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Abstract—In the Logical Execution Time (LET) programming
model, fixed execution times of software tasks are specified and
a dedicated middleware is employed to ensure their realiza-
tion, achieving increased system robustness and predictability.
This paradigm has been proposed as a top-down development
process, which is hardly applicable to a large body of legacy
control software encountered in the embedded industry. Applying
LET to legacy software entails challenges such as: satisfying
legacy constraints, minimizing additional computational costs,
maintaining control quality, and dealing with event-triggered
computations. Such challenges are addressed here by a systematic
approach, where program analysis and modification techniques
are employed to introduce efficient buffering into the legacy
system such that the given LET specifications are met. The
approach has been implemented in a tool suite that performs
fully automated transformation of the legacy software and may
be carried out incrementally. This paper presents an application
to large-scale automotive embedded software, as well as an
evaluation of the achieved LET-based behavior for industrial
engine control software.

Keywords—real-time; legacy software; logical execution time;
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I. INTRODUCTION

Software applications for industrial embedded control sys-
tems have been traditionally developed with focus on achieving
fast response times with minimal hardware resources. Thus,
many legacy systems are subject to optimization for execution
time and memory, which has been achieved by employing
certain programming patterns, as well as by applying platform
configuration and code compilation techniques.

Higher software complexity, together with faster and
cheaper hardware has led to a shift in the importance of
requirements towards other concerns such as robustness, pre-
dictability, safety and Quality-of-Service issues. In order to
deal with such properties, execution time of software should
be considered as a first-class citizen in the design process
[1]. In this respect, we consider here the Logical Execution
Time (LET) model [1], which is employed in several timing
specification languages and tools such as: Giotto [1], xGiotto
[2], the Hierarchical Timing Language (HTL) [3] and the
Timing Definition Language (TDL) [4]. The LET paradigm
assumes a software system consisting of a set of periodic and
concurrent software functions having only well-defined data
dependencies among them, and specifies for each function a

fixed start time and a fixed end time for the execution of the
function within its period, representing the logical execution
time of the function. In fact, the LET semantics focuses
on the time instants when data transfer between functions
may take place, not on the actual physical execution of the
software. LET-based approaches have a variety of advantages,
in particular they provide timing predictability and increased
robustness of the embedded software application [5].

In this paper we present an application of the LET pro-
gramming model to industrial-level legacy automotive control
software. The main technical challenge of such an endeavor is
to reconcile the performance-oriented concerns of the legacy
system with the non-functional requirements of the LET
model. On the one hand, introducing LET behavior incurs
additional computational costs and may lead to a decrease
in control quality (mainly due to additional delays in data
transfer among control functions). Thus, one has to minimize
the required platform resources and the impact on the runtime
performance of the system. On the other hand, the legacy
software does not satisfy some assumptions made in the
classical LET-based programming. In particular, many legacy
applications use shared memory (global variables) for inter-
task communication, while the LET model implicitly assumes
function-scoped variables.

We outline a systematic approach where, given a logical
timing specification for some of the time-triggered (periodic)
control functions, a transformation is applied to the legacy
software such that any execution of the transformed software
satisfies the LET specifications. No change is made to the
original mapping of functions to OS tasks or interrupt ser-
vice routines. Special attention is devoted to reducing the
computational costs of the transformed system. Our approach
has been implemented in a tool set which performs the
software modifications automatically. This has been applied to
a large-scale legacy automotive control application with results
that have exceeded expectations: low computational costs, no
decrease in control quality, and observable increase in timing
robustness.

This paper is structured as follows. Section II briefly
describes the LET programming model, its flavor of our
choice - the TDL component model, as well as the type of
legacy software considered in this paper - automotive control
software. Section III presents our approach for applying the



LET programming model to such legacy software. Section IV
deals mainly with evaluation results for a complex industrial
application - engine control software, which are preceded by a
brief description of our tool-chain. Section V discusses related
work and Section VI concludes the paper and outlines future
work.

II. BACKGROUND

The context of our work comprises real-time programming
and legacy software, as described next.

A. The Standard LET Programming Model

In traditional real-time systems, the time instants when
software tasks provide their outputs are usually influenced
by platform-related factors such as scheduling, system load
and memory caches. To avoid this source of unpredictability,
the Logical Execution Time paradigm [1] abstracts from the
physical execution of a task and associates a logical execution
time interval to each periodic top-level software function, also
called a LET task. A LET interval spans from a release time
instant to a termination time instant within the task’s period.
At the release time, all the inputs to the task are read and
transferred to the task’s input ports, and the task function
is marked as ready for execution. The actual execution of
the function may be delayed and preempted as decided by
the underlying scheduler. The function reads input data only
from the input ports, whose values remain unchanged (until
the next release time). However, the physical execution must
end before the task’s termination time, when all the function’s
outputs are made available to the environment (which may
include other LET tasks) via the task’s output ports. Thus,
the LET model achieves a pre-specified, platform-independent
observable temporal behavior of a set of software functions,
leading to both time and value determinism [5].

Fig. 2 shows the main constituents of the LET program-
ming model in a typical top-down software development
process. The LET specifications are given as a timing pro-
gram written in a specialized language (e.g., Giotto, HTL,
TDL), which is independent of the execution platform and
the implementation of task functions. A time-safety check
(including schedulability analysis) must be performed to verify
that the timing program can indeed be achieved for a specific
platform. If so, the timing program is compiled into a set
of special LET-scheduling instructions called E-code, which
is interpreted at runtime by a virtual machine called the E-
machine. The release/terminate operations are implemented in
dedicated functions called release/terminate drivers. The E-
code specifies which release/terminate drivers must be exe-
cuted at which points in time.
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Fig. 2. Standard LET programming process

B. The TDL Component Model for Real-time Systems

We consider timing programs specified with the Timing
Definition Language (TDL). TDL introduces a component
model based on named containers called modules. A module
encapsulates an automaton consisting of a set of modes, each
representing a particular operational state of the software
system. A mode defines a set of tasks with their LETs and
interconnections, to be concurrently executed whenever the
mode is active. A mode also specifies guarded transitions to
other modes in the module. At runtime, all modules of an ap-
plication run logically in parallel, each module having at most
one active mode at a time. The time-safety check mentioned
above ensures at compile time that adding a new module does
not affect the overall system behavior. Additionally, TDL’s
transparent distribution property [6] ensures that the behavior
of a distributed application is independent of the mapping of
modules to computational nodes of a communication network.
This is achieved by subsuming both computation and com-
munication times under the LET. While this paper presents a
single-node application, we take advantage of TDL’s ability
to deal with event-triggered functions and its flexibility with
respect to specifying a task’s LET within the task’s period [4].

C. Automotive Legacy Control Software

Legacy software for engine and powertrain control contains
both time-triggered and event-triggered functions, on top of
a real-time operating system with fixed-priority preemptive
scheduling, such as OSEK or AUTOSAR OS. The interrupt
service routines and some event-triggered tasks have higher
priorities than the time-triggered tasks. OS-level scheduling
is complemented by application-level scheduling of periodic
control functions, which are usually grouped into a small
number of OS tasks with different priorities and activation
periods. Thus, functions with the same priority are executed
within the same OS task and the execution periods of these
functions are multiples of the task’s period. The functions
communicate via shared memory. Event triggered tasks are
mainly employed for state estimation. Calculation of control
outputs is performed in the time-triggered part.

Illustrative example: We introduce here a running
example, to be used throughout subsequent sections of the
paper for illustration purposes. Consider a legacy system
that includes five operating system tasks with task functions
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Fig. 3. Logical execution times for the running example

fi, i = 1, . . . , 5, as follows. Four of the tasks are periodic: f1
and f4 are high priority tasks with a period of 10ms each,
while f2 and f3 have lower priority and a period of 20ms
each. Task f5 is event triggered, being activated by an external
interrupt. Its priority is higher than that of f4 but lower than
that of f1. The tasks communicate via two global variables a
and b. Variable a is written by f2 and f5, and read by f1, f2,
f3, f4, and f5. Variable b is written by f4 and read by f3. The
LET requirements that must be observed by the system are as
follows. Tasks T1 and T4 have a period of 10ms and a LET
of 2ms starting at offsets 0 and 8ms, respectively. Tasks T2
and T3 have a period of 20ms and a LET of 5ms starting
at offsets 1ms and 4ms, respectively. These specification are
given as a TDL program, which is omitted here due to space
limitations. The corresponding LET arrangement is shown in
Fig. 3.

III. APPLYING LET PROGRAMMING TO LEGACY
SOFTWARE

The LET programming model has been proposed as a top-
down development process for control software. As this is
inadequate for application to legacy code as described above,
we present in this section our work for bridging the LET-
legacy gap. We describe first the general approach, followed
by details of individual steps and ending with tool support.

A LET timing program associates a LET task T to a
legacy periodic control function fT with period τ(T ), and
specifies a release time φ(T ) (as an offset relative to the start
of the period), and a logical execution time LET (T ) such that
φ(T ) + LET (T ) ≤ τ(T ). Furthermore, the input- and output
ports of a LET task T correspond to the input- and output
variables of fT . A program variable v is regarded as input-
and/or output for fT , if v is read and/or written by fT or any
function that is reachable by fT , respectively. We say that a
function f reads a program variable v if v occurs on a right
hand side or in a conditional expression in the code of f . Also,
f writes v if v occurs on the left hand side of an assignment
instruction in the code of f .

The objective of a LET-based transformation of a legacy
application is to ensure that the behavior of the control func-
tions subject to LET specifications satisfies the LET semantics.
We extend here this semantics to the case where the same
variable is both an output of a LET function and an output of
an event-triggered function. In this case, we restrict the output
updates as follows: the output value computed by the LET
function is assigned to the output variable at the LET end
only if the variable has not been updated with a more recent
value by the event function. This ensures that the system uses
the most recent value and avoids undesirable update effects,
as further discussed in Section III-D.

Fig. 4 outlines the main stages of the transformation from
the original software (top-left in the figure) and desired timing
program, to the LET-based software (bottom part). The timing
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program is subject to constraints due to the requirements that
the OS configuration must remain unchanged and modifica-
tions in application-level scheduling must be minimal. This is
why, for example, the period of a LET task is inherited from
the corresponding legacy periodic control function. The main
stages are described below.

A. All the input and output variables of the LET functions
are determined.

B. As implementing the task ports may require buffering,
a buffer requirement analysis is performed in order to
minimize the additional memory. This results in a set of
new program variables to be added for buffering, called
add-on variables.

C. A transformation of the legacy source code is done by
instrumentation and/or changes of original lines of code
such that, for every LET task T :
- fT starts execution no earlier than its release time in
any execution period,
- if an input port associated to an input variable p of fT is
buffered via an add-on variable pT , then each read access
to p is replaced by a read access to pT in fT and in all
functions that may be called from fT , and
- if an output port for an output variable q of fT is
buffered via an add-on variable qT , then each write access
to q is replaced by a write access to qT in fT and in all
functions that may be called from fT .

D. A set of new functions representing the LET drivers is
generated and included. Moreover, the E-code generated
from the LET program and the generic E-machine are
included with the transformed legacy software.

The above steps are described in more detail next, being also
illustrated on the example introduced in the previous section.

A. Input/Output Variables

Function I/O variables are determined by using standard
program analysis techniques, based on parsing the program’s
abstract syntax tree and control flow graph.

B. Buffer Analysis

The computational costs of the LET-based transformation
are mainly determined by the number of add-on variables and



by the code changes described above. While a realization that
introduces a distinct add-on variable for each task port is in-
deed LET-compliant, the additional memory requirements and
execution time (due to intensive buffering) may be significant
for large legacy applications. However, not all ports need to
be buffered; moreover, in some cases distinct port buffers may
be implemented with the same add-on variable.

Our approach for reducing the number of add-on variables
involves two stages:

1) Determine which task ports require buffers. This is done
by a program analysis procedure which essentially checks
the cases when using an unbuffered task port may lead to
violation of LET semantics. For an input variable p of a
LET function fT , these are:

a) p is written by a higher priority event-triggered function.
In our running example (see Fig. 3), this is the case of
variable a, which is an output of f5 and an input to
lower priority functions f2, f3, and f4. This requires
input buffers ainT2, ainT3, and ainT4 to be used for a in the
LET tasks T2, T3, and T4, respectively.

b) p is an output of another LET function fU and a LET
interval of T contains a termination time (LET end) of
task U . For instance, input variable a of function f3
is also an output variable of f2. Thus, a buffer ainT3 is
required in T3 for a.

c) p is an output of another LET function fU with higher
priority than fT , the variable p is not buffered in task U ,
and a LET interval of U contains a termination time of
task T . For example, the input variable b of function f3
is an output variable of f4 and it is not buffered in T4.
Thus, a buffer binT3 is associated to b in T3.

Let us see now what may happen when such a rule is
ignored. Assume that we do not assign an input buffer to a
in T3, so f3 reads directly from a. Since a is an output of
T2, a may be updated sometime in the interval (4, 6) (e.g.,
if it is not buffered in T2), or at the latest in the terminate
driver of T2, at time 6 (if it is buffered in T2). An execution
of f3 that reads from a anywhere between times 6 and 9
will violate the LET specification of T3 according to which
the value of a used in the execution of f3 must be the one
at the LET start of T3, i.e., at time 4 in this instance.

For an output variable q of fT , the situations where not
buffering q may lead to loss of LET compliance are as
follows:

a) q is read by an event-triggered function. For example,
output variable a of f2 is read by f5, thus write accesses
to a in f2 must be done via a buffer aoutT2 .

b) q is an input of another LET function fU and a LET
interval of T contains a release time (LET start) of task
U . This is the case of variable a, which is output of f2
and input of f3, and there is a LET interval of T2 that
contains a LET start of T3. This requires a buffer aoutT2
associated to output a in T2.

c) q is an input of another LET function fU with higher
priority than fT , the variable q is not buffered for task
U , and a LET interval of U contains a release time of
task T . For instance, variable a is read in f1 (which has
higher priority than f2), it is not buffered in T1 and a
LET interval of T1 contains a LET start of T2. Thus,

also this rule requires the buffer aoutT2 .
Note that the rules for the same direction (input or output)
are independent. Thus, if an input test yields a buffer for
input variable p in task T , the other input rules do not need
to be checked for p and T . In our example, ainT3 is required
by two rules and aoutT2 is given by all three output rules.
The buffering requirements for the example are: ainT2, ainT3,
ainT4, binT3, and aoutT2 .

2) Determine the add-on variables that are sufficient to imple-
ment the buffers. A straightforward way to allocate add-on
variables is to use one variable per port buffer. However, the
mapping from buffers to add-on variables also gives leeway
for optimization in terms of memory requirement. Since a
buffer is employed only for the duration of a LET interval,
the same add-on variable may be used for different buffers
(also associated to different variables) employed in non-
overlapping LETs. However, reuse policies that minimize
the add-on memory may require complex implementations,
leading to the RAM gains being undone by the extra ROM
and execution times of the implementation. As a trade-off,
we have used a sharing policy that allocates a single add-on
variable for all buffers of the same legacy variable in LET
tasks with non-overlapping LET intervals. Furthermore, the
same add-on variable is employed for the input and output
buffers corresponding to the same legacy variable that is
both an input and an output variable of a LET function.
The add-on variables that are sufficient for implementing
the buffering requirements for our example are: aT2 T4,
aT3, and bT3.

C. Code Transformation and Insertion

The purpose of legacy code modification is two-fold:
replacing accesses to legacy variables with accesses to add-
on variables in executions of LET functions whenever this is
required, and inserting synchronization points between LET
release drivers and the beginning of corresponding LET legacy
functions.

As read and write accesses to legacy variables usually occur
deep in the call hierarchy, in functions that are potentially
invoked by multiple tasks or ISRs, a simple replacement of
a legacy variable by a corresponding add-on variable is rarely
applicable. A function f that accesses a variable v may be
called from multiple LET functions, each of which may require
an add-on variable in order to buffer v. If no add-on variable
is required, then no change is done. The only case in which
an occurrence of v in the code of f is replaced by an add-
on variable v′ is the one where v is read, f is never called
from an event-triggered function, and v′ is a common add-
on variable for every LET task which calls f . In all other
cases, the decision of which add-on variable to use instead of
v (if any) is made at run-time. Thus, all read occurrences of
v are replaced by calls to a reader auxiliary function (a getter
function) and all write occurrences of v are replaced by calls
to a writer auxiliary function (a setter). Each legacy variable
with associated add-on variables has one getter and one setter
deciding which add-on to use at each access, based on the
current execution context (current LET task in execution). If
the access happens outside the execution of a LET task, then
the auxiliary functions select the actual legacy variable to be
used.



Listing 1 Code changes for accesses to variable a

//before instrumentation
if (...) {

a = local + 100;
} else if (a > 100) {...}

//after instrumentation
if (...) {

LET write a(local + 100);
} else if (LET read a() > 100) {...}

Listing 2 Auxiliary access functions for variable a

int LET read a(void) {
switch(current LET task) {

case T2:
case T4:

return a T2 T4;
case T3:

return a T3;
default:

return a;
}
}

void LET write a(int value) {
switch(current LET task) {

case T2:
a T2 T4 = value;
a T2 T4 dirty = 1;
break;

default:
a = value;
a T2 T4 dirty = 0;

}
}

To illustrate this with our running example, Listing 1 shows
such transformations for part of a function that is called from
both f2 (time-triggered) and f5 (event-triggered). The access
functions for a are given in Listing 2 (as code in C).

As the results of the buffer analysis depend on LET
overlapping of the tasks in the timing program, a modification
of the overlapping (e.g. by adding new LET tasks or chang-
ing LET boundaries) is likely to change the existing buffer
requirements. Such changes may be difficult to propagate in
cases where legacy variables have been directly replaced by
add-on variables. A fully incremental code transformation can
be achieved if all accesses to the involved legacy variables are
replaces by calls to auxiliary access functions.

For a LET function that is scheduled at the application
level, synchronization with its release driver is necessary in
order to ensure that the function starts execution no earlier
than the LET start time in each period. In the case of OSEK,
the synchronization is implemented with events: a WaitEvent
system call is inserted at the beginning of the LET function
(before any initialization) and a corresponding SendEvent is
used in the release driver.

D. LET Drivers, E-code and E-machine

The release and terminate drivers are code-generated for
every LET task. The release driver updates a task’s input ports

Listing 3 Excerpt of LET drivers

void LET release(int LET task id) {
switch(LET task id) {

case T2:
a T2 T4 = a;
a T2 T4 dirty = 0;
break;

case T3:
a T3 = a;
b T3 = b;
break;

case T4:
a T2 T4 = a;
break;

}
mark ready4 exec(LET task id);
}

void LET terminate(int LET task id) {
switch(LET task id) {

case T2:
if (a T2 T4 dirty == 1) {

a = a T2 T4;
}
break;

}
}

by transferring the value of each legacy input variable to the
corresponding add-on variable (if this exists). Then it marks
the corresponding legacy function as ready for execution. The
termination driver updates a task’s output ports by transferring
the value of add-on variables (if they exist) to the correspond-
ing legacy output variables. A LET task may have no assigned
add-on variables (i.e., its input/output ports are implemented
by the actual legacy variables), in which case no data transfer
takes place in its drivers. The timing program is compiled into
E-code and executed at run-time by the generic E-machine.
This is implemented in a dedicated interrupt service routine
triggered by a programmable timer interrupt.

To deal with outputs of both LET and event-triggered
functions, each add-on variable qT corresponding to a LET
task T and a legacy mixed output q has an associated ”dirty
flag”, which is set whenever qT is updated by the LET function
fT and is reset whenever q is updated by an event function fE
as well as in the release driver of T . Moreover, if qT is shared
with other LET tasks, then a distinct dirty flag is used for each
task for which q is an output. In the termination driver of T ,
variable q is updated with the value of qT only if the dirty
flag is set. This prevents the situations where an update of q
performed by fE that takes place after the last update from fT
and before the LET end of T is overwritten in the termination
driver of T (with the value from fT ).

Excerpts from release and terminate drivers for our running
example are shown in Listing 3.

An execution example of the time-triggered tasks is de-
picted in Fig. 5, which also shows the access operations in the
auxiliary functions and in the LET drivers. A situation where
the event-triggered function f5 preempts the execution of f3
is shown in Fig. 6. Notice that the write to a in f5 resets the
dirty flag of aT2 T4, thereby preventing the update of a in the
termination driver of T2. Thus, as opposed to the execution in
Fig. 5, the value of a read by f4 is not the one provided by
f2, but the one updated by f5 (which is the most recent). This
is similar to the behavior of the original legacy software.

IV. TOOL SUPPORT AND EVALUATION

A. Tool Support

A tool suite has been developed in order to apply the
transformation described above to complex industrial legacy
software written in C with little or no manual intervention.

The program analysis was implemented in modules based
on CIL [7]. This analysis yields the call graph and the list
of global variables including all their read/write accesses. We
have employed for the same purpose also the API of the
Eclipse CDT tool to cross check the results. The algorithms for
the buffer requirements analysis, and the mapping to add-on
variables have been implemented in a dedicated Java-based
tool. The same tool performs also the code generation of
LET drivers and auxiliary access functions, as well as the
modification and instrumentation of the legacy code.

B. Evaluation

The approach described in this paper has been applied to
an industrial engine control software (ECS) application, con-
sisting of hundreds of thousands of lines of C code. Thousands
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of global variables were used in the ECS for communication
between periodic control functions. The number of accesses to
these variables in the entire ECS was over fifty thousand.

We focused on eight periodic control functions included in
two OS tasks. Thus, the timing program referred to eight LET
tasks, where the LET of a task was specified to be a little
larger than the largest measured worst-case reaction time of
the associated control function taken from multiple hardware-
in-the-loop (HIL) simulations. This included the effects of
event-triggered computations, most notably the crank angle
computations, over the range of engine speeds.

The control software in these functions totaled more than
25% of the time-triggered software in the ECS. The number
of basic type variables shared between the LET functions was
about a thousand, and they occurred in about fifteen thousand
lines of code in the whole ECS. Since the number of task
ports was close to two thousand, the relatively straightforward
approach to employ one add-on variable per task port was
unacceptable. The first stage of buffer analysis (Section III-B)
determined that buffering was needed only for about 30% of
the ports. In the second stage, the number of add-on variables
was further reduced by 15% (from the number of buffers),
down to about 450. Thus, our approach achieved significant
RAM memory savings in step (B) of the transformation,
leading to an overall RAM increase of only 0.365%. Steps (C)
and (D) led to an increase in the ROM memory of 1.3%. The
additional execution times of the E-machine, LET drivers, and
auxiliary access functions led to an increase in CPU utilization
of 3.35% (absolute numbers are omitted due to intellectual
property concerns). The execution time of our tool-chain on a
desktop PC to analyze and transform the legacy software was
in the range of minutes.

The behavior of the transformed system was evaluated
relative to the original one by comparing state and output
control signals obtained from HIL simulations, where ECS
and LET-ECS were executed in turn on the same development
ECU. This was run in closed loop with an engine model that
was mostly simulated on a real-time computer except for some
actuators which were physically present. A dedicated data
acquisition system was employed to read (and record) program
variables with a sampling period of 50 µs. In this section we
use the term signal to refer to the sequence of values obtained
by sampling one program variable during a HIL simulation.

Multiple same-input simulations led to slightly different
signals for the same program variable; this was attributed
mainly to the presence of physical parts in the control loop
(which was a source of non-determinism). Thus, multiple
signals were collected for the same software version, same
variable and same driving scenario. Signals from ECS runs
were compared with corresponding signals from LET-ECS
runs using the mean relative error (MR) and root mean square
error (RMS). Since each variable was updated periodically,
the recorded variable values were downsampled with the vari-
able’s update period, and the errors were calculated between
the downsampled signals. Moreover, jitter values were also
compared.

Let SO and SL denote the sets of all signals obtained from
the original ECS and from the LET-ECS, respectively. The
signals sO and sL represent the means of the signals in SO

and SL, respectively. For two signals s = (s1, s2, . . . , sN ) and
s′ = (s′1, s

′
2, . . . , s

′
M ) the mean relative error is eMR(s, s

′) =
(1/n) ·

∑n
i=1 |(si − s′i)/si| and the root mean square error

is eRMS(s, s
′) =

√
(1/n) ·

∑n
i=1(si − s′i)2, where n =

min(N,M). We shall use e(s, s′) to refer to either error.

For a given program variable, the following error-based
characteristics were used to compare the set of signals from
simulations with the original ECS with the set of signals from
the LET-ECS:

• Average: The error between the mean signals in the two
sets, i.e. e(sO, sL).

• Worst-case: The largest error between any signal in SO

and any signal in SL, i.e. eOL
max = maxs∈SO,s′∈SL

e(s, s′).
• Variation in the original set: The largest error between any

two signals in SO, i.e., eOmax = maxs∈SO,s′∈SO
e(s, s′).

• Variation in the LET-based set: The largest error in SL,
i.e., eLmax = maxs∈SL,s′∈SL

e(s, s′).

We say that a signal s fits into the set SO if e(s, sO) ≤
maxs′∈SO

e(s′, sO)+tolk, where tolk is a tolerance depending
on a small constant k ∈ (0, 1). A signal from the LET-ECS
that fits into the corresponding signal set from the original ECS
is considered to be indistinguishable from the original signals.

Multiple simulations were conducted with both software
versions, using driver inputs that took the engine through a
prescribed speed profile. We include here the results for one
state variable (engine speed) and one control output variable
(throttle). The speed profile used in HIL simulations is shown
in Fig. 7.

The error indicators for the two variables are given in Table
I. The percentage of signals in SL that fit into SO is denoted
by rLO

fit (k), for some tolerance tolk, with tolk = k for eMR
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Fig. 7. Engine speed and throttle signals

TABLE I. VALUE COMPARISON

Measure
Mean relative Root mean square

speed throttle speed throttle

e(sO, sL) 0.000077 0.003456 0.263555 0.037674

eOL
max 0.001453 0.096657 5.104543 0.701864

eOmax 0.001408 0.094881 4.995335 0.661189

eLmax 0.001478 0.101022 5.113072 0.702298

rLO
fit (10

−4) 100% 72.22% 100% 72.22%

rLO
fit (10

−3) 100% 100% 100% 100%

and tolk = k ·mean(sO) for eRMS . The cardinalities of the
signal sets are |SO| = 12 and |SL| = 18. Each signal has
about 14, 000 samples.

From Table I one can see that the behavior of the two
variables in the LET-ECS does not change from the original
ECS: mean signals are extremely close, the largest error
between any original signal and any LET-based signal is about
the same as the largest error between any two original signals,
and signal variation is also about the same. With a relative
tolerance of 10−3, every signal from the LET-based set is
closer to the original mean signal than some original signal.

We compared the LET-ECS with the original ECS also
from a timing viewpoint by looking at the cycle-to-cycle
update jitter of state and output program variables. Consider
a signal s representing variable v sampled over n periods; let
ti be the time when v is written during the ith period relative
to the beginning of that period. In other words, ti is the time
interval between the beginning of period i and the moment
when v is written next. The jitter for s is calculated as the root
mean square error between consecutive relative update times:
Js =

√
(1/n) ·

∑n
i=2(ti − ti−1)2. We considered the mean

and maximum jitter for each signals set. The results obtained
for the above two variables are shown in Table II. One can see
a significant jitter improvement in the LET-ECS.

The data for other state and output control variables shows
the same pattern: the LET-ECS variables follow the same
values as in the original ECS but with a better update jitter.

TABLE II. JITTER COMPARISON

Jitter measure speed throttle

JO = (1/ |SO|) ·
∑

s∈SO
Js 1.08484E-04 1.09585E-04

JL = (1/ |SL|) ·
∑

s∈SL
Js 2.73722E-05 4.17781E-05

JO
max = maxs∈SO

Js 1.80059E-04 1.58056E-04

JL
max = maxs∈SL

Js 3.11486E-05 8.20605E-05

This data shows that the LET-ECS works as intended and it
is omitted here due to reasons of space. Most importantly,
this behavior has been achieved with relatively small compu-
tational costs, demonstrating the applicability of our approach
to complex industrial control software.

V. RELATED WORK

There are different dimensions of robustness in the context
of embedded systems research, the most frequently encoun-
tered being fault tolerance. Robustness also includes the ability
to sustain different kinds of variations in regular system con-
ditions (e.g. WCETs, periods, system load or even hardware
related properties) without severe consequences on the system
behavior [8]. A general discussion on predictability, robustness
and determinism in embedded systems can be found in [5].

Numerous papers propose mechanisms to achieve deter-
ministic inter-task communication. For example, the works [9],
[10], [11] are based on wait-free solutions and use buffering
protocols with the common objective to minimize memory re-
quirements. However, they follow a top-down approach where
the concern is to preserve a certain behavior exhibited in the
simulation while we impose new semantics to a legacy system.
Moreover, they consider synchronous (reactive) semantics [12]
while here we deal with LET-based behaviors.

LET was introduced in Giotto [1] and is the core pro-
gramming model in several languages, such as TDL [4], HTL
[3], xGiotto [2], and others. A detailed discussion on their
differences can be found in [13].

AUTOSAR is now arguably the most prominent component
oriented architecture in the automotive domain with the initial
version of the standard being released about a decade ago.
Only few papers address the growing calls for migration
strategies of legacy code towards AUTOSAR, e.g. [14], [15].
AUTOSAR extensions for real-time requirements have been
added only recently. A first concept of combining AUTOSAR
with LET is presented in [16].

Reports of complex control software subject to LET speci-
fications are scarce in the open literature. In [17], the autopilot
software of an autonomous (unmanned) helicopter was re-
engineered based on Giotto, with a LET timing program
having three tasks with less than ten ports each. The software
had no event-triggered functions. The only evaluation of the
transformed system was in terms of additional execution time
of the Giotto part. In [2] one can find an xGiotto-based imple-
mentation of a new fuel rate controller software with both event
and time triggered tasks. In contrast to our setup, the software
was developed top-down. No computational costs were given
and the focus of the evaluation was on control performance of
the new controller versus existing controllers (implementing



different control laws). Here, the same controllers are used
with and without LETs, enabling one to pinpoint the LET
costs and benefits. In previous work [18], we applied the
LET programming model to legacy control software under the
restriction of making minimal changes to the legacy code, with
the sole purpose of demonstrating the feasibility of achieving
a LET-based behavior in such a complex setup. That approach
made only code additions (instrumentation), and only in the
top-level control functions. The downside was a high amount
of extra memory (both RAM and ROM). In this work, we take
a completely different approach, by making changes deep into
the legacy source code, thus achieving the same LET-based
behavior with acceptable computational costs. Moreover, all
modifications are still confined to the application software: the
ECU configuration, as well as the operating system remain
unchanged.

VI. CONCLUSIONS AND FUTURE WORK

The idea of introducing LET into legacy embedded systems
is generally being met with skepticism by software and system
engineers mainly due to the LET’s perceived disadvantages:
additional computational costs and degradation of control
quality due to delays introduced in the time-triggered part
between the moment when a control output is available and
the moment when it is transmitted to the environment. This
is compounded by a lack of methods and tools to enable
quantitative evaluation of such costs against the LET-induced
benefits.

This paper presents a systematic approach to LET-based
software adaptation that makes it possible to perform such
assessments with relatively little effort. The results undoubt-
edly depend on the legacy system as well as on the timing
program that is desired. We describe in this paper a use
case that is particularly challenging for LET: complex engine
control software written in C, deeply embedded and highly
optimized for performance, with application-level schedul-
ing, shared memory communication, and high-priority event-
triggered computations. The results confuted the customary
pessimistic expectations: At a relatively small computational
cost, and with no loss in control quality, the transformed soft-
ware exhibited an observable increase in timing robustness, as
shown by data obtained from hardware in the loop simulations.

Complex legacy software can be modified incrementally
with our approach: one may start with a single LET task, test
the transformed system, and then add more tasks if desired.
From the viewpoint of our analysis, any function that is not
called from a LET function is considered event-triggered.

The tool set is currently being extended to deal with
pointer-based variable accesses. We plan to pursue further
optimization of the buffer analysis in order to obtain buffering
requirements that are necessary and sufficient. The tool set will
be improved to provide the user with options for exploring
trade-offs between RAM costs (number of add-on variables)
and ROM plus runtime costs (incurred by code changes
and instrumentation). As applications, we plan to extend the
LET coverage of the ECS’s periodic control functions. Other
industrial applications are also foreseen.
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