
Addressing Non-functional Requirements for
Embedded Applications with Platform Based Aspect

Design

Stefan Resmerita, Anton Poelzleitner, and Stefan Lukesch
Department of Computer Sciences, University of Salzburg, 5020 Salzburg, Austria

Email: {stefan.resmerita, anton.poelzleitner, stefan.lukesch}@cs.uni-salzburg.at

Abstract—Aspect Oriented Programming (AOP) and Aspect
Oriented Modeling (AOM) have been proposed as development
methodologies when dealing with non-functional requirements
for embedded systems, which usually represent cross-cutting
concerns in relation to a ”functional” application. In this paper,
based on the observation that non-functional aspects need to
be developed from a system-level perspective, we note that
application-level AOP is not sufficient to address non-functional
requirements (as it usually ignores execution platform con-
straints). We then propose a development process that considers
AOM in conjunction with two standard development approaches
for embedded systems: Model Based Development and Platform
Based Design. The proposed methodology is illustrated by means
of an example with logical execution time requirements.

I. INTRODUCTION

The AOP’s ”separation of concerns” principle provides
a natural basis for dealing with non-functional requirements
(NFRs) in embedded systems, since non-functional behaviors
represent cross-cutting concerns in relation to the ”functional”
embedded software. Indeed, a number of works have proposed
various aspect-oriented approaches both at the software level
(AOP) and at the model level (AOM) of embedded applications
(see, e.g., [3], [19], [16], [18]).

AOP has been originally proposed and mostly used as a
programming and software development discipline for desktop
applications [9] [8]. In general, these do not have clearly
defined ”non-functional” properties, due to the fact that they
are usually agnostic to the computational (execution hardware
and operating system) and physical environments. Thus, cross-
cutting concerns added via AOP are always ”functional”
elements of the application. The standard join point model
is defined within the application and this suffices for desktop
applications.

In contrast, the environment concept (computational and
physical) is crucial for embedded software applications [11],
and NFRs are always related to the environment. The standard,
application-level AOP approach deals with the environment
usually via platform services used within aspects. For embed-
ded execution platforms which are usually scarce in resources,
this hides important issues such as resource availability, or the
indirect effects of using system resources on the applications
running on the platform. We consider that AOP employed
only at the application level is not sufficient for dealing with
NFRs. To illustrate this point, take the execution deadline
example, where a function is required to terminate within a

given time interval, otherwise a specific exception handler must
be executed. This is similar to the real-time example described
in [3], which is resolved by introducing an application-level
aspect with three main pieces of advice: one to be executed at
the start of the function - where a watchdog timer is set, an
advice to be executed at the end of the function - where the
timer is reset, and a third advice being the exception handler
(triggered from an interrupt service routine). This approach
does not seem to scale up to industrial-size systems, where
such NFRs refer to several functions (say, more than 10 or 20),
and employing one real-time aspect per function may lead to
other problems. Thus, how does one guarantee that required
platform resources (e.g., timers in this case) are available
whenever needed? Furthermore, adding many interrupt service
routines may increase the interrupt latency in the system to
unacceptable values. Such issues are usually left for later stages
of the software development process (i.e., implementation,
or system integration), where the AOP-based design may be
invalidated.

Thus, we argue that platform concerns related to NFRs
should be taken into account in the design of aspects. In
this paper, rather than addressing the question ”How to use
aspects to design embedded software?”, we deal with the
question ”How to design aspects that are useful for NFRs
in embedded software?”. In other words, we elevate aspects
from the status of tools used in software design to that of
products of a development process for embedded systems.
To this end, we consider AOM in the context of two main
development strategies for embedded systems: Platform-Based
Design (PBD) [7] and Model-Based Development (MBD) [4].

Aspects designed in an AOM approach for satisfying NFRs
are likely to encapsulate pointcuts in the platform model
linked with advice’s in the application and vice-versa. In
the above deadline example, the pointcut for the application-
level exception handler could be expressed at the platform
level: the deadline expiration. In the interrupts example, the
advice for the application-level start/end pointcuts could be
located in the platform. Thus, the same disable/enable interrupt
advice may be associated with different pointcuts in distinct
applications. This aspect modularization violates the PBD
paradigm, which advocates a clear distinction between the
platform and application models.

A non-functional aspect definition may not be able to
indicate which parts of the aspect correspond to the platform
and which to the application. This information must be made

(a) Platform-Based (source: [7])

REQUIREMENTS

MODEL

IMPLEMENTATION

(b) Model-Based

Fig. 1: Development processes for embedded systems

apparent after the aspects are weaved into the base design
(which, we assume, follows the PBD discipline), possibly
by altering the integrated model. Such changes should be
propagated back into the aspect model, by re-defining the
aspects such that the application components are separated
from the platform ones and the interaction between the two
is visible.

The rest of this work is organized as follows. Section
II briefly presents the three development processes in which
NFRs are considered in this paper. This is followed by an
outline of our main proposal for aspect development (which is
a combination of the three) in Section III. Section IV describes
related research and Section V concludes the paper.

II. BACKGROUND

Platform Based Design [7] is a conceptual strategy for
developing embedded systems which takes a ”meet-in-the-
middle” approach, where successive refinements of specifi-
cations meet with abstractions of potential implementations.
This is illustrated in Figure 1(a), where the API platform is
the programmer’s model of the execution hardware, and the
Architecture platform represents a specific micro-architecture
family.

PBD is particularly applicable to System-on-Chip designs,
where design and manufacturing costs depend mainly on the
hardware part of the embedded system. The most critical
design decisions are those which determine which part of
the application is implemented in software and which part is
implemented in hardware. Thus, system abstractions that are
useful for design space exploration need to expose these two
parts and their interaction.

Many embedded systems have been traditionally developed
by creating software applications to be run on (low cost)
programmable hardware. Here, production costs are mainly
driven by software development. In Model Based Development
(MBD), executable models are built from requirements and are
used to guide the design before reaching the implementation
(actual code), which in many cases can be automatically
generated from the models - see also Figure 1(b). Executable
models are especially useful for testing the design against
requirements.

MBD meets PBD in executable models that make a clear
distinction between platform components and application com-
ponents.

III. PLATFORM BASED ASPECT DESIGN FOR
NON-FUNCTIONAL REQUIREMENTS

When dealing with non-functional requirements(NFRs),
Aspect Oriented Modeling (AOM) meets MBD by integrating
aspect-oriented components derived from requirements into
the base model. From the list of properties seen in Figure
2, one can see that NFRs usually refer to an application’s
environment (i.e., platform). Consequently, the corresponding
non-functional aspects are naturally introduced in base models
where MBD meets PBD. Thus, NFRs are best dealt with at
the confluence of PBD, MBD, and AOM. To achieve this
confluence, the aspectual components must be designed such
that both MBD and PBD are observed. We propose next a
process in this respect called Platform Based Aspect Design
(PBAD).

A. Development process

Since AOM fits naturally into MBD processes, the main
issue to be addressed is ensuring that the resulting aspect
components maintain also the PBD discipline. This means that
platform components are delineated from application compo-
nents in the resulting model. This does not usually happen
when aspects are first derived from NFRs (as they encapsulate
both types of components by definition). Consequently, the
aspect components need to be split up into platform aspects
and application aspects, as shown next.

The PBAD development process has three main activities,
as depicted in Figure 3. Given an application model (part A)
and a platform model (part B), we are presented with a set
of non-functional requirements (part C) relating the behavior
of A with parameters of B. We consider here that A and B
represent a working design.The new part C can be represented
in various ways and it can be informal/imprecise or formal
(and precise). For example, C may contain requirements such
as ”Function f of A must return as soon as possible”, or ”The
reaction time of f must be less than 200 microseconds”, or
”The reaction time of f must be equal to 200 microseconds”.

Nonfunctional
properties

Time

Timing

Deadline
Period
Release time
WCET
Logical execution time

Precision

Jitter
Tolerated delay
Drift
Resolution

Performance

{
Response time
Throughput

Memory
{

Memory allocation
Area

Energy

{
Power consumption
Total energy

Distribution

Task allocation
Communication
Synchronization

Security

{
Access
Encryption

Fig. 2: Overview of NFRs (adapted from [19])

Non-functional
Requirements

(C)

Platform
(B)

Aspect Model
(C)

Application
(A‘) JP

AD

Platform
(B‘)

JP

AD

Aspect Modeling

Aspect Weaving

A
sp

ec
t R

e�
ne

m
en

t

Application
(A)

Platform
(B)

Application
(A)

Fig. 3: The Platform Based Aspect Design process

1. Aspect Modeling: In the Aspect Modeling stage, the
non-functional specifications are implemented in a model that
is connected to parts A and B in an aspect-oriented manner.
A non-functional aspect (NFA) may contain specifications of
join points and associated actions (advices in AspectJ terms)
in both A and B. In particular, an NFA may associate a
join point in A with an advice involving elements of B and
viceversa. In general, parts A and B may have different models
of computation and consequently C may be a heterogeneous
model.

2. Aspect Weaving: In this activity, the aspects modeled
in part C are weaved into parts A and B. Elements for join
point detection and advice components are included in the base
models by using model transformation techniques such that
their initial modeling language and models of computation are
preserved in the final models. If part A is given as source
code, then the required model transformations include code
generation from components of C and modifications of the
original source code. Up to this point, the development process
is an instance of AOM and MBD, hand-in-hand. However,
the resulting model may violate the separation of platform
components from application components. Thus, the model
may need to be transformed. Moreover, the platform part may
need to be consolidated, as multiple aspects may refer to the
same platform component. Since the resulting model does
not correspond to the previous aspect model, we propose an
additional activity next.

3. Aspect Refinement: The original aspect components
are transformed to reflect the changes in the integrated model,
leading to an aspect model that distinguishes between platform
aspects and application aspects. This brings the model back
into the PBD-MBD-AOM confluence.

The PBAD process is illustrated next by means of an example.

B. Example: Fixing execution times

In this section we apply PBAD to achieve a timing require-
ment for a given embedded application. This consists of three
functions: a filter, a controller, and a monitoring function. The
filter function processes a sequence of values coming from a
sensor that samples some physical parameter of the plant under
control, and provides the filtered data to the control function,
which has a sample time of 8ms. The control output is sent to
an actuator and it is also recorded by the monitoring function.
These functions are deployed on top of an operating system
(OS) on an embedded execution platform, being included in
the same time-triggered OS task with a period of 8ms.

1) System model: A model of this embedded system in
Ptolemy II [2] is shown in Figure 4. Ptolemy II is a software
framework written in Java for modeling, simulation, and design
of concurrent, real-time, embedded systems. A Ptolemy model
consists of interconnected components, called actors, and its
execution is controlled by a special component called director.

The model in Figure 4 has a discrete event director and
contains, in addition to the actors pertaining to the application
(the three functions), also platform actors, as follows:

• The OSTaskPeriod actor is a timer that generates the
triggering signal for the OS task. That is, it produces
a token on its output port every 8ms.

• The SamplingRate is a timer that generates the sam-
pling signal for the sensor, having a period of 4ms.

• The Sensor produces values of some measured phys-
ical parameter of the plant under control whenever it
receives a token on its trigger port.

• The Actuator modifies some physical parameters of
the plant under control according to the value of the
token received on its input port.

The application components work as follows:

- The MovAvgF actor represents a filter function with a
worst case execution time (WCET) of 1.5ms. The actor buffers
the value received on the dataIn input port and, whenever it
receives a token on the trigger port, transfers the buffered value
into an array, calculates the average value of the array, and
requests to be executed after a random non-zero amount of
time that is at most 1.5ms. In the follow-up execution, it sends
the average value on the dataOut port and also sends a token
on the execEnd port.

Platform Application

Fig. 4: Embedded system model

- The ControlF actor represents the controller function with
a WCET of 3.5 ms. The actor buffers the value received on
cntrIn internally and whenever it receives a token on the trigger
port it takes the input from the internal buffer, calculates the
output value according to the implemented control law, and
requests to be executed again after a random non-zero amount
of time that is at most 3.5ms. In the follow-up execution, it
sends the output value to the cntrOut port.

- The PlotterF actor represents the monitoring function
which simply plots the value of the input token.

A run of the base model is shown in Figure 5, where one
can see that the execution time of MovAvgF was 1.5ms and
the execution time of the ControllF function was 3.5ms.

2) Non-functional requirement - Logical Execution Time:
Consider now that it is required to modify the application
such that the controller function has a fixed execution time of
4ms. An additional requirement is to make minimal changes
to the platform configuration as well as to the application. In
particular, the period and the order of execution of the two
functions must remain unchanged. This requirement and the
corresponding specification are explained next.

In traditional real-time systems, the time instants when
software tasks provide their outputs is usually influenced
by platform-related factors such as scheduling, system load
and memory caches. To avoid this source of unpredictability,
the Logical Execution Time paradigm [6] abstracts from the
physical execution of a task and associates a logical execution
time interval (LET) to a periodic top-level software function,
also called a LET task. A LET interval spans from a release
time instant to a termination time instant within the task’s
period, as shown in Figure 6. At the release time, all the inputs
to the task are read and transferred to the task’s input ports,
and the task function is marked as ready for execution. The
actual execution of the function may be delayed and preempted
as decided by the underlying scheduler. The function reads
input data only from the input ports, whose values remain
unchanged (until the next release time). However, the execution
must end before the task’s termination time, when all the
function’s outputs are made available to the task’s environment
(which may include other LET tasks) via the task’s output
ports. Thus, the LET model achieves a pre-specified, platform-
independent, observable temporal behavior of a set of software
functions, leading to both time and value determinism [5].
The LET specifications are given as a timing program written
in a specialized language (e.g., Giotto, HTL, TDL), which is
independent on the platform and the implementation of tasks.

MovAvgF.trigger

ControllF.cntrIn ControllF.cntrOut

Fig. 5: Simulation output for the base model

In our example, the non-functional specification is given
as a program in the Timing Definition Language (TDL) [17],
as follows:

module MainCon t ro l {
s e n s o r d oub l e s1 u s e s ge tS ;
a c t u a t o r d oub l e a1 u s e s se tA ;
t a s k MovingAverage [1 . 5 ms]{

i n p u t d oub l e d a t a I n ;
o u t p u t d ou b l e d a t a O u t ;
u s e s MovAvgF (d a t a I n , d a t a O u t) ;
}
t a s k C o n t r o l l e r [3 . 5 ms]{

i n p u t d oub l e c n t r I n ;
o u t p u t d ou b l e c n t r O u t ;
u s e s C o n t r o l l e r F (c n t r I n , c n t r O u t) ;
}
t a s k P l o t t e r {

i n p u t d oub l e i n p u t P l ;
u s e s P l o t t e r F (i n p u t P l) ;
}

s t a r t mode main [p e r i o d = 8ms] {
t a s k

[8 ,4−7] C o n t r o l l e r (MovingAverage . d a t a O u t) ;
a c t u a t o r

[8 , 7] a1 := C o n t r o l l e r . c n t r O u t ;
}
a s y n c h r o n o u s {

[t i m e r = 8ms] MovingAverage (s1) ;
[u p d a t e = C o n t r o l l e r . c n t r O u t]

P l o t t e r (C o n t r o l l e r . c n t r O u t) ;
}
}

The TDL program is briefly described below. See [17] for
a complete TDL specification. The TDL compilation unit is
called a module; this provides a namespace for the enclosed
definitions. Our example module starts with declarations of
sensor and actuator variables, representing the input and output
of the application, respectively. Then three TDL tasks are
declared, corresponding to the application functions. Each task
definition specifies input ports, output ports and the name
of the corresponding functional component. Moreover, the
declarations of MovingAverage and Controller tasks include
the WCETs (1.5ms and 3.5ms, respectively).

The mode declaration specifies a group of periodic time-
synchronized activities with a period of 8ms. The times when
activities must be carried out are specified in terms of intervals
(also called slots) of a uniform partition of the mode period.
This mode contains a task invocation and an actuator update.

read inputs write outputs

logical view

physical view

Logical Execution Time (LET)

preempt resume

time

release terminate
start finish

period start

offset

per. end

Fig. 6: The Logical Execution Time concept

Both consider a partition of the mode period with 8 slots, hence
the slot size is 1ms. The task invocation specifies that the task
Controller has a LET spanning slots 4 to 7, i.e., the LET has
a size of 4ms and starts with an offset of 3ms (relative to the
beginning of the period). Moreover, at the release of the task,
its input port is updated with the value of the dataOut port
of the MovingAverage task. The actuator update specifies that
actuator a1 must be updated with the value of the cntrOut port
at the end of the 7th slot (which coincides with the LET end
of the Controller task).

The asynchronous declaration includes activities that do
not have strict timing requirements, including event-triggered
computations. The first activity is the execution of the Movin-
gAverage task, which is triggered by a timer with a period
of 8ms and takes its input from the sensor s1. The second
activity is the execution of the Plotter task, which is triggered
whenever the cntrOut port of the Controller task is updated,
and takes its input from that port. Note that the asynchronous
declarations make no guarantee on the actual time instants
when the specified activities are executed. In particular, the
TDL program does not specify that the MovingAverage task
must be executed before the Controller task.

In the aspect modeling stage, the above non-functional
specifications are modeled as aspects in relation to the base
model. The result, depicted in Figure 7, is an aspect model
that encapsulates the aspectual functionality and interacts with
the base model via parameterized ports, called join ports. A
join port has a parameter that specifies which port(s) in the
base model the port is connected to, and how the connectivity
of the base port is affected by the join. The parameters of the
join ports of the LET aspect model in Figure 7 are shown next
to the ports. For example, the input port period is connected
to the output port of the actor OSTaskPeriod without affecting
any connection in the base model. In contrast, the parameter
of the externTrg input port specifies that the connection to
MovAvgF.execEnd is exclusive: all the connections of the
MovAvgF.execEnd in the base model are removed. Similarly,
the parameter of the trigger output port specifies that only this
port must be connected to the ControllF.trigger input port.

The actors of the aspect model in Figure 7 work as follows.
The LETOffset and LETInterval are time-delay actors, which
simply delay the input by a time interval specified as parameter
of the actor. The values of these parameters corresponding
to the TDL program above are 3ms and 4ms, respectively.
The semaphore actor issues a token on the output port only
after receiving at least one token on each input port; input
tokens may be received at different points in time. The actor
resets (forgets all inputs) upon sending an output token. The
getInput and setOutput actors are instances of the same Java
class, providing a basic hold&sample functionality: a token
received on the input port is stored internally (overwriting the
previously stored token). The stored token is sent on the output
port whenever a token is received on the sampleInput port.

Note that the LET aspect model bundles together actors
that span the entire system: getInput and setOutput belong to
the application, while LETOffset, LETInterval, and Semaphore
belong to the platform. The result of weaving the LET aspect
model into the base model is shown in Figure 8. This is a
standard, executable Ptolemy model (with the DE director not

Platform Application

Fig. 7: Aspect model

shown in the figure). The LET-based behavior can be seen in
the simulation outputs in Figure 9.

Observe that the aspect model in Figure 7 has more
expressive power than the TDL specification given above:
it enforces the requirement that the ControllF component is
executed always after the MovAvgF component, ensuring the
same execution sequence as in the legacy application. We
consider that the Aspect Model is a useful representation for
requirements checking and design space exploration, providing
a logically coherent view of cross-cutting concerns. Moreover,
the aspect model enables reusability of aspects. For instance,
the LET aspect in Figure 7 forms a composite actor that can be
added to an actor library and then instantiated multiple times
in a model.

Consider now a modified TDL program with the activity
declarations as follows:

s t a r t mode main [p e r i o d = 8ms] {
t a s k

[8 ,1−2] MovingAverage (s) ;
[8 ,4−7] C o n t r o l l e r (MovingAverage . d a t a O u t) ;

a c t u a t o r
[8 , 7] a := C o n t r o l l e r . c n t r O u t ;

}
a s y n c h r o n o u s {

[u p d a t e = C o n t r o l l e r . c n t r O u t]
P l o t t e r (C o n t r o l l e r . c n t r O u t) ;

}

This specifies a LET of 2ms for the filter function. The
corresponding aspect model is shown in Figure 10, and the
integrated model is depicted in Figure 11. Note that while the
compositional hierarchy helps in dealing with model complex-
ity, it also blurs the system-level view (Platform-Application).
However, by flattening the LETAspect actors in the model in

Fig. 8: Integrated model

Figure 11, one obtains an integrated model where the Platform-
Application distinction is again clear, as shown in Figure 12.

This helps in consolidating the platform model, as follows.
One can see that one semaphore actor can be removed by
connecting its signal input directly to its output. Moreover,
all time delay actors can be replaced by one pair of actors
as shown in Figure 13. The ResettableTimer actor reacts to
an input token by scheduling a future event at the time equal
to current time plus input value, and at that time it issues an
output token. The ArraySweep actor has a parameter holding
an array of values representing time delays and it has one
output port corresponding to each cell in the array. The actor
keeps track of the current position in the array. Upon receiving
a token on the input port, the actor issues that token on
the output port associated with the current position, advances
the current position and sends the array value at the current
position to the current output port. Upon receiving a token on
the reset port, the actor sets the current position to zero and
outputs the current value on the current port. The array param-
eter is set to {LEToffset2, LETinterval2, LEToffset −
(LETinterval2 + LEToffset2), LETinterval}. One can
check that the behavior of the application model in Figure
13 is the same as the corresponding one in Figure 12.

In the aspect refinement stage, we modify the aspect model

MovAvgF.trigger

MovAvgF.dataOut ControllF.cntrIn

ControllF.cntrOut
Actuator.input

Fig. 9: Simulation output shows LET behavior

Fig. 10: Aspect model with two LET aspects

in Figure 10 to reflect the changes made in the integrated
model, obtaining a refined aspect model shown in Figure 14.
Notice that this model reflects more accurately the original
formal specification of the non-functional requirement (the
TDL program)!

IV. RELATED WORK

Aspect oriented techniques have been employed for non-
functional requirements of embedded software in [1], [13],
[14], [19], [20]. The general application design process starts
with control logic design, then goes to software design and
then to programming. At the software design level, the con-
trol logic is considered to be the ”functional” part of the
software, while real-time and platform-related properties such
as triggering, scheduling, prioritization are seen as the ”non-
functional” part. For instance, in the approach presented in
[20], AOP is employed to support different triggering policies
of control functions. An example is provided where the execu-
tion order of several control methods depends on the kind of
triggering (event-triggered or time-triggered). However, only
the execution order is specified by means of aspects, not the
triggering itself. Thus, such an aspect must be accompanied
by a specification on how the first method in the sequence is
triggered, e.g., a UML sequence diagram. In this paper, we
employ the same modeling framework for both application-
level aspects and platform level behavior. It is also debatable
if triggering of control functions belongs to the functional part
or not. In many cases, sample times are hardcoded into the
constants of the control functions, so they are in the functional
part. For such systems, the values of control outputs depend
on the triggering (even if the control logic does not). The
motivational example given in [20] mentions CAN (Controller
Area Network) message handling procedures, which refer to
communication, not control.

Various papers describe how AOM techniques can be in-
cluded in MBD processes for embedded software, mostly using

Platform Application

Fig. 11: Integrated model with the LET aspects weaved in

UML models [19], [13], [16]. Here, we consider executable
heterogeneous models as in the Ptolemy II framework [2],
where model components can be grouped in domains with dif-
ferent rules for execution and interaction. This enables analysis
and simulation of mixed models containing different domains
for software, hardware, and physical model components. The
aspect-oriented design language Theme/UML, proposed in [1],
extends classic UML with a new type classifier called theme.
A theme is a base UML construct containing the specification
of a concern (base or aspect). Base themes represent functional
properties, whereas an aspect theme corresponds to a non-
functional property. In [19], an extensible set of aspects is in-
troduced at the model level, dealing with NFRs for distributed

Fig. 12: Integrated model with flattened aspects

Fig. 13: Integrated model with platform part consolidated

embedded real-time systems. The main goal of that work is
to provide an aspect framework (aspects are modeled with
RT-UML), which adds behavior and structure to the system
without tying the model to a particular implementation.

For this example, the implementation of the TDL speci-
fication and the aspect weaving have been done manually in
Ptolemy. Work is under way to automatize such operations.

The research reported in [12] is based on the same line of
thought that it is best to consider the impact of an application
on the underlying platform early in the design process. The
paper deals with joint validation of application and platform
models at multiple abstraction levels, using also Ptolemy II.
It focuses on general system design methodology rather than
adaptation to NFRs. It would be interesting to investigate

Platform Application

Fig. 14: Refined aspect model

if the aspect-oriented process proposed in our paper can be
regarded as a method for successive refinement of application
and platform models within the approach in [12].

The work presented in this paper is also related to the
concept of Aspect-Oriented Multi-View Modeling [10], which
enables descriptions of the same software system from multiple
points of view (e.g., structural and behavioral). More general
work in AOM has been done regarding join point definition
languages. In [15], join points are described in UML models
with so called Join Point Designation Diagrams in numerous
ways, capturing control-flow, data-flow and state models.

V. CONCLUSIONS

This paper discusses the AOM approach to dealing with
non-functional requirements for embedded applications in the
context of two main development strategies for embedded
systems: Platform Based Design and Model Based Develop-
ment. It describes a first attempt to harness the advantages
of the three development models under a sub-process called
Platform-Based Aspect Design. This is illustrated by means
of an example where logical execution times are added to
functional components of a base model.

Our motivation for addressing non-functional requirements
with models that can be simultaneously viewed from the three
perspectives, is based on three basic observations: (1) AOM
is a natural approach to NFRs due to its ability to address
cross-cutting concerns, (2) AOM follows the principles of
MBD, and (3) NFRs refer to platform properties, which are
best expressed in models following the PBD paradigm. Most
of the existing research on non-functional requirements for
embedded systems is based on observations (1) and (2). We
add here the third and end up with a combined approach, where
aspects developed with AOM in an MBD way may need to be
refined in order to reflect PBD characteristics. In some cases,
such a refinement can be done only after weaving the MBD-
aspects into the (PBD-compliant) base model, and performing
model transformations in order to maintain the PBD discipline.
Then the refinement means transforming the aspect model such
that the AOM discipline is kept (i.e., the integrated model
represents the result of aspect weaving into the base model).

In future work, we intend to employ the process described
here to use cases involving different types of NFRs and various
platform-application models. We also plan to improve the join
point specification mechanism for actor-based models which
is briefly (and informally) touched upon in this paper.

REFERENCES

[1] Cormac Driver, Sean Reilly, Éamonn Linehan, Vinny Cahill, and
Siobhán Clarke. Managing embedded systems complexity with aspect-
oriented model-driven engineering. ACM Trans. Embed. Comput. Syst.,
10(2):21:1–21:26, January 2011.

[2] Johan Eker, Jorn W Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu,
Jozsef Ludvig, Sonia Sachs, Yuhong Xiong, and Stephen Neuendorffer.
Taming heterogeneity - the Ptolemy approach. Proceedings of the IEEE,
91(1):127–144, 2003.

[3] Andreas Gal, Olaf Spinczyk, and Wolfgang Schroeder-Preikschat. On
aspect-orientation in distributed real-time dependable systems. In In
Proceedings of the Seventh International Workshop on Object-Oriented
Real-Time Dependable Systems, pages 7–9. IEEE Computer Society,
2002.

[4] Holger Giese, Gabor Karsai, Edward A. Lee, Bernhard Rumpe, and
Bernhard Schtz. Model-Based Engineering of Embedded Real-Time
Systems, volume 6100 of Lecture Notes in Computer Science. Springer,
2010.

[5] Thomas A Henzinger. Two challenges in embedded systems de-
sign: predictability and robustness. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences,
366(1881):3727–3736, 2008.

[6] Tom Henzinger, Ben Horowitz, and Christoph Kirsch. Giotto: A time-
triggered language for embedded programming. Proceedings of the
IEEE, 91:84–99, January 2003.

[7] K. Keutzer, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-
Vincentelli. System-level design: Orthogonalization of concerns and
platform-based design. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 19(12):1523–1543, November 2000.

[8] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of aspectj. In ECOOP
2001 - Object-Oriented Programming, 15th European Conference,
Budapest, Hungary, June 18-22, 2001, Proceedings, pages 327–353,
2001.

[9] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In ECOOP, pages 220–242, 1997.

[10] Jörg Kienzle, Wisam Al Abed, and Jacques Klein. Aspect-oriented
multi-view modeling. In Proceedings of the 8th ACM International
Conference on Aspect-oriented Software Development, AOSD ’09,
pages 87–98, New York, NY, USA, 2009. ACM.

[11] Edward A. Lee. Computing needs time. Communications of the ACM,
52(5):70–79, May 2009.

[12] Sanna Määttä, Leandro Möller, Leandro Soares Indrusiak, Luciano Ost,
Manfred Glesner, Jari Nurmi, and Fernando Moraes. Joint validation
of application models and multi-abstraction network-on-chip platforms.
IJERTCS, 1(1):86–101, 2010.

[13] Takahiro Soeda, Yuta Yanagidate, and Takanori Yokoyama. Embedded
control software design with aspect patterns. In Dominik lzak, Tai-
hoon Kim, Akingbehin Kiumi, Tao Jiang, June Verner, and Silvia
Abraho, editors, Advances in Software Engineering, volume 59 of
Communications in Computer and Information Science, pages 34–41.
Springer Berlin Heidelberg, 2009.

[14] John A. Stankovic, Ruiqing Zhu, Ram Poornalingam, Chenyang Lu,
Zhendong Yu, Marty Humphrey, and Brian Ellis. Vest: An aspect-
based composition tool for real-time systems. In Proceedings of the
The 9th IEEE Real-Time and Embedded Technology and Applications
Symposium, RTAS ’03, pages 58–, Washington, DC, USA, 2003. IEEE
Computer Society.

[15] Dominik Stein, Stefan Hanenberg, and Rainer Unland. Expressing
different conceptual models of join point selections in aspect-oriented
design. In Proceedings of the 5th International Conference on Aspect-
oriented Software Development, AOSD ’06, pages 15–26, New York,
NY, USA, 2006. ACM.

[16] Masayoshi Tamura, Tatsuya Kamiyama, Takahiro Soeda, Myungryun
Yoo, and Takanori Yokoyama. A model transformation environment
for embedded control software design with simulink models and uml
models. Proceedings of the International MultiConference of Engineers
and Computer Scientists, 1, July 2012.

[17] Josef Templ. Timing Definition Language (TDL) 1.5 specification.
Technical Report T024, University of Salzburg, July 2009.

[18] Armin Wasicek, Patricia Derler, and Edward A. Lee. Aspect-oriented
modeling of attacks in automotive cyber-physical systems. In Proceed-
ings of the 51st Design Automation Conference (DAC), June 2014.

[19] M.A. Wehrmeister, E.P. Freitas, C.E. Pereira, and F.R. Wagner. An
aspect-oriented approach for dealing with non-functional requirements
in a model-driven development of distributed embedded real-time
systems. In Object and Component-Oriented Real-Time Distributed
Computing, 2007. ISORC ’07. 10th IEEE International Symposium on,
pages 428–432, May 2007.

[20] Takanori Yokoyama. An aspect-oriented development method for em-
bedded control systems with time-triggered and event-triggered process-
ing. In IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 302–311. IEEE Computer Society, 2005.

