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Abstract— In this paper, we introduce a novel and cost
effective approach to calibrate the geometric properties of a
far-infrared (IR) sensor. We further demonstrate that fully
automatic sensor-to-sensor calibration is feasible in a setup
involving a laser range scanner, IR cameras as well as con-
ventional cameras. The calibration result then serves as a basis
for upsampling range measurements to the resolution of the
IR or visible-light camera images. Since our approach allows
to rely on IR information instead of visible-light information
for upsampling, bad light conditions or even no visible light at
all are no limitation. From a practical point of view, we only
require one calibration board of relatively small size which
facilitates application in outdoor environments and further
allows seamless integration of the IR camera in an existing
multi-sensor platform. Our experimental results demonstrate
that IR images are particularly useful to obtain reasonable
depth information for living objects, when visible-light cameras
are either blind or require impractical exposure times. In fact,
our approach provides a convenient solution to IR camera
calibration and integration, an issue which is particularly
important in scenarios where sensors are not permanently
mounted on vehicles and consequently require on-site adjust-
ment and calibration.

I. MOTIVATION

With the ongoing improvement in vision sensor technol-
ogy, autonomous driving vehicles have become a hot topic
in recent years. Milestones in this area have been set in the
DARPA Grand Challenge (2005) and the DARPA Urban
Challenge (2007). In both competitions, the competitors
made excessive use of sensor equipment, including laser
range scanners, visible-light cameras or even radar sensors.

In the context of situations with low light conditions,
IR cameras are a useful asset in a multi-sensor system.
IR cameras do not rely on visible light but capture IR
radiation instead. Given that the ultimate objective of any
autonomously driving vehicle is to avoid harming any living
objects (humans or animals), IR cameras are of potential
interest, since living objects will show up very decisively.

In order to fuse the information from multiple sensors,
e.g. cameras or laser range finders, it is essential that the
data is represented in a reference coordinate frame common
to all sensors. This requires knowledge of intrinsic [1] and
extrinsic parameters of every sensor in the system. Most
of the previous work on calibrating a multi-sensor system
focuses on the case of estimating the rigid transformation
between the reference frame of a visible-light camera and
the reference frame of a 2-D laser range finder [2], [3]
(assuming that the intrinsic camera parameters are already
known). With the emergence of 3-D laser range finders,

including these sensors in multi-sensor platforms has become
popular. In the DARPA Urban Challenge for instance, many
vehicles where equipped with a 3-D laser range finder [4].
In [5], the authors consider the case of calibrating a visible-
light camera (in this special case an already calibrated
omnidirectional camera) to a 3-D laser range finder by using
hand-selected point correspondences from just one natural
scene. In [6], a MATLAB calibration toolbox is presented
to determine the external calibration parameters of a 3-D
laser range finder and a visible-light camera. The approach is
capable of estimating the camera intrinsics as well, however
requires manual selection of the laser returns off a planar
calibration board. Furthermore, it is required that the range
measurements are not very noisy, a requirement which can
probably not be met by a fast rotating 3-D laser range
scanner. In situations where the calibration process has to be
performed outside the laboratory, we might have to cope with
a substantial amount of outliers as well (due to reflections).

For IR camera calibration we cannot directly exploit exist-
ing approaches, since the widely-used black/white checker-
board pattern is not visible to an IR camera. However, using
separate calibration boards for the intrinsic calibration of
the IR and visible-light camera is an impractical solution
and complicates extrinsic calibration between the cameras.
To facilitate seamless integration of the IR camera, we
present an fully automatic approach to determine the intrinsic
parameters of the IR camera and visible-light cameras, as
well as the extrinsic parameters of a multi-sensor system
using just one planar calibration board. Relying on the result
of the automatic calibration, we then demonstrate that IR
images provide useful information to upsample range data
in situations where visible-light cameras cease to provide
useful information.

II. SENSOR CALIBRATION

The general approach towards the estimation of intrinsic
and extrinsic parameters of any visible-light camera is to use
some sort of calibration pattern with known dimensions to
establish object to pixel correspondences [1]. Usually, this
is accomplished using a black/white checkerboard pattern
mounted on a planar calibration board. The pattern is then
shown to the camera at varying positions. Detecting the
corners of each of the squares then allows to estimate
the intrinsic parameters as well as the geometric distortion
introduced by the lens. Given the intrinsic parameters are
available, it is possible to determine the extrinsic parameters,



defining the position and orientation of the camera reference
frame with respect to a known world coordinate frame.

Calibrating multiple sensors to each other, requires that
we use a calibration pattern visible to all sensors, though. In
our setup, we thus need a pattern visible to a 3-D laser range
scanner, a forward-looking IR (FLIR) camera and a visible-
light camera. Due to the extensive existing work [7], [8], [5]
on the calibration of visible-light cameras, our strategy is
to keep the black/white checkerboard pattern mounted on
a planar surface and to augment it by a set of low-cost
electrical components to facilitate IR camera calibration.

The goal is to provide an easy to use calibration mech-
anism that can be used in the field by minimizing the
constraints on the scenery. It is required that on-site changes
to the test vehicle can be dealt with immediately rather than
calibrating the system in the office.

A. Lens Distortion

To calculate accurate and robust radial (and tangential)
distortion parameters, we would have to have calibration
points throughout the whole image (especially points close
to the image borders). This could either be achieved by
moving the board close to the camera or by using a large
calibration board. Unfortunately, moving the board close to
the camera leads to unusable laser returns since a 3-D range
scanner often only provides reliable range measurements for
objects at a distance of at lest six feet (see Section III).
Consequently, it would not be possible to use the same set
of calibration images for intrinsic and extrinsic calibration.
We would inevitably need two separate sets; one, which is
solely used for the calibration of intrinsic camera parameters
and one which is used for the calibration of extrinsic camera
parameters.

Using a large calibration board as a potential solution
to this problem is quite impractical, though, especially in
outdoor environments or in situations where the sensor
equipment is not permanently mounted on the vehicle and
requires frequent recalibration.

In our setup, visual assessment of the camera distortion
has shown that there is hardly any distortion in the area of
interest, which is at least six feet in front of each camera and
is relatively narrow as well. For that reason, we decided to
omit estimation of the lens distortion, however, we emphasize
that this step might have to be incorporated depending on
the cameras. In that case, we favor the solution of using two
separate image sets, due to the lower practical impairment.

B. FLIR Camera Calibration

As we already mentioned, we choose a black/white
checkerboard pattern mounted on a planar (metal) surface
as a basis for calibration. This enables easy estimation of
the intrinsic parameters of the visible-light camera by using
the method of Zhang [7]. In order to use the same approach
to determine the intrinsic IR camera parameters, we need to
augment the calibration board by a pattern visible to the IR
camera.
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(c) Calibration board with one
resistor mounted in the center
of each checkerboard square.

Fig. 1: Physical configuration of the calibration board.

Our approach to tackle this problem is to install a pattern
of electrical elements emitting IR radiation. Using LEDs to
create a detectable pattern in the visible and IR spectrum does
not work because the thermal difference to the calibration
board is too low, even though LEDs have an efficiency level
of ≈ 20 percent leaving enough energy for thermal radiation.
As an alternative strategy, we decided to use a set of resistors
mounted in the centroid of each square (see Fig. 1a and
Fig. 1c). This has the advantage that the geometric corners
of the black/white squares are not physically distorted by
mounting the resistors. Consequently, the corner points in the
image of the visible-light camera can still be automatically
detected (using the algorithm of Vezhnevets, implemented
in the OpenCV library [9]) and calibration is not negatively
affected.

Regarding the physical configuration of the calibration
board, we install an evenly spaced array of 35 (7×5) resistors
connected to a 12 volt DC power supply. Each resistor is a
330 ohm metal film resistor. The circuit diagram (see Fig.
1b) shows that there are seven rows attached in parallel to
the power supply. Each row consists of 5 resistors connected
serially. After adding all wires, the whole circuit draws
≈ 1.12 ampere and thus emits ≈ 13.44 watts of thermal
radiation.

By looking at the two exemplary IR images showing the
calibration board in Fig. 2a, we notice that simple gray-value
thresholding to detect the resistors will not work reliably
for the following reason: the person holding the calibration
board emits much more IR radiation than the resistors which
eventually leads to a broader range of intensity values.
This makes it impossible to detect the resistor spots by
means of gray-value thresholding alone. One could argue
that this problem could be solved by using a mounting
bracket, however, such a solution is usually constrained to a
laboratory environment.

The basic idea of our approach is, to exploit the regularity
in the spacing of the resistors (in both directions) to reliably
detect the pattern. Our algorithm consists of two steps which
are executed iteratively and one finalization step in which we
pick the most suitable result and identify remaining resistors.
In one iteration step, we perform gray-value thresholding to
identify resistor candidates and then measure the regularity of
the candidate resistor pattern which most likely corresponds
to the true resistors.

a) Candidate Search: In one iteration step, we perform



(a) IR images with calibration board (b) Detected resistors (black crosses)

Fig. 2: Exemplary IR images showing calibration board and
the 7× 5 resistor pattern.

gray-value thresholding with a threshold chosen from a
predefined range. Since the intensity in IR images can differ
significantly depending on the environment, the idea is to
increase the gray-value threshold t ∈ [0, 1] in each iteration
in order to find a setting where the resistors can at least be
segmented from the metal calibration board. In that case, we
expect a high regularity in the identified candidate resistors
which will be measured in the second step. The range of
thresholds R := [a, b], a := tO− ε, b := tO + ε is determined
by Otsu’s [10] intensity threshold tO and a heuristically
determined value ε 1. After the IR image is binarized, all
connected regions with an area larger than 50 pixel are
removed and the region centroids are calculated. Since the
calibration board has to be positioned at least six feet away
from the sensor, any region larger than 50 pixel is most
probably no resistor. The centroids, denoted by the vertices
Vi ∈ R2 represent the resistor candidates and are the input
to the next step.

b) Measuring Regularity: In the second step of one
iteration, we compute the Delaunay triangulation T of the set
of vertices Vi. The Delaunay triangulation has the property
that the minimum interior angle among all triangles is the
greatest possible among all triangulations. Fig. 3a shows
the part of the Delaunay triangulation which contains the
x × y resistor pattern (illustrated as black dots). Let us
consider the 2(x− 1)(y− 1) triangles which triangulate this
pattern. We define that a triangle is a neighbor of another
triangle if they share a coincident edge. We observe that the
L = 2(x− 3) · (x− 3) inner triangles (shaded gray) share a
common property: all three immediate neighbors of each of
the L triangles as well as their immediate neighbors and the
center triangle itself have approximately the same perimeter
(Fig. 3b). We explicitly focus on the L inner triangles, since
considering all 2(x − 1)(y − 1) triangles would not allow
to establish a rigorous neighborhood criterion. In case of
the border triangles of the resistor pattern for instance, the
criterion does not hold. Obviously, the inner triangles share
other properties as well, but the perimeter led to the most
robust detection results in our experiments.

The computational steps to identify the L inner triangles
can be summarized as follows: For each of the triangles ∆j

in the triangulation T , we compute the maximum perimeter
difference to all its nine neighbors. Formally, given that
p(∆j) denotes the perimeter of triangle ∆j and ∆jn, n =

1a value of ε = 0.25 has shown to work well in practice

1, . . . , 9 denote the nine neighbors, we calculate

mj = max
n=1,...,9

{|p(∆j)− p(∆jn)|}. (1)

In case a triangle has less than nine neighbors the maximum
perimeter difference is set to infinity. Next, we determine the
variance σ2 of the L smallest values of m1, . . . ,mM , where
M denotes the total number of triangles in the triangulation
T . This variance is a measure of regularity among the
triangles with the smallest maximum perimeter difference
to its nine neighbors. Let this set of L triangles be denoted
as {∆1, . . . ,∆L}. Now, given that v(∆j) returns the set of
vertices that span ∆j , we can require that the cardinality of
the set

S =
L⋃

j=1

v(∆j) (2)

is (x− 2)(y − 2). Otherwise, the detection result cannot be
valid, since we only have (x − 2)(y − 2) resistors in our
pattern.

c) Resistor Identification: Depending on the threshold
stepsize s, we perform d(b − a)/se iterations of the can-
didate search and regularity measurement step. Letting the
subscript i denote the iteration index, we eventually pick
the configuration (ti, Si) where the variance σ2

i is minimal.
The final steps to identify the remaining K := xy − (x −
2)(y − 2) resistors are straightforward. We pick out the
boundary vertices of the (x − 2)(y − 2) identified vertices
and determine all triangles attached to these vertices. The
union of the triangle vertices then gives at least K−4 of the
K remaining resistors. Depending on the triangulation T , we
might however miss the four corner vertices. This can happen
because the triangles containing a corner vertex might not be
attached to any of the (x−2)(y−2) vertices found by means
of the regularity criterion. One of these triangles is illustrated
in Fig. 3a. The final four resistors are found by performing a
nearest neighbor search around the intersection points of the
edges determined by the outermost vertices. Fig. 2b shows
two exemplary detection results.

Considering the fact that there is a boundary of metal
around the resistors, the next resistor candidate outside
the x × y pattern does not affect the robustness of our
approach. Potential disturbances can however occur in case
all resistor centroids cannot be identified by one threshold
setting. This is obviously possible due to thermal differences
of the resistors which can show up as considerable intensity
variations.

C. The 3-D Laser Range Scanner

To establish a correspondence between the measurements
of the 3-D laser range scanner and both camera systems,
we need to automatically detect the 3-D coordinates of the
calibration board corners. This is a non-trivial task, due
to the inherent noise in the range measurements [11] (we
use a Velodyne HDL-64E S2 scanner, see Section III). The
problem can be split into two parts: First, we have to identify
the point cluster corresponding to the range measurements
returned from the calibration board. Second, we have to fit
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Fig. 3: Illustration of an exemplary Delaunay triangulation
as well as the neighborhood relations.

a rectangle with the dimensions of the calibration board to
the identified point cluster.

d) Point Cluster Identification: In order to reliably
identify the 3-D point cluster corresponding to the range
measurements from the calibration board, we physically
simplify the task by using a metal stick to hold the calibration
board (fixed by means of a vacuum cup). This allows simple
distance thresholding to separate the range measurements off
the board from range measurements off the person holding
the board. Otherwise, it would be significantly harder to
automatically separate the point cluster of interest. We further
note that the position where we can present the board to the
laser scanner is constrained by the smallest field of view
angle of one of the cameras, in both vertical and horizontal
direction. Given that we know the length of the stick, these
constraints allow automatic identification of the point cluster.
An exemplary segmentation result is shown in Fig. 5b, where
the point cluster corresponding to the calibration board is
shown in red.

e) Detecting the Corners: Regarding the second part of
our problem, the identification of the corner coordinates, we
have to cope with the aforementioned sensor noise and the
fact that the board might be tilted as well. Since we want to
allow outdoor calibration, we need a strategy that can handle
possibly occurring outliers caused by reflections as well. In
order to cope with these impairments, we rely on the well-
known RANSAC algorithm [12] to fit a plane to the point
cluster. The points are then projected onto the fitted plane
along the viewing direction of the laser scanner. Next, we
rotate the projected points to the x-y plane and determine
the minimum bounding rectangle (i.e. the bounding box of
the convex hull of the points). Rotating the corner points
of the bounding rectangle back to our original coordinate
system gives the 3-D coordinates of the calibration boards’
corners. All three steps are illustrated in Fig. 5a.

We emphasize that we can exploit our knowledge about the
dimensions of the calibration board in the corner detection
step of our algorithm to validate the quality of the plane
fit. Allowing only a certain deviation from the true rectan-
gle area2 immediately excludes cases where the RANSAC

2in our experiments, we allow a deviation of 3.9 square inch

Fig. 4: Boundary of the calibration board projected into the
IR images based on the automatically calibrated intrinsic and
extrinsic IR camera parameters.
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Fig. 5: Illustration of the (three) steps to find the calibration
board in potentially noisy laser range measurements.

algorithm followed by the projection and rotation step led
to a wrong minimum bounding rectangle. In Fig. 5b, we
show an exemplary result of fitting the calibration board to
the laser range measurements. The data shown in this figure
corresponds to the rightmost IR image in Fig. 4. Due to a
missing ground truth, we have to rely on visual validation
of the result. Considering the fact that we have to deal with
noisy measurements, the orientation and dimensions of the
board are sufficiently accurate.

D. Extrinsic Calibration

For each calibration image, we estimate the extrinsic
parameters of the cameras relative to the calibration pattern
(Section II). The distance from the calibration points to
the corners of the calibration board is known. This allows
to calculate the image coordinates of the corners of the
calibration board by projecting the four points into the image,
illustrated in Fig. 4, using the previously calculated extrinsic
parameters. Consequently, we have knowledge about the 2-
D image coordinates and the 3-D coordinates of the cor-
ners of the calibration board in all images. The extrinsic
camera parameters relative to the laser are then estimated
by minimizing the re-projection error (using the OpenCV
library). The position and rotation of the cameras relative
to the laser coordinates is fixed. This means that we can
use the 2D-to-3D point correspondences of every calibration
image together, as if we would be using a much bigger and
much more complex calibration object. This helps to make
the calibration process robust against sensor noise (mainly
introduced by the laser scanner).

III. EXPERIMENTS

The objective of the first part of the experiments (i.e.
Section III-A) is to evaluate the quality of the IR calibra-
tion method against state-of-the-art calibration methods for



visible-light cameras. Those experiments are conducted in
daylight, otherwise the visible-light cameras would fail to
provide any useful data. The second part of the experiments
(i.e. Section III-B), provides a visual comparison of depth
map estimation at conditions similar to driving-by-night
scenarios.

Our multi-sensor platform consists of a (visible-light)
Bumblebee XB3 camera (15 FPS at a resolution of 1280×
960 pixel), a PathfindIR IR camera (8 FPS at a resolution of
360×288 pixel) and Velodyne HDL-64E S2 3-D laser range
scanner (operating at 10Hz). The dimensions of our calibra-
tion board are 20′′ × 10′′. Image and laser scan acquisition is
performed using three equivalent standard PCs, synchronized
by a software implementation3 of the IEEE 1584 Precision
Time Protocol (PTP). Since calibration is done using static
scenes, accurate time synchronization guarantees that the
sensors observe the same pose of the calibration board.
Obviously, this is an essential requirement for sensor to
sensor calibration. For the Bumblebee calibration we rely on
the automatic checkerboard corner detection and calibration
algorithm implemented in the OpenCV library [9], but any
other calibration tool could be used too.

A. Camera Calibration

First, we evaluate the robustness of the IR resistor de-
tection approach on a number of IR images captured under
varying environmental conditions and different views. The
first test set consists of 15 images captured indoors (i.e.
office) with an environmental temperature of ≈ 72◦F. The
second test set consists of 20 images captured outdoors with
an environmental temperature of ≈ 50◦F. Table I lists the
fraction of all images where the resistors are successfully
detected. The table further lists the re-projection error using
the automatically calibrated intrinsic and extrinsic parame-
ters. We compare the re-projection error to the automatic
checkerboard corner detection and calibration algorithm im-
plemented in the OpenCV library. The Bumblebee XB3
images are selected to show the same outdoor scene and
calibration board pose we used to estimate the IR camera
parameters. In order to obtain a fair comparison, we have to
crop 40 pixel of the left and right part of each Bumblebee
XB3 image (to obtain the same aspect ratio as the IR camera
images) and scale the resulting image down to 360 × 288
pixel. For comparison, the checkerboard is detected two
times in every picture: The first time, we detect the checker-
board in the full resolution image (i.e. 1280×960 pixel) and
downscale the points afterwards. The second time, we first
downscale the images and then detect the checkerboard in
the low resolution image. The detection in the full resolution
image represents our ground truth and the detection in the
downscaled version of the images represents the scenario
which is comparable to resistor detection in the IR images.

With the OpenCV checkerboard detector, the calibration
points are found in every image of the Outdoor and the Office
scene using the full resolution Bumblebee XB3 images (see

3http://ptpd.sourceforge.net/

Table I). Detection in the downscaled images, however, is
only possible in ≈ 60 percent of all cases. The proposed
IR resistor detection achieves considerably better detection
rates, ranging between 75 and 100 percent. We further
observe that the re-projection error of the IR calibration
approach is slightly higher than the re-projection error of the
OpenCV calibration result on the Bumblebee XB3 images
(≈ 0.3 pixel) but well below one pixel. The re-projection
error obtained in the office environment is higher for all
three tests because the camera distortion has more impact
on objects closer to the camera (and thus close to the image
borders). These results clearly demonstrate that the detection
of the resistors and the calibration of the IR camera provides
comparable results to the calibration of a visible-light camera
using a checkerboard pattern.

B. Depth Map Estimation

As an application of our automatic sensor calibration,
we choose the recently proposed range data upsampling
approach of Dolson et al. [13] to build dense depth maps
from IR images and range measurements of the 3-D laser
scanner. The algorithm is basically a modification of the d-
dimensional filtering approach of Adams et al. [14] adapted
to enable d-dimensional interpolation.

To obtain accurate depth maps, it is imperative that the
sensors are properly calibrated to each other, since we project
the laser range measurements into the IR images. According
to [13], calibration was performed by hand in the original
work. Given that sensors are not permanently mounted on a
vehicle or robot, this can be a quite time consuming and an
error prone task. Our objective is to demonstrate that by using
IR images as an input to the algorithm, we obtain reliable
depth information for living objects even in environments
with no or bad light conditions. To simulate such a scenario,
we choose an underground parking garage where the only
source of illumination is emergency light. In order to use
the Bumblebee XB3 camera in this scenario, we would
have to adjust exposure time to a maximum, consequently
introducing an unacceptable amount of motion blur.

Regarding the parameter setting of the upsampling algo-
rithm, we build position vectors pi as (g, u, v) for each IR
image pixel where g represents the intensity value of the
pixel (hence encodes the IR information) and u, v represent
the pixel location in 2-D. In contrast to the original work,
we do not have color information available and further omit
the time t in the composition of the position vectors. The
extension to a dynamic environment is out of the scope
of this work, but is straightforward in the framework of
[13]. Obviously, range values outside the IR image plane
are discarded. Since the algorithm performs an instance of
Gaussian filtering, we have to set the standard deviations of
each dimension. As in [13], we perform a grid search to
determine the optimal parameters. Fig. 6 shows a set of IR
images (top row) captured in the parking garage, as well as
the corresponding (dense) depth maps (bottom row).

To illustrate the difference in the depth maps when relying
on images from the (visible-light) Bumblebee XB3 camera



Environment IR (our algorithm) Visible Light, Full (OpenCV) Visible Light, Small (OpenCV)
Detection Error [%] Detection Error [%] Detection Error [%]

Outdoor 15/20 0.2677 20/20 0.0893 12/20 0.0822
Office 15/15 0.3007 23/23 0.2084 15/23 0.1534

TABLE I: Detection rate and re-projection error of resistors in IR images with respect to different capture environments.

(a) FLIR images. Parking garage with only emergency light

(b) Corresponding (dense) depth maps

Fig. 6: FLIR images and corresponding depth maps (calcu-
lated using the algorithm of [13]).

(a) using the PathfindIR IR image (b) using the (visible-light) Bumble-
bee XB3 image

Fig. 7: Depth map comparison of a scene (i.e. parking
garage) where the only source of illumination is emergency
light (simulates night conditions).

a low light scenario is shown in Fig. 6. The images were
acquired in the same parking garage with only emergency
light. In Fig. 7b, we can see that the camera picture is
almost completely black except for the emergency light
which illuminates a part of the car. In such a scenario, the
upsampling code degenerates to a mere smoothing of the
laser range measurements. Consequently, the person standing
in front of the wall (see Fig. 7b) is almost invisible. In
contrast, the upsampled data based on the IR camera image
(see Fig. 7a) preserves the objects contours and thus the
person clearly stands out from the wall. This system is
especially useful for the detection of humans (and living
objects in general), due to the fact that they emit a substantial
amount of IR radiation.

IV. CONCLUSION

Avoiding collisions with living objects, such as humans
or animals is presumably the primary objective in any sit-
uation involving autonomously moving objects (e.g. robots,
cars, etc.). However, at night or under severe illumination
impairment, vision systems relying on visible light cameras
cease to provide reasonable information. In this work, we
demonstrated that an IR camera is very valuable asset in
such scenarios and presented a novel approach to allow
automatic estimation of the intrinsic IR camera parameters.

We further showed that fully automatic estimation of the
extrinsic parameters of a multi-sensor system including a
3-D laser range scanner, a visible-light camera and an IR
camera is feasible using just one (portable) calibration board.
Eventually, we exemplified our approach by showing that
we can still estimate dense depth maps by means of fusing
IR information and range measurements in situations where
information from visible-light cameras is useless.
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