequencies within their
common mode period. For example, with a frequency of 1, task inc is defined to
have a LET of 5 ms. A more detailed description of TDL features can be found
in [7].

A TDL application consists of a set of time-triggered tasks and a runtime
system called TDL-Machine, which performs all mode operations according to
the TDL specifications. A platform specific implementation of the TDL-Machine
can be generated from the specifications [8].

2.2 Aspects of Legacy Controller Systems

It is common for an embedded controller software system to contain both time-
triggered and event-triggered computations. Some event-triggered tasks may re-
quire fast reaction times, and thus may have higher priorities than time-triggered
tasks.
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Fig. 2. A TDL example

Legacy operating systems require tasks to be split into execution units, also
called tasks. We refer to such a task as a platform task. Typically the number of
tasks is restricted. For example, OSEK/VDX [9] or AUTOSAR OS [10] suggest
a maximum of 8 to 16 tasks. Complex systems often comprise more tasks thus a
common design practice is to group the time-triggered computations into a small
number of time-triggered platform tasks, which are triggered by a high priority
task (also called sequencer or dispatcher task [11]) that is itself triggered from a
periodic interrupt that defines the base period in the system. That high priority
task dispatches the time-triggered platform tasks at multiples of the base period,
using system services for task activation. In addition, each time-triggered task
may internally perform computations at multiples of the task’s period.

Another common characteristic of legacy embedded code is heavy usage of
shared memory communication (global variables) between various components
in the system. Moreover, communication with the physical environment is done
by memory-mapped I/O devices. Thus, reading from a sensor means accessing a
(read-only) global variable, while actuating means writing into a global variable.

3 Modeling Timing Behavior of Legacy Controllers with
TDL

The main goal of imposing a LET-based execution and data-transfer semantics
on an existing application is to eliminate unpredictable behaviors due to varia-
tions in execution times. An important refactoring requirement in this respect is
minimal modification of the legacy system, including the application code and
its configuration on the platform. Thus, code changes are done only by adding
the TDL-Machine as a separate component and by inserting calls to the TDL-
Machine functions at well defined, top-level places in the original application.
No line of the legacy code is modified. Also, all the parameters of the legacy
configuration remain unchanged (same platform tasks, periods, and priorities).
Additional resources of the operating system may be necessary to trigger execu-
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tions of TDL tasks, as described in the sequel. Moreover, an additional platform
task may be required for the TDL-Machine.

Modeling the timing behavior of legacy software with TDL must reconcile
the assumptions made on the implementation of TDL tasks and the ability of
the runtime system to control executions with the characteristics of the legacy
applications mentioned in Section 2.2. TDL requires that inputs and outputs
of TDL tasks be passed to the implementation functions by means of function
arguments, while the legacy code uses mostly global variables. Platform tasks are
activated according to the legacy configuration, which must remain unchanged,
so the TDL runtime system does not have full control over triggering of TDL
tasks. Nevertheless, one has to make sure that the TDL semantics is preserved.

Complex legacy applications contain periodic computations with periods that
differ by several orders of magnitude. For example, a computation may have a
period of 5 milliseconds, while another one may have a period of 3 seconds. Since
each periodic computation is mapped to a TDL task, the number of operations
of the TDL-Machine in a hyperperiod of the system (the least common multiple
of all the periods) may be quite large. This makes the usage of the E-Machine
approach originally proposed in Giotto [4] and later used in [12] and [13] im-
practical due to memory constraints, since the E-code defines all operations in
a hyperperiod. Thus, we chose to generate directly from the TDL specification
a TDL-Machine specific to the particular legacy system, rather than generating
E-code and using a generic implementation of an E-Machine.

3.1 Mapping the legacy architecture to TDL constructs

A TDL task can be mapped to any function of the legacy code, which is referred
to as the implementation function of the task. Since TDL tasks are assumed to
be independent, a TDL task cannot be mapped to a function that is called from
the implementation function of another TDL task.

In general, TDL tasks are included in platform tasks, in the sense that a
platform task may contain implementation functions of more than one TDL
task, while a TDL task cannot be mapped to more than one platform task. If
a TDL task is mapped to a platform task, the platform task function is the
implementation function of the TDL task. A TDL task can be:

– Synchronous, also called time-triggered, if it corresponds to a periodic com-
putation and it has a LET specification. The period of a synchronous TDL
task is the same as the period of execution of the implementation function
of the TDL task, which is a multiple of the period of execution of the plat-
form task that contains the implementation function. The LET intervals
are established together with application engineers, such that the system is
schedulable. TDL has been extended to allow the definition a task’s LET
inside the task’s period, by specifying an offset between the beginning of the
period and the beginning of the LET.

– Asynchronous, also called event-triggered, if it corresponds to an event-
triggered computation, in which case it has no LET. The task implementa-
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tion function of an asynchronous TDL task always corresponds to a platform
task function.

An input (output) port of a TDL task T corresponds to a legacy global
variable that is read (written) during the execution of the task implementation
function and that is written (read) in another part of the legacy application that
is independent of the particular TDL task T.

We consider the typical case of memory-mapped I/O devices, where sensors
and actuator values are stored in memory locations (global variables mapped
to hardware registers). Thus, sensing is performed by first writing in an output
variable (which, for example, can be mapped to a command register of an A/D
converter) and then reading from an input variable (which, for example, can
be mapped to the data register of the A/D converter). Consequently, the TDL
model contains no dedicated sensor/actuator variables.

Since we deal here with the migration of monolithic legacy controllers, we
define one TDL module per application. A TDL module may contain several
modes. We consider here the case where all TDL tasks are present in each mode,
such that modes only define different timing behaviors of the tasks.

3.2 Implementation of the TDL operational semantics

TDL operations are carried out at runtime by a dedicated component called
the TDL-Machine, which deals with activation of synchronous TDL tasks, data
transfer, and mode switches. The architecture of the TDL-Machine and its in-
teraction with the legacy application are schematically illustrated in Figure ??.
The TDL-Machine has a time-triggered component and an event-triggered com-
ponent.

The time-triggered component is executed in a periodic platform task with
the highest priority and smallest period (the base period). Such a task is common
in legacy applications, its main role being to dispatch executions of lower-priority
periodic tasks with periods that are multiples of the base period. If the task is
not defined in the legacy application, or if the TDL-Machine needs a smaller
base period (e.g., for a finer granularity of LET endpoints), then an additional
platform task needs to be introduced. The time-triggered component performs
all the operations that are necessary at LET endpoints. The operations that
interfere with the execution of legacy code are synchronous task invocations and
data transfers. We describe how to deal with these situations in the sections
below. Mode switches are implemented by simply changing the LETs for the
task set. These LET intervals for each mode are stored in a table.

The event-triggered component defines one start function and one end func-
tion for each TDL task. These functions are called whenever an execution of the
task implementation (legacy) function begins, respectively ends. Thus, calls to
these functions are inserted at the beginning and end of the corresponding legacy
functions. Their role is to perform buffering and synchronization operations, as
detailed further in this section.

Listing 1.2 sketches the implementation of a LET-based task.
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Fig. 3. The TDL-Machine architecture

1 void Tx_Implementation() {
2 ... // local variables
3 On_Tx_start_execution(); // execution start callback
4 ... // legacy code
5 On_Tx_end_execution(); // execution end callback
6 }

Listing 1.2. LET-based operational semantics

3.3 Activation of Synchronous TDL Tasks

In every execution period, a time-triggered TDL task must be activated at the
start of its LET interval. The execution period is a multiple of the period of the
platform task that contains the TDL task implementation function. If the start of
the LET interval coincides with the start of the period, then no action is taken
by the TDL-Machine, since every platform task is activated by the platform
anyway. If the LET interval starts after the beginning of the TDL task’s period
(at a fixed offset), then an additional synchronization point is needed, to enable
the TDL-Machine to trigger the execution of the task implementation function
at the LET start, which ensures that the physical execution of the function
takes place within the LET bounds. The implementation of this synchronization
is operating system-specific. For example, in the case of an OSEK operating
system, a WaitEvent system call is used in the entry instrumentation function.
At runtime, a corresponding SetEvent system call is performed by the TDL-
Machine at the LET start. This ensures that the legacy function does not start
executing before the LET start. No change is made to the platform-triggered
activation of platform tasks (which include the asynchronous TDL tasks).

For example, consider a platform task with a period of 5ms, with a task
function as described in Listing 1.3.
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1 void Platform_Task() {
2 taskCounter = taskCounter + 1;
3 legacy_func_5ms(); // executed every 5ms
4 if (taskCounter & 0x01) {
5 legacy_func_10ms(); // executed every 10ms
6 }
7 }

Listing 1.3. Platform task

Time(ms)legacy_func_5ms legacy_func_10mslegacy_func_5ms

Time(ms)legacy_func_5ms legacy_func_10mslegacy_func_5ms

 10                                                                                     15

 10                                    12                                             15                                  17                                         19.5

Fig. 4. Execution example: original (top) and with LETs (bottom)

We define a TDL task T5 with a period of 5ms and implementation function
legacy func 5ms, and a TDL task T10 with a period of 10ms and implemen-
tation function legacy func 10ms. Assume that T5 has a LET of 2ms and
offset zero, while T10 has a LET of 2.5ms and an offset of 2ms. An example of
executions in the original system and in the TDL-modeled system is depicted in
Figure 4.

In the TDL-based system, callbacks are inserted at the beginning and end
of the two legacy functions. To be able to enforce a LET start for the 10ms
function, the callback On T 10ms start execution makes a blocking call on
an operating system resource, which is released at the LET start by the time-
triggered component of the TDL-Machine as described in Listing 1.4.

3.4 Data Transfer Operations

The implementation of LET-based data transfer for a synchronous TDL task
must deal with the fact that data communication between the legacy implemen-
tation function of the TDL task and the rest of the system is done by shared
memory. Since inputs and outputs are provided via global variables, their values
need to be buffered in TDL-specific variables as described below. The following
behavior must be ensured:

(A) When the LET begins, the value of each original input variable is stored in an
additional internal task input variable. This is necessary because the value of
an original input variable may change between the starting of the LET and
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1 // called at the beginning of legacy_func_10ms
2 void On_T_10ms_start_execution() {
3 WaitEvent(EV_T10_LET_START);
4 }
5 // time-triggered LET scheduler function
6 void LETSchedulerStep(double time) {
7 ...
8 if (time == LET_START_T10ms){
9 SetEvent(Platform_Task, EV_T10_LET_START);

10 }
11 ...
12 }

Listing 1.4. Example implementation of 2 time-triggered tasks

the moment when the physical execution of the TDL task implementation
function starts.

(B) During execution, the task implementation function uses the values of the
internal input variables instead of the actual values of the original variables.

(C) During execution, the values of legacy output variables are stored in addi-
tional internal output

(D) When LET ends, the original global output variables (the legacy variables)
are updated with the values of the TDL-internal output variables.

Operations A and D are executed by the time-triggered part of the TDL-
Machine. To achieve a minimal instrumentation of the legacy code, we chose to
implement B and C in the execution callbacks, as explained below.

Communication Between Synchronous TDL Tasks Only Consider two
periodic time-triggered legacy functions tt func write and tt func read,
where some execution of tt func write updates a global variable gvar, and
some execution of tt func read reads from the same variable. Assume now
that tt func write is mapped to a TDL task T WRITE and tt func read
is mapped to another TDL task T READ. A sample module with these two TDL
tasks is described in Listing 1.5.

To ensure LET-based data transfer between the functions tt func write
and tt func read, the TDL-Machine is generated so that it has an inter-
nal output variable for T WRITE called T WRITE tp o gvar, a task output
port variable called T WRITE o gvar, and an input port variable for T READ,
called T READ in gvar. The TDL-Machine also uses additional buffer variables
T WRITE tp gvar and T READ tp gvar. The following data transfer callbacks
are defined in the TDL-Machine:

– On T WRITE start execution and On T WRITE end execution,
– On T READ start execution and On T READ end execution.
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1 module Example {
2 public task T_WRITE {
3 output int gvar := 0;
4 uses T_WRITE_Implementation(gvar);
5 }
6 public task T_READ {
7 input int gvar;
8 uses T_READ_Implementation(gvar);
9 }

10 start mode main [period=5ms] {
11 task [freq=1] T_WRITE(); //LET = 5ms, offset = 0ms
12 task [freq=5, slots=2-4]
13 T_READ(T_WRITE.o); //LET = 3ms, offset = 1ms
14 }
15 }

Listing 1.5. TDL module with 2 tasks

Time
Time-triggered
legacy code

LET start               execution start                               preemption                     execution end              LET end

A

LET-related
TDL-Machine
operations

physical execution
TDL-Machine
operations

physical execution
TDL-Machine

operations

LET-related
TDL-Machine

operationsB C D

Fig. 5. Data transfer operations for LET-based tasks

Figure 5 shows a sample execution trace which highlights when data transfer op-
erations of the TDL-Machine are executed. The operations at LET endpoints A
and D are described in Listing 1.6 and operations at physical execution endpoints
B and C are described in Listing 1.7.

Communication Between Synchronous and Asynchronous TDL Tasks
Consider three legacy functions tt read write, ev write and ev read, with
the corresponding synchronous TDL task T RW, and the two asynchronous TDL
tasks E WRITE, and E READ, respectively. Assume that tt read write reads
variable gvar r and writes into variable gvar w, ev write writes in variable
gvar r, and ev read reads from both variables. An execution example is shown
in Figure 6, and the corresponding TDL-Machine operations are summarized in
Listings 1.8, 1.9 and 1.10.

For this example, one can check that the LET requirements for data transfer
regarding synchronous TDL tasks are satisfied. In particular, the value of gvar r
read in the execution of tt read write is the one updated by a previous
execution of ev write, which is not shown in the figure (the one preceding
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1 void TDLMachineStep(time) {
2 if (time == LET_START_T_READ) { // A
3 T_READ_in_gvar = T_WRITE_o_gvar;
4 }
5 if (time == LET_END_T_WRITE) { // D
6 T_WRITE_o_gvar = T_WRITE_tp_o_gvar;
7 }
8 }

Listing 1.6. TDL-Machine step

1 void On_T_WRITE_start_execution() { // B
2 T_WRITE_tp_gvar = gvar;
3 }
4 void On_T_WRITE_end_execution() { // C
5 T_WRITE_tp_o_gvar = gvar;
6 gvar = T_WRITE_tp_gvar;
7 }
8 void On_T_READ_start_execution() { // B
9 T_READ_tp_gvar = gvar;

10 gvar = T_READ_in_gvar;
11 }
12 void On_T_READ_end_execution() { // C
13 gvar = T_READ_tp_gvar;
14 }

Listing 1.7. Operations at physical endpoints
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1 module Example {
2 public task T_RW {
3 input int gvar_r;
4 output int gvar_w := 0;
5 uses T_RW_Implementation(gvar_r, gvar_w);
6 }
7 public task E_WRITE {
8 output int gvar_r :=0;
9 uses E_WRITE_Implementation(gvar_r);

10 }
11 public task E_READ {
12 input int gvar_r;
13 input int gvar_w;
14 uses E_READ_Implementation(gvar_r, gvar_w);
15 }
16 start mode main [period=5ms] {
17 task [freq=1] T_RW(E_WRITE.gvar_r);
18 }
19 asynchronous {
20 E_WRITE();
21 E_READ(E_WRITE.gvar_r, T_RW.gvar_w);
22 }
23 }

Listing 1.8. TDL program

1 void TDLMachineStep(time) {
2 if (time == LET_START_T_RW) { // A
3 T_RW_in_gvar_r = E_WRITE_o_gvar_r;
4 }
5 if (time == LET_END_T_RW) { // D
6 T_RW_o_gvar_w = T_RW_tp_o_gvar_w;
7 }
8 }

Listing 1.9. Operations at LET endpoints
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1 void On_E_WRITE_start_execution() { // W
2 E_WRITE_tp_gvar_r = gvar_r;
3 }
4 void On_E_WRITE_end_execution() { // X
5 E_WRITE_o_gvar_r = gvar_r;
6 gvar_r = E_WRITE_tp_gvar_r;
7 }
8 void On_E_READ_start_execution() { // Y
9 E_READ_tp_gvar_r = gvar_r;

10 E_READ_tp_gvar_w = gvar_w;
11 gvar_r = E_WRITE_o_gvar_r;
12 gvar_w = T_RW_o_gvar_w;
13 }
14 void On_E_READ_end_execution() { // Z
15 gvar_w = E_READ_tp_gvar_w;
16 gvar_r = E_READ_tp_gvar_r;
17 }
18 void On_T_RW_start_execution() { // B
19 T_RW_tp_gvar_r = gvar_r;
20 T_RW_tp_gvar_w = gvar_w;
21 gvar_r = E_WRITE_o_gvar_r;
22 }
23 void On_T_RW_end_execution() { // C
24 T_RW_tp_o_gvar_w = gvar_w;
25 gvar_r = T_RW_tp_gvar_r;
26 gvar_w = T_RW_tp_gvar_w;
27 }

Listing 1.10. Operations at physical execution endpoints
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Timeev_write

LET start        TDL task execution start                   preemption      TDL task execution end         LET end

A B C D

tt_read_write ev_read

W X Y

Fig. 6. Mixed time and event-triggered execution example

the depicted execution). This is the value of the output port of E WRITE at the
beginning of T RW’s LET. However, ev read uses the latest value of gvar r,
updated during the depicted execution of ev write. Thus, TDL modeling may
introduce controlled delays in the communication involving synchronous TDL
tasks, but it never delays communication between asynchronous tasks.

4 Industrial application

The approach presented in this paper has been applied to an industrial engine
control software, which comprises millions of lines of code and runs on top of an
operating system with fixed priority scheduling. From the three periodic plat-
form tasks, we identified 12 TDL tasks with periods between 1 millisecond and
2 seconds. The TDL tasks communicate via approximately 300 global variables.
The application also has multiple event-triggered tasks, with the highest pri-
ority being given to the crank angle event. The TDL modeling procedure was
optimized in order to decrease the additional memory required by TDL buffers,
based on the following observations:

– If data transfer through a global variable cannot be affected by preemption,
then no buffering is needed for that variable. For example, if all the readers
and writers of a variable are part of the same platform task then the variable
requires no buffering. Another example in this respect is a variable written
only by an event-triggered task with lower priority than all the TDL reader
tasks.

– Buffering can be reduced by directly substituting in the code original vari-
ables with TDL internal variables. For example, if a variable is written only
by one TDL task, the variable can be substituted in the task’s code with the
corresponding TDL output buffer variable, eliminating the need to buffer the
original variable during the physical execution of the task. This buffering is il-
lustrated in Listing 1.7, where in our example the occurrences of gvar in the
task’s code are replaced by T WRITE tp o gvar, and T WRITE tp gvar is
eliminated. A similar reduction can be made for the cases where only one
TDL task reads from an input variable.
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4.1 Determining the Logical Execution Time

The two main design parameters related to the LET are the offset,i.e., the start
of the LET in a task period, and the size of the LET. The LET must be at least
as large as the worst case reaction time (WCRT) of the task, in order to ensure
that the task is schedulable, i.e., every execution of the task ends before the end
of the corresponding LET interval. Note that the maximum execution time of
task T in the time interval [t1, t2] is the maximum number of executions of T (in
that interval) multiplied by the worst case execution time of T , (WCET (T )):⌈

t2 − t1
πT

⌉
∗WCET (T ),

where πT denotes the invocation period of T . If T is event-triggered, then it is
considered periodic with period equal to the minimum inter-arrival time of the
triggering event in the current operating mode.

Let the set T of all tasks Ti ∈ T be ordered according to their priorities,
where i = 1 means highest priority. The worst case response time of task Ti is
given by the smallest fixed point of the following recursive equation [14, 15]:

R(Ti)
(k+1) = WCET (Ti) +

(i−1)∑
j=1

⌈
R(Ti)

(k)

πTj

⌉
∗WCET (Tj)

with R(Ti)
0 = WCET (Ti). If no fixed point exists, the task is not schedulable.

The LET size is a trade-off between opposite requirements. For example,
robustness requires larger LETs, while control performance requires small LETs,
to minimize the additional reaction time incurred due to the LET execution
semantics. The trade-off is inherently dynamic, since the relative importance of
one requirement or another depends on the operating conditions at a given time.

For the engine control application, we have chosen to specify multiple modes
of timing behavior, spanning the entire range of engine speeds, as follows:

– At high engine speeds, when the computational load is severe and fast re-
sponse times are crucial, the LET of a TDL task is equal to the worst case
reaction time of the task.

– At low engine speeds, the LET of a task can be larger by up to 20%. This
leaves room for adding and testing new functions without affecting the timing
behavior of the application.

Several TDL modes have been defined between the highest and the lowest
engine speeds. Each mode has the same tasks, the only difference between modes
being in the tasks’ LETs. The modes have been established based on WCRT
profiles of the TDL task functions, which represent the minimum LET for each
engine speed. TDL mode switches are triggered by the engine speed variable,
which is an input to the TDL:Machine. Figure 7 shows an example of a WCRT
profile which defines five possible timing modes. Note that the LET of task T
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Fig. 7. Worst case execution time of task T as function of the engine speed

cannot exceed the task’s period π(T ). Thus, at engine speeds higher than e2 the
task is deemed unschedulable.

The offset of a TDL task T was determined according to the ”place” of the
TDL task in the owner platform task. In principle, the LET start of a TDL task
is the same as the LET end of the preceding TDL task in the same platform
task. A TDL task which is always executed first in its platform task has an offset
equal to zero. For example, in listing 1.3 and Figure 4 the task with period 5ms
has offset zero (it is always executed first), while the offset of the 10ms task
(always executed second) equals the LET of the first task.

The WCETs have been estimated by using the a3 tool [16]. This tool relies
on an accurate model of the processor, which was not available at the time of
testing. Therefore, a ”vanilla” version of the processor was used and consequently
the estimates were quite conservative.

4.2 Testing Results

The application modeled with TDL has been tested in a software-in-the-loop
(SIL) simulator [17] [18], as well as in a hardware-in-the-loop testbed(HIL).
The SIL testing compared signals from the original and TDL-based applications
when both were running in parallel, in closed-loop with an engine model, as
schematically shown in Figure 8. A sample of the testing results is provided in
Figure 9, where one can observe that the behavior of the TDL-modeled system
is close to the original one, modulo some small delays introduced by the LET
behavior. The delays resulted from using the worst-case scenario for setting the
LET of the task and from overestimation of WCET of tasks. They could be
reduced by using more accurate execution time estimations.

The HIL testing was performed in a testbed where the original and TDL-
based applications were executed on the same Electronic Control Unit intercon-
nected with a real-time computer running a model of the engine. Signals were
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Fig. 8. SIL setup for comparing TDL-based application with original application
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Fig. 9. Signal comparison

sampled with a period of 50 microseconds and then compared. In one of the
test cases, the robustness of the system was tested by making a non-functional
modification in the code and comparing the outputs. In the original software,
the change led to a difference in the outputs, while no difference was exhibited
in the TDL-modeled version.

Usually, a task function contains a sequence of calls to multiple process func-
tions that need to be executed when the task is triggered. Many such process
functions are independent and conceptually the order in which they are called
does not matter. We have chosen a periodic task T and moved a process function
f from the beginning of the task T to the end. The function f updates a global
variable v2 with the value of another global variable v1. The latter is updated
by an event-triggered task E, which has higher priority than T . The variables v1
and v2 are regarded as an input, respectively an output of T . Case A in Figure
10 illustrates an execution of T in the original application, where f is called at
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the beginning of T ’s execution. Then, the value of v2 is set to the value of v1.
Thereafter, E preempts the execution of T and updates v1. Case B shows an
execution of T in the modified application, where f is executed at the end of
T ’s execution. Here, the variable v2 is updated after E’s preemptive execution,
and consequently the output of T is different. Notice that no difference occurs
when E does not preempt. This is an example where different ways of serializing
executions of concurrent components lead to different behaviors in the system,
due to preemption from event-triggered tasks. The TDL-modeled system is ro-
bust with respect to such changes, as demonstrated by the corresponding cases
in Figure 11. In this case, the TDL task T was the only writer of v2, hence in
the TDL version the occurrence of v2 in the code of f was replaced by a TDL
buffer output variable buffer v2. Notice that this is updated with the value of
v1 when f is executed and then v2 is updated with the value of buffer v2 at the
end of the LET. One can see that the output of T does not change from case A
to case B.

T execution state
E execution state
v2 value
v1 value

T execution state
E execution state
v2 value
v1 value

f()

f()

Fig. 10. Changing the place of a function call leads to different values of the
output v2
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T execution state
E execution state
LET of T
buffer_v2 value 
v2 value
v1 value

T execution state
E execution state
LET of T
buffer_v2 value 
v2 value
v1 value

f()

f()

Fig. 11. The output value of v2 is unaffected in the TDL-based system

5 Conclusions

Modeling the timing behavior of legacy applications with TDL represents an
instance of bridging the gap between the general benefits advocated by Model-
Based-Design approaches (such as predictability, separation of concerns, porta-
bility), and the efficiency-oriented design of legacy applications. It is a meet-
in-the-middle process, with the top-down direction assumed by TDL and the
bottom up direction required by the legacy application.

This paper presents an approach for applying TDL timing specifications to
legacy control software, focusing on achieving the required timing behavior with
minimal intervention in the original application. Thus, the paper focuses on the
structure of the runtime system and instrumentation, which are automatically
generated from the timing specification and from information about the legacy
source code and platform. This approach has been successfully applied to a
complex legacy controller system in the automotive domain. Detailed description
of other important aspects such as dealing with schedulability and the actual
code generation algorithm are omitted due to lack of space.

The refactored legacy system is schedulable if it can be executed such that
the TDL timing specifications are satisfied, i.e., every physical execution of a
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synchronous TDL task takes place in the associated LET interval. Achieving
schedulability is especially difficult when asynchronous tasks have higher prior-
ities than synchronous TDL tasks.

It is worth noting that the described TDL modeling can be applied incremen-
tally on a legacy application, starting with a single synchronous TDL task and
stepwise adding more synchronous tasks. At each step, the system can be tested
for schedulability, as well as for timing and functional properties. This makes the
approach feasible in practice and recommends it as the core of a structured pro-
cess for incremental migration of large legacy software towards more predictable
systems.
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