Michael Gschwandtner, Roland Kwitt, Andreas Uhl and Wolfgang Pree,
“BlenSor: Blender Sensor Simulation Toolbox”, In G. Bebis, R. Boyle, B. Parvin,
D. Koracin, R. Chung and R. Hammoud, editors, Advances in Visual Com-

puting: 7th International Symposium, (ISVC 2011), Volume 6939/2011, pp.
199-208, Springer Verlag, 2011

(© Springer Verlag. The copyright for this contribution is held by Springer
Verlag. The original publication is available at www.springerlink.com.
http://www.springerlink.com/content/0k61170x12641q7w/

BlenSor: Blender Sensor Simulation Toolbox

Michael Gschwandtner, Roland Kwitt, Andreas Uhl, Wolfgang Pree

Department of Computer Sciences, University of Salzburg, Austria
{mgschwan,rkwitt,uhl}@cosy.sbg.ac.at, wolfgang.pree@Qcs.uni-salzburg.at

Abstract. This paper introduces a novel software package for the sim-
ulation of various types of range scanners. The goal is to provide re-
searchers in the fields of obstacle detection, range data segmentation,
obstacle tracking or surface reconstruction with a versatile and powerful
software package that is easy to use and allows to focus on algorithmic
improvements rather than on building the software framework around it.
The simulation environment and the actual simulations can be efficiently
distributed with a single compact file. Our proposed approach facilitates
easy regeneration of published results, hereby highlighting the value of
reproducible research.

1 Introduction

Light Detection and Ranging (LIDAR) devices are the key sensor technology
in today’s autonomous systems. Their output is used for obstacle detection,
tracking, surface reconstruction or object segmentation, just to mention a few.
Many algorithms exist which process and analyze the output of such devices.
However, most of those algorithms are tested on recorded (usually not publicly
available) sensor data and algorithmic evaluations rely on visual inspection of
the results, mainly due to the lack of an available ground truth. Nevertheless,
ground truth data is the key element to produce comparative results and facili-
tate a thorough quantitative analysis of the algorithms. Some authors tackle that
problem by implementing their own sensor simulations, but most home-brewed
approaches follow unrealistic simplifications, just using subdivision methods to
generate point clouds for instance.

The software we propose in this article represents an approach to tackle that
shortcoming: we provide a unified simulation and modeling environment which
is capable of simulating several different types of sensors, carefully considering
their special (physical) properties. This is achieved by integrating the simulation
tool directly into Blender!, a 3-D content creation suite. With this combination it
is possible to model the test scenarios with arbitrary level of detail and immedi-
ately simulate the sensor output directly within the modeling environment. The
BlenSor? toolkit is completely integrated within Blender (see Fig. 1a) and does
not require any custom scripts or tedious editing of configuration files to adjust

! http://www.blender.org
2 http://www.blensor.org

the sensors. Yet, it is possible to access the underlying scanning functionality
from custom code in case researchers want to modify the core functionality.

The strong focus on offline data creation for algorithm development and
testing allows BlenSor to focus on usability and features. BlenSor does not re-
quire to satisfy any external dependencies to enable compatibility with robotics
frameworks for instance. The output is either i) written to a file (in a format
explained in Section 3.6) or ii) added as a mesh within the sensor simulation.
This facilitates direct interaction with the simulated (i.e scanned) data. Even
though realtime capabilities have been left out on purpose, the simulation can
be used together with Blender’s physic engine, thus enabling to simulate complex
scenarios with physical interaction of objects.

(a) Parameters (b) Exemplary scan simulation

Fig.1: The sensor simulation interface is a part of the Blender GUI It can
be used just like any other feature of Blender: (a) every sensor has different
parameters which can easily be modified and are stored in a .blend file; (b)
example of a simple scan simulation. Single scans can be directly viewed and
manipulated (and even analyzed) within Blender.

2 Previous Work

In [1], Dolson et al. generate range data for depth map upsampling by means of
a custom OpenGL simulation. In [4], Meissner et al. simulate a four-layer laser
range scanner using the ray-casting mechanism of the Blender game engine. Al-
though, this is a fast and straightforward way of simulating a laser range scanner,
it comes with the disadvantage of having to cope with restricted functionality
of the game engine (e.g. limited set of materials, scalability issues, restrictions
induced by graphics hardware, etc.). Bedkowski et al. [3] implement a custom
simulation environment which provides an approximation of a laser scan per-
formed by a LMS SICK 200. Their simulation however does not consider laser
noise and is only a simulator which requires external modeling tools to create the
scene that in turn is simulated. To the best of our knowledge, the most advanced
simulation system is proposed by Echeverria et al. [2]. The authors provide an
approach for realtime robotics simulation (named MORSE) using Blender as
the underlying simulation environment. It supports several robotics frameworks
and is meant for simulating the robots and studying their interaction with the

environment. The sensors, particularly the LIDAR types, are just a means to an
end for simulation rather than the core component itself. In addition to that,
simulation of the sensors is relatively limited in terms of physical correctness,
i.e. no noise or reflections, and no Time-of-Flight camera is available as well.

3 Sensor Simulation

Compared to robot simulation software ([2,7]), BlenSor focuses on simulation of
the sensors itself rather than the interaction of sensor equipped robots with the
environment. In fact, we are able to care a lot more about specific sensor prop-
erties, since there are no realtime constraints. Such properties are for example
a realistic noise model, physical effects like reflection, refraction and reflectivity
and sophisticated casting of rays that do not just describe a circle around the
scanning center. The simulation accuracy can be increased with simple changes
to the sensor code if features that are not yet available are required. The imple-
mentation details of the various sensor types in the following sections describe
the simulation state at the time of writing. Due to the strong focus on offline
simulation, we are able to simulate scenarios with a higher degree of detail than
what is currently possible with existing robot simulators (e.g. MORSE ([2]).

3.1 Scanning Principle

All sensors simulated by BlenSor basically rely on the fact that the speed of light
is finite and that light is at least partially reflected from most surfaces. To be
more specific, the measured reflection is affected by i) the traveling distance of the
emitted light, ii) the amount of light arriving at the sensor and iii) the concrete
measurement, time. In general, one or more rays of light are emitted from a range
measurement device in the form of a light pulse. The rays travel along straight
lines to a potential object. Once the rays hit an object, a fraction of the light gets
reflected back to the sensor, some part gets reflected in different directions, and
another part may pass through the object (in the case of transparent materials)
in a possibly different direction.

This is in fact closely related to ray-tracing techniques in computer graphics.
Thus the modification of a ray-tracing program to match the sensor character-
istics seems just natural. Although Blender provides an interface to cast rays
from within the Python programming language, the functionality is limited and
runtime performance inevitably suffers due to the computational demand to sim-
ulate a huge number of laser rays. BlenSor tackles this problem by patching the
Blender codebase to provide a way to cast several rays simultaneously. It also
allows Pyhton code to access material properties of the faces that are hit by the
rays. For increased efficiency, reflection is handled directly within Blender. By
using this interface, the sensors developed using the Python interface, can set up
an array of ray directions and hand the actual ray-casting over to the patched
Blender core. Then, a raytree is built by Blender to allow efficient ray-casting.
This modification processes all rays (and calculates reflections if needed) and re-
turns the distances of the hits as well as the objectID for each ray. Eventually,
the sensor code calculates sensor dependent noise and other physical features.
This is described in the following sections.

10%
Reflectivity) Reflectivity
e

Reflectivity below | /Just enough reflectivity
threshold for { /' to produce an echo
given distance | ¢/ at the given distance

(a) Backfolding (b) Low Reflectivity (c) Fully refl. surface

Fig. 2: Simulated features of different sensor types: (a) Backfolding effect of
Time-of-Flight cameras; (b) Objects with low reflectivity (here: object in 50
meter distance); (c) Totally reflecting surfaces which cause points to appear
farther away.

3.2 Rotating LIDAR

A rotating LIDAR has a sensor/emitter unit rotating around the center of grav-
ity and thus creates a 360° scan of the environment. As a representative of this
class of sensor type, BlenSor implements a Velodyne HDL-64E S2 scanner. This
sensor can detect objects with a (diffuse) reflectivity of 10% (= riower) at a
distance of 50 meter (= djower) and objects with a (diffuse) reflectivity of 80%
(= Tupper) at a distance of 120 meter (= dypper). As already mentioned, the
amount of light reflected back to the sensor depends on the distance of the ob-
ject. The decrease in reflected light is compensated within the scanner electronic
by lowering the threshold during the scan interval. Unfortunately, this process
can not be correctly reproduced by BlenSor, since the information about thresh-
old adaption is not available from the manufacturer. It is however possible to
approximate this process by means of linear interpolation of the minimum re-
quired reflectivity. We use the 10% and 80% marks listed in the data sheet of the
sensor. Objects closer than 50 meter are detected as long as their reflectivity is
> 0%. Objects at a distance (dist) between 50 meter and 120 meter are detected
if their reflectivity is 2 rpn(dist), according to Eq. (1). These values can be
easily adapted by the user if an empiric evaluation of the sensor provides differ-
ent results than the information from the manufacturer. Or if the user wants to
simulate a different environmennt like haze or fog. As this effect is calculated on
a per-ray basis, it is even possible that a single object is only partially visible if
it has a low reflectivity and is far away from the scanner (cf. Fig. 2b).

Tmin (dist) = Tiower + (Tupgl)er Tlm;er) — (1)
upper — Wlower
Once all rays have been cast, we have to impose sensor specific errors to the
clean measurements (dist,eq;). Our error model currently consists of two parts:
first, a distance bias (noisep;qs) for each of the 64 laser units. This bias remains
the same in each rotation but the noise characteristics can be changed by the

user. Experiments with a real Velodyne HDL-64E S2 revealed that the reported

z-distance of a plane normal to the laser’s z-axis may differ up to 12 centimeter
for any two laser units (combination of a laser and a detector). This is close to
the actual numbers provided in the sensor fact sheets. The second part of our
error model accounts for the fact that each single measurement (distpeisy) is
subject to a certain noise as well. Thus a per-ray noise (noise,qy,) is applied to
the distance measurements. The final (noisy) distance is formally given by

distnoisy(yaw, pitch;) = distrea(yaw, pitch;) + €pias,i + €ray (2)

with €pigs,i ~ N (0, Opias) and €rqy ~ N (0, 0rqy), where N (p1, o) denotes a Nor-
mal distribution with mean p and variance o.

3.3 Line LIDAR

As representative for the Line LIDAR type sensors BlenSor implements a hybrid
scanner that can be best described as a combination of an Ibeo LUX and a SICK
LMS sensor with a few modifications. According to the fact sheet of the Ibeo
LUX sensor it can detect obstacles with a (diffuse) reflectivity of 10% up to 50
meter and has an average scanning distance of about 200 meter.

The basic principle of measuring distances is described in Section 3.2. A Line
LIDAR, however, implements a slightly different method to direct the rays. In
contrast to the Velodyne HDL-64E S2 scanner, the line scanner has fixed laser
emitters which fire at a rotating mirror. Depending on the position angle of the
mirror, the rays are reflected in different directions. The measurement itself is
the same as most other laser-based time of flight distance measurement systems.
We highlight the fact that the rotating mirror does not only affect the yaw angle
of the laser beams but also the pitch angle.

In its initial position (i.e. yaw is 0°) the mirror reflects the rays at the same
yaw angle and with the same pitch angle between the rays as they are emitted
by the lasers (cf. Fig. 3a). When the yaw angle of the mirror is in the range
[0°,90°], the rays have a yaw and pitch angle which is different from the angles
when emitted by the lasers (cf. Fig. 3b). Finally, when the mirror reaches a yaw
angle of 90°, the pitch angle of all lasers becomes the same. The former pitch
angle between the lasers has become the yaw angle between the lasers (cf. Fig.
3c). The noise model for the measurements is the same as in Section 3.2 due to
the same scanning principle.

3.4 Time-of-Flight (ToF) Camera

In contrast to the LIDAR sensors of Sections 3.2 and 3.3, a ToF camera does
not need a narrow focused beam of light for its measurements. Consequently,
ToF cameras do not use lasers to emit the light pulse. Instead, the whole scene
is illuminated at once and the Time-of-Flight is measured with a special type
of imaging sensor. Compared to the LIDAR sensors, a ToF camera has the
advantage of a substantial increase in resolution, however, at the cost of limited
measurement distance. In terms of simulation, a ToF camera does not differ
much from the other sensors, though. The sensor has a per-ray noise but a

Laser

Rotating
Mirror

(a) a=0° (b) a € [0°,90°) (c) a=90°

Fig. 3: The pitch and yaw angle of the outgoing rays is affected by the different
yaw angle « of the mirror as it rotates. Only in the mirror’s initial position, the
angles of the rays are not affected.

higher angular resolution. While LIDAR sensors take a full scanning cycle (i.e.
rotation) until they scan the same part of the environment again, subsequent
scans of a ToF camera scan the same part of the environment. This may lead
to ambiguities in the distance measurements. A signal from one scan may be
received in the subsequent scan causing a wrong result. This effect is called
Backfolding: objects at a certain distance may appear closer than they really are
(cf. Fig. 2a). Backfolding can be enabled in BlenSor which causes all distance
measurements in the upper half of the maximum scanning distance to be mapped
into the lower half according to

distreal, distyeq < Modistance

: 3)

mazxdistance

diStbackfolding = {
D) ;

dist,eqr — else.

3.5 Reflection

A special property of all supported sensor types is the total reflection of rays. If
a ray hits a reflecting surface it does not immediately produce a measurement.
Instead, the ray is reflected at the intersection point with the object and may hit
another object at a certain distance. The ray might get reflected again, or not
hit an object within the maximum scanning range. Figure 2c illustrates the case
when several rays reflected from an object hit another object with a reflectivity
above the necessary measurement threshold. As a result, the measured points
appear farther away than the object because the rays did actually travel a greater
distance. The sensor, however, does not know this fact and consequently projects
a virtual object behind the real one.

3.6 Ground Truth

An important advantage of BlenSor is the ease at which the ground truth for
the simulated scenes can be generated. BlenSor currently supports two output
possibilities:

1. The information about the real distance of a ray and the object identifier of
the hit object is stored along with the clean & noisy real world data. Every
measurement, consist of 12 data fields. The timestamp of the measurement,
yaw and pitch angle, the measured distance, the noisy distance, the z,y
and z coordinates of the measured points (i.e. clean data), the coordinates
of the noisy points and the objectID of the object that was hit.

2. BlenSor extends the Blender functionality to facilitate exporting of a floating
point depth map, rendered at an arbitrary resolution. This depth map can
then be used as a ground truth for many algorithms that work on 2.5D data,
such as the work of Dolson et al. [1] for instance.

4 Building a simulation

To build a static or dynamic scene for sensor simulation, we can rely on the
standard tools of Blender. Any object can be added to the simulation and ob-
jects can be imported from other .blend files. This resembles the situation of
a 3-D modeling artist building a scenery. Technically, there is no limit on the
level of scene detail (except RAM of course), but too much detail will result in
considerable simulation times. Some material properties (for example the diffuse
reflection parameter) have an impact on the sensor simulation. The materials
can be distributed through .blend files and we already made some available
on the BlenSor website. This enables other researchers to reuse the materials
in their own simulations. In BlenSor, the cameras are the placeholders for the
actual sensor devices. Once the scene has been modeled and animated, the user
selects a camera that is going impersonate the sensor, adjusts its physical prop-
erties and eventually simulates the scanning process. No editing of configuration
files or any manipulation of scripts is necessary. The simulation is started and
configured directly from the camera settings panel. If the simulation is run in
single scan mode the user has the option to add the ground truth and/or the
noisy real world data to the scene (cf. Fig. 1b). This allows for a direct visual
verification of the simulation. The scene can be easily adjusted and scanned
again. Different scans can coexist in BlenSor, thus allowing a direct comparison
of different sensor parameters as well as the scene itself.

4.1 Using the Physics Engine

Physics simulation is possible through the internal physics engine of Blender.
BlenSor can simulate any scene that can also be rendered. In order to simulate
physical processes, we just need to set up the physics simulation and record the
animation data while the physics simulation is running. This has the advantage
that the physics simulation needs to be run only once, while the actual sensor
simulation can be run as many times as necessary without the need to recalculate
the physics.

4.2 Exporting Motion Data

To facilitate quantitative analysis of algorithms it is necessary to know the exact
position and orientation of all (or at least several) objects in the simulation.

The data of the objects can be exported as a text file describing the state of an
object over the scan interval. The user can choose between exporting all, or only
a selection of the objects in the scene. Exporting only selected objects may be
beneficial for large and complex scenes. To export only selected objects the user
literally selects one or more objects within Blender and calls the Ezport Motion
Data functionality which was added by BlenSor.

5 Experimental Results

Our first experimental results in Fig. 4a show a crossing scene with four cars.
The car closest to the camera is also the position of the sensor. To demonstrate
the strength of BlenSor, we use the Velodyne HDL-64E S2 sensor to scan the
scene. Figure 4b shows the scene scanned with MORSE, Fig. 4c shows the scene
scanned with BlenSor. Compared to the BlenSor results, it is clearly visible
that MORSE uses only a rudimentary simulation of the sensor. As a matter of
fact, this is no real surprise since the primary focus of MORSE is on realtime
simulation of whole robots and less on accurate simulation of sensors with all
their properties. The BlenSor scan in contrast shows a much denser scan and
a noise level similar to what we would expect with a real Velodyne HDL-64E
S2 sensor. It is also important to note that the pitch angle of the laser sensors
used by Velodyne is not evenly spaced. Relying on an exemplary calibration file
provided by Velodnye, we distribute the pitch angles correctly.

(a) Rendered scene (b) Sim. using MORSE (c) Sim. using BlenSor

Fig. 4: Simulation of a simple scene with MORSE and BlenSor using the imple-
mented Velodyne HDL-64E S2 sensor.

In our second experiment, illustrated in Fig. 5, we scan a fairly complex scene
with 237000 vertices. The terrain has been modified by a displacement map to
resemble an uneven surface (e.g. acre). Even though the scene is quite complex,
the scanning time for a single simulation interval (in this case 40ms) is still
between 4.9 and 12.8 seconds (see Table 1 for details). Scanning was done on a
Intel Core i5 2.53Ghz machine with 3 GB of RAM running a Linux 2.6.31-14
kernel. The average memory usage over the scan is 228 MB.

5.1 Reproducibility

One of the key motivations of developing BlenSor was to allow full reproducibility
of research results. BlenSor stores all sensor settings in a .blend file. Further, the

(a) Velodyne scan (b) Ibeo scan (c) ToF camera scan

\ 1

-

(d) Rendered scene (e) Ground truth

Fig. 5: Simulation of a scene with a large amount of vertices. The scene consists
of a rough terrain, simulating an acre, with a near collision of two cars. The
figures in the top row show the simulated sensor output of BlenSor, the figures
in the bottom row show the rendered scene (i.e. the camera view) as well as the
ground truth (i.e. a 2000 x 2000 high-resolution depth map).

Table 1: Processing time in seconds of different sensors in a complex scene.
Velodyne Ibeo LUX Time-of-Flight = Depthmap

8.462 [s] 4.943 [s] 5.290 [s] 11.721 [s]

raw scan data can be provided as well in order to allow other researchers to make
comparative studies without having to run the simulation again. Nevertheless,
storing all needed information in one compact file makes it extremely easy to
share the simulation setup. It further enables other researchers to easily modify,
adapt or extend the scenarios.

5.2 Scalability

Although sensor simulation is usually a resource intensive task, smaller scenes are
rendered almost in realtime by BlenSor. Larger and /or more complex scenes may
require substantially more processing time, though. To cope with that problem,
BlenSor is designed to allow distribution of the .blend file to multiple hosts by
splitting the simulated time interval into corresponding sub-intervals. Since the
parts are non-overlapping, each host (or thread) can work on its specific sub-
interval. Since we do not make use of GPU processing power (which is usually the

case for simulators that rely on a a game engine), we can run several instances
of simulation on a multi-core machine at the same time as well.

6 Conclusion

In this article we introduce a software tool for reproducible research in range
data processing. Due to the strong linkage among simulation and modeling, cre-
ation of ground truth data is very simple. In fact, BlenSor considerably simplifies
simulation of otherwise untestable scenarios (e.g. crashes). At the time of writ-
ing, all implemented sensor types already produce data that closely resembles
the output of real sensors. We hope that this software encourages reproducible
research in the respective fields and simplifies the distribution of test data for
comparative studies. There is also good reason to believe that the functional-
ity of BlenSor allows more researchers to develop algorithms for range scanner
data without having to possess the physical sensor. Future work on BlenSor will
also include support for the mixed-pixel error ([5,6]), refraction and, of course,
additional sensors (i.e Hokyuo and SICK sensors).

References

1. J. Dolson, J. Baek, C. Plagemann, and S. Thrun. Upsampling range data in dynamic
environments. In Proceedings of the IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR ’10), pages 1141-1148, San Francisco, CA,
USA, 2010.

2. G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaign. Modular open robots
simulation engine: Morse. In Proceedings of the IEEE Conference on Robotics and
Automation (ICRA ’10), Shanghai, China, 2011.

3. M. Kretkiewicz J. Bedkowski and A. Mastowski. 3D laser range finder simulation
based on rotated LMS SICK 200. In Proceedings of the EURON/IARP International
Workshop on Robotics for Risky Interventions and Surveillance of the Environment,
Benicassim, Spain, January 2008.

4. D. Meissner and K. Dietmayer. Simulation and calibration of infrastructure based
laser scanner networks at intersections. In Proceedings of the IEEE Intelligent Ve-
hicles Symposium (IV ’10), pages 670 — 675, San Diego, CA, USA, 2010.

5. D. Huber P. Tang and B. Akinci. A comparative analysis of depth-discontinuity
and mixed-pixel detection algorithms. pages 29-38, Los Alamitos, CA, USA, 2007.

6. E. Gregorio-Lopez R. Sanz-Cortiella, J. Llorens-Calveras J.R. Rosell-Polo and
J. Palacin-Roca. Characterisation of the LMS200 laser beam under the influence of
blockage surfaces. influence on 3D scanning of tree orchards. Sensors, 11(3):2751—
2772, 2011.

7. R. Vaughan. Massively multi-robot simulation in stage. Swarm Intelligence,
2(2):189-208, December 2008.

